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ON A DARBOUX TYPE MULTIDIMENSIONAL PROBLEM
FOR SECOND-ORDER HYPERBOLIC SYSTEMS

S. KHARIBEGASHVILI

Abstract. The correct formulation of a Darboux type multidimen-
sional problem for second-order hyperbolic systems is investigated.
The correct formulation of such a problem in the Sobolev space is
proved for temporal type surfaces on which the boundary conditions
of a Darboux type problem are given.

In the space of variables x1, . . . , xn, t we consider the system of linear
differential equations of second-order

Lu ≡ utt −
n

∑

i,j=1

Aijuxixj +
n

∑

i=1

Biuxi + Cu = F, n > 2, (1)

where Aij , Bi, C are given real m × m matrices, F the given and u the
unknown m-dimensional vector, m > 1.

It will be assumed below that the matrices Aij are symmetrical and
constant, and the inequality

n
∑

i,j=1

Aijηiηj ≥ c0

n
∑

i=1

|ηi|2, c0 = const > 0, (2)

holds for any m-dimensional real vectors ηi, i = 1, . . . , n.
Condition (2) readily implies that system (1) is hyperbolic.
Let G be a dihedral angle in the space Rn+1 of variables x1, . . . , xn, t

with a temporal type noncharacteristic boundary ∂G, i.e.,

(

Eα2
n+1 −

n
∑

i,j=1

Aijαiαj

)

ηη ≤ 0, η ∈ Rm, (3)
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where the vector (α1, . . . , αn, αn+1) is the unit normal vector to ∂G at points
differing from points of the edges of G, and E is the m×m unit matrix.

Let Γ be a hyperplane parallel to the edges γ of the angle G and severing
from this angle a subdomain D ⊂ G whose sections by two-dimensional
planes perpendicular to the edge γ are triangular.

It is further assumed that in system (1) elements of the matrices Bi,
C are bounded measurable functions in the domain D, and the right-hand
part of this system F ∈ L2(D).

Consider a Darboux type problem formulated as follows: In the domain
D find a solution u(x1, . . . , xn, t) of system (1) by the boundary condition

u
∣

∣

∂D∩∂G = f, (4)

where f is the known real vector.
Note that for the case where at least one face of the angle G is charac-

teristic, problems of this type for a second-order hyberbolic equation are
studied in [1–4]. In [5] a Darboux type problem for a wave equation is
studied on the assumption that both faces of G are of temporal type. Some
multidimensional analogues of the Darboux problems are treated in [6–8].
Also note [9] where a Goursat type multidimensional problem for hyperbolic
systems (1) is considered in the conical domain. In this paper, problem (1),
(4) is investigated in the Sobolev space W 1

2 (D).
For simplicity let D : k1t < xn < k2t, 0 < t < t0; ki = const, i = 1, 2,

k1 < k2, be the domain lying in the half-space t > 0 and bounded by the
plane hypersurfaces Si : kit − xn = 0, 0 ≤ t ≤ t0, i = 1, 2, of temporal
type and by the hyperplane t = t0. It is obvious that for such a domain
D condition (3), along with the property of the surfaces S1 and S2 being
noncharacteristic, is equivalent to the inequalities

k2
i < min(µ1, . . . , µm), i = 1, 2, (5)

where µj , j = 1, . . . ,m, are the eigenvalues of the symmetrical matrix Ann
which by virtue of (2) is positively definite. Then the boundary condition
(4) takes the form

u
∣

∣

Si
= fi, i = 1, 2, (6)

where fi, i = 1, 2, are the known real vector-functions on Si and (f1 −
f2)|S1∩S2 = 0.

Denote by C∞∗ (D) the space of functions belonging to the class C∞(D)
and having bounded supports, i.e.,

C∞∗ (D) =
{

u ∈ C∞(D) : diam supp u < ∞
}

.

The spaces C∞∗ (Si), i = 1, 2, are defined in a similar manner.
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Denote by W 1
2 (D), W 2

2 (D), W 1
2 (Si), i = 1, 2, the known Sobolev spaces.

Note that the space C∞∗ (D) is a dense everywhere subspace of the spaces
W 1

2 (D) and W 2
2 (D), while C∞∗ (Si) is a dense everywhere subspace of the

space W 1
2 (Si), i = 1, 2.

Definition. Let fi ∈ W 1
2 (Si), i = 1, 2, F ∈ L2(D). A vector-functon

u ∈ W 1
2 (D) will be called a strong solution of problem (1), (6) from the

class W 1
2 if there exists a sequence un ∈ C∞∗ (D) such that un → u in the

space W 1
2 (D), Lun → F in the space L2(D), and un|Si → fi in W 1

2 (Si),
i = 1, 2, i.e., for n →∞

‖un − u‖W 1
2 (D) → 0, ‖Lun − F‖L2(D) → 0,

‖un|Si − fi‖W 1
2 (Si) → 0, i = 1, 2.

We have

Lemma 1. If inequalities (5) are fulfilled, k1 < 0 and k2 > 0, then for
any u ∈ W 2

2 (D) the a priori estimate

‖u‖W 1
2 (D) ≤ c

(
2

∑

i=1

‖fi‖W 1
2 (Si) + ‖F‖L2(D)

)

(7)

holds, where fi = u|Si , i = 1, 2, F = Lu, and the positive constant c does
not depend on u.

Proof. Since the space C∞∗ (D) (C∞∗ (Si)) is a dense everywhere subspace of
the spaces W 1

2 (D) and W 2
2 (D) (W 1

2 (Si)), by virtue of the familiar theorems
of embedding the space W 2

2 (D) into the space W 1
2 (D) and the space W 2

2 (D)
into W 1

2 (Si) it is sufficient to show that the a priori estimate (7) holds for
functions u of the class C∞∗ (D).

We introduce the notation

Dτ =
{

(x, t) ∈ D : t < τ
}

, D0τ = ∂Dτ ∩ {t = τ}, 0 < τ ≤ t0,

Siτ = ∂Dτ ∩ Si, i = 1, 2, Sτ = S1τ ∪ S2τ ,

αi = cos(ν̂, xi), i = 1, . . . , n, αn+1 = cos(̂ν, t).

Here ν = (α1, . . . , αn, αn+1) is the unit normal vector to ∂Dτ and, as one
can readily see,

ν
∣

∣

S1τ
=

(

0, . . . , 0,
−1

√

1 + k2
1

,
k1

√

1 + k2
1

)

,

ν
∣

∣

S2τ
=

(

0, . . . , 0,
1

√

1 + k2
2

,
−k2

√

1 + k2
2

)

, ν
∣

∣

D0τ
= (0, . . . , 0, 1).
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Therefore for k1 < 0, k2 > 0 we find by virtue of inequality (3)

αn+1
∣

∣

Sτ
< 0, α−1

n+1

(

Eα2
n+1 −

n
∑

i,j=1

Aijαiαj

)

ηη
∣

∣

∣

Sτ

≥ 0, η ∈ Rm. (8)

After performing a scalar multiplication of both sides of system (1) by the
vector 2ut, where u ∈ C∞∗ (D), F = Lu, and integrating the resulting ex-
pression with respect to Dτ , we obtain

2
∫

Dτ

(

F −
n

∑

i=1

Biuxi − Cu
)

utdxdt =

=
∫

Dτ

(∂(utut)
∂t

+ 2
n

∑

i,j=1

Aijuxj utxi

)

dxdt− 2
∫

Sτ

n
∑

i,j=1

Aijutuxj αids =

=
∫

D0τ

(

utut +
n

∑

i,j=1

Aijuxiuxj

)

dx +

+
∫

Sτ

α−1
n+1

[
n

∑

i,j=1

Aij(αn+1uxi − αiut)(αn+1uxj − αjut) +

+
(

Eα2
n+1 −

n
∑

i,j=1

Aijαiαj

)

utut

]

ds. (9)

Assuming that

w(τ) =
∫

D0τ

(

utut +
n

∑

i,j=1

Aijuxiuxj

)

dx, ũi = αn+1uxi −αiut, i = 1, . . . , n,

and using (8), from (9) we have

w(τ) ≤ c1

[

∫

Sτ

n
∑

i,j=1

Aij ũiũjds +
∫ τ

0
w(t)dt +

+
∫

Dτ

uudxdt +
∫

Dτ

FFdxdt
]

, c1 = const > 0. (10)

Let (x, τx) be the point at which the surface S1∪S2 intersects the straight
line parallel to the t-axis passing through the point (x, 0). We have

u(x, τ) = u(x, τx) +
∫ τ

τx

ut(x, t)dt,

which implies
∫

D0τ

u(x, τ)u(x, τ)dx ≤
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≤ 2
∫

D0τ

u(x, τx)u(x, τx)dx + 2|τ − τx|
∫

D0τ

dx
∫ τ

τx

ut(x, t)ut(x, t)dt =

= 2
∫

Sτ

|α−1
3 |uuds + 2|τ − τx|

∫

Dτ

ututdxdt ≤

≤ c2

(

∫

Sτ

uuds +
∫

Dτ

ututdxdt
)

, c2 = const > 0. (11)

By introducing the notation

w0(τ) =
∫

D0τ

(

uu + utut +
n

∑

i,j=1

Aijuxiuxj

)

dx

and combining inequalities (10) and (11) we obtain

w0(τ) ≤ c3

[

∫

Sτ

(

uu +
n

∑

i,j=1

Aij ũiũj

)

ds +
∫ τ

0
w0(t)dt +

∫

Dτ

FFdxdt
]

,

which by the Gronwall lemma leads us to

w0(τ) ≤ c4

[

∫

Sτ

(

uu +
n

∑

i,j=1

Aij ũiũj

)

ds +
∫

Dτ

FFdxdt
]

, (12)

where ci = const > 0, i = 3, 4.
One can readily see that the operator αn+1

∂
∂xi

− αi
∂
∂t is the internal

differential operator on the surface Sτ . Therefore the inequality
∫

Sτ

(

uu +
n

∑

i,j=1

Aij ũiũj

)

ds ≤ c5

2
∑

i=1

‖fi‖2W 1
2 (Siτ ), c5 = const > 0, (13)

is fulfilled by virtue of (6).
Using condition (2) we have

c6(uu + utut +
n

∑

i=1

uxiuxi

)

≤ uu + utut +
n

∑

i,j=1

Aijuxiuxj , (14)

c6 = const > 0.

By virtue of (13) and (14) inequality (12) implies
∫

D0τ

(

uu + utut +
n

∑

i=1

uxiuxi

)

dx ≤

≤ c7

(
2

∑

i=1

‖fi‖2W 1
2 (Siτ ) + ‖F‖2L2(Dτ )

)

, c7 = const > 0. (15)

The integration of both sides of (15) with respect to τ gives estimate (7).
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For simplicity, when considering below the dependence domain and the
existence theorem for a solution of problem (1), (6), we shall limit our
consideration to the case where system (1) does not contain the lowest
terms, namely,

L0u ≡ utt −
n

∑

i,j=1

Aijuxixj = F. (16)

Let K : −∞ < t ≤ |x|g( x
|x| ) be the conical domain lying in the half-

space t < 0 and bounded by the surface ∂K : t = |x|g( x
|x| ) with vertex

at the origin O(0, . . . , 0), where g is a completely defined negative smooth
function given on the unit sphere in Rn. If P0(x0

1, . . . , x
0
n, t0) ∈ Rn+1, then

we denote by KP0 the conical domain K drawn from the point P0 towards
the decreasing values of time, i.e., KP0 : −∞ < t ≤ t0 + |x− x0|g( x−x0

|x−x0| ).
It will be assumed below that the characteristic matrix of system (1) is

nonnegative on the cone ∂K, i.e.,

(

Eα2
n+1 −

n
∑

i,j=1

Aijαiαj

)

ηη ≥ 0, η ∈ Rm, (17)

where (α1, . . . , αn, αn+1) is the external unit normal vector to the cone ∂K
at points different from the vertex.

We shall clarify the geometrical meaning of condition (17).
By condition (2) the symmetrical matrix

∑n
i,j=1 Aijξiξj , (ξ1, . . . , ξn) ∈

Rn is positively definite. Therefore there is an orthogonal matrix T =
T (ξ1, . . . , ξn) such that the matrix T−1(

∑n
i,j=1 Aijξiξj)T is diagonal and its

elements σ1, . . . , σm on the diagonal are positive, i.e., σi = λ2
i (ξ1, . . . , ξn) >

0, λi > 0, i = 1, . . . , m. Therefore the real numbers ξn+1 = ±λi(ξ1, . . . , ξn),
i = 1, . . . , m, are the roots of the characteristic polynomial p0(ξ)=det(Eξ2

n+1
−

∑n
i,j=1 Aijξiξj) of system (1). As one can easily verify, λ0(ξ1, . . . , ξn) =

max1≤i≤m λi(ξ1, . . . , ξn) is a continuous positive homogeneous function of
first order with respect to the variables ξ1, . . . , ξn. For system (1), the
internal cavity of the cone of normals [10] lying in the half-space ξn+1 ≥ 0
is the convex cone [11]

Γ =
{

(ξ1, . . . , ξn+1) ∈ Rn+1 : ξn+1 = λ0(ξ1, . . . , ξn)
}

.

Since
(

Eα2
n+1 −

n
∑

i,j=1

Aijαiαj

)

ηη =

=
(

Eα2
n+1 − T−1

(
n

∑

i,j=1

Aijαiαj

)

T
)

T−1ηT−1η,
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where (Eα2
n+1−T−1(

∑n
i,j=1 Aijαiαj)T ) is a diagonal matrix with elements

(α2
n+1 − λ2

i ) on the diagonal, condition (17) is equivalent to the condition

|αn+1| ≥ λ0(α1, . . . , αn). (18)

By virtue of the assumptions for the cone K we have

αn+1
∣

∣

K > 0 (19)

and therefore (18) can be rewritten as

αn+1 ≥ λ0(α1, . . . , αn). (20)

Denote by Γ∗ = ∩
η∈Γ

{ξ ∈ Rn+1 : ξη ≤ 0} a conical domain dual to Γ. As

is known, ∂Γ∗ is a convex shell of the cone of rays of system (1) lying in the
direction of decreasing values of the time t = ξn+1 [10, 11].

Using inequality (20), one can prove, as in [9], that for a convex smooth
cone K condition (17) is equivalent to the condition K ⊃ Γ∗.

It will always be assumed below that k1 < 0, k2 > 0 and (3) is fulfilled.
Hence, as we have seen, it follows that inequalities (8) are valid.

Lemma 2. For a point P0(x0, t0) ∈ D of the solution u(x, t) of prob-
lem (16), (6) of the class C2(D) or W 2

2 (D) the domain of dependence is
contained in the conical domain KP0 with vertex at the point P0.

Proof. We set

ΩP0 = D ∩KP0 , SiP0 = Si ∩ ∂ΩP0 , i = 1, 2.

To prove the lemma it is sufficient to show that if

fi
∣

∣

SiP0
≡ u

∣

∣

SiP0
= 0, i = 1, 2, F

∣

∣

ΩP0
≡ L0u

∣

∣

ΩP0
= 0, (21)

then u|ΩP0
= 0.

First we shall consider the case u ∈ C2(D). Let S3P0 denote the remain-
ing boundary of the domain ΩP0 , i.e., S3P0 = ∂ΩP0\(S1P0∪S2P0). By virtue
of (17) and (19) we have

αn+1
∣

∣

S3P0
> 0, α−1

n+1

(

Eα2
n+1 −

n
∑

i,j=1

Aijαiαj

)

ηη
∣

∣

∣

S3P0

≥ 0. (22)

After multiplying scalarly both sides of equations (16) by the vector 2ut

and integrating the obtained expression with respect to the domain ΩP0 , by
virtue of (2), (8), (21), (22) and the reasoning used in proving (9) we obtain
the inequality

0 = 2
∫

ΩP0

Futdxdt =
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=
∫

∂ΩP0

[(

utut +
n

∑

i,j=1

Aijuxiuxj

)

αn+1 − 2
n

∑

i,j=1

Aijutuxj αi

]

ds =

=
∫

∂ΩP0

α−1
n+1

[
n

∑

i,j=1

Aij
(

αn+1uxi − αiut
)(

αn+1uxj − αjut
)

]

ds +

+
∫

∂ΩP0

α−1
n+1

(

Eα2
n+1 −

n
∑

i,j=1

Aijαiαj

)

ututds ≥

≥ c0

∫

S3P0

α−1
n+1

n
∑

i=1

‖αn+1uxi − αiut‖2ds. (23)

In deriving (23) we used the fact that the operator αn+1
∂

∂xi
− αi

∂
∂t is the

internal differential operator on the boundary ∂ΩP0 and, in particular, the
equalities

(

αn+1
∂u
∂xi

− αi
∂u
∂t

)∣

∣

∣

S1P0∪S2P0

= 0, i = 1, . . . , n,

hold due to (21).
Since inf |α|=1 λ0(α1, . . . , αn) > 0, by (20) we have infS3P0

αn+1 > 0,
which by (23) implies

(

αn+1uxi − αiut
)∣

∣

S3P0
= 0, i = 1, . . . , n. (24)

Taking into account that u ∈ C2(D) and the internal differential ope-
rators αn+1

∂
∂xi

− αi
∂
∂t , i = 1, . . . , n, are linearly independent on the n-

dimensional connected surface S3P0 , we immediately find from (24) that

u
∣

∣

S3P0
≡ const . (25)

But on account of (21) u|S3P0∩(S1P0∪S2P0 ) = 0, and hence by (25) we obtain

u
∣

∣

S3P0
≡ 0. (26)

From (26), in particular, it follows that u(P0) = 0.
Taking now an arbitrary point Q ∈ ΩP0 , by (21) we conclude that the

above equalities hold provided that the point P0 is replaced by the point
Q. Thus by repeating the above reasoning for the domain ΩQ we obtain
u(Q) = 0. Therefore for the case u ∈ C2(D) we have u|ΩP0

= 0.
By a similar slightly modified reasoning and embedding theorem for the

Sobolev spaces one can prove this lemma for the case u ∈ W 2
2 (D) [5].

Let K+ : |x|g+( x
|x| ) ≤ t < +∞ denote a conical domain lying in the half-

space t > 0 and bounded by the surface ∂K+ : t = |x|g+( x
|x| ) with vertex

at the origin O(0, . . . , 0), where g+ is a completely defined smooth function
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given on the unit sphere Rn. For P0(x0, t0) ∈ Rn+1 we denote by K+
P0

a
conical domain K+ drawn from the point P0 in the direction of increasing
values of time, i.e.,

K+
P0

: t0 + |x− x0|g+

( x− x0

|x− x0|

)

≤ t < ∞.

As in the case of the conical domain K, it will be assumed that the
characteristic matrix of system (1) is non-negative on ∂K+, i.e., that (17)
holds. It is obvious that conical domains K+ are obtained from conical
domains K by the central symmetry with respect to the origin. If Γ∗+ is a
conical domain centrally symmetrical to Γ∗ with respect to the origin, then,
as in the case of the domain K, one can prove that for the convex smooth
cone K+ condition (17) is equivalent to the condition K+ ⊃ Γ∗+.

Lemma 3. Let D0 be a bounded subdomain of D with a piecewise smooth
boundary bounded from above by a hyperplane t = t0, and from the sides by
hyperplanes S1, S2 and by piecewise smooth hypersurfaces S3, S4 of temporal
type on which the inequalities

αn+1
∣

∣

S3
< 0, αn+1

∣

∣

S4
< 0 (27)

hold, where ν = (α1, . . . , αn+1) is the external unit vector to ∂D0 and S3 ∩
S4 = ∅. Let u0 ∈ C∞(D0) and gi = u0|∂D0∩Si , i = 1, 2, F0 = L0u0,
X = supp g1 ∪ supp g2 ∪ supp F0, Y = ∪P0∈XK+

P0
. Denote by Sε

3, Sε
4 the

ε-neighborhoods of hypersurfaces S3, S4, where ε is a fixed sufficiently small
number. Then if u0

∣

∣

S3∪S4
= 0, Y ∩ (Sε

3 ∪ Sε
4) = ∅, the function

u(P ) =

{

u0(P ), P ∈ D0,
0, P ∈ D\D0

is a solution of problem (16), (6) of the class C∞∗ (D) for

fi(P ) =

{

gi(P ), P ∈ ∂D0 ∩ Si,
0, P ∈ Si\(∂D0 ∩ Si),

, i = 1, 2,

F (P ) =

{

F0(P ), P ∈ D0,
0, P ∈ D\D0.

The proof of Lemma 3 repeats in the main the proof of the corresponding
lemma from [5].

Remark 1. Note that Lemma 3 remains valid in the case where conditions
(27) are not fulfilled on some set ω ⊂ S3∪S4 of zero n-dimensional measure,
i.e., αn+1|ω = 0. In particular, Lemma 3 remains true if ω = ∪p

i=1γi is
the union of a finite number of smooth (n − 1)-dimensional submanifolds
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γi ⊂ S3 ∪ S4 and αn+1|ω = 0, αn+1|(S3∪S4)\ω < 0. This fact will be used
below in proving the existence theorem for problem (16), (6).

Remark 2. Also note that Lemmas 2 and 3 actually suggest a method for
constructing a solution of problem (16), (6) which will be described below
in proving Theorem 1. The method consists in reducing the initial problem
(16), (6) to a mixed-type problem for a second-order hyperbolic system in
a cylinder.

Let ξn+1 = ±λi(ξ1, . . . , ξn), λi > 0, i = 1, . . . , m, be the roots of the
characteristic polynomial det(Eξ2

n+1 −
∑n

i,j=1 Aijξiξj) of system (1) with
respect to ξn+1. The functions λ0(ξ1, . . . , ξn) = max1≤i≤m λi(ξ1, . . . , ξn),
λ−0 (ξ1, . . . , ξn) = min1≤i≤m λi(ξ1, . . . , ξn) are obviously continuous positive
homogeneous functions of first order with respect to the variables ξ1, . . . , ξn.
Consider the cones

Γ =
{

(ξ1, . . . , ξn+1) ∈ Rn+1 : ξn+1 = λ0(ξ1, . . . , ξn)
}

,

Γ− =
{

(ξ1, . . . , ξn+1) ∈ Rn+1 : ξn+1 = −λ−0 (ξ1, . . . , ξn)
}

.

As is known, the interior of the convex cone Γ is a set of all spatial type
normals lying in the half-plane ξn+1 ≥ 0, while ∂Γ∗− is the interior of the
cone of rays of system (1) lying in the direction of increasing values of the

time t = ξn+1, where Γ∗− = ∩
η∈Γ−

{ξ ∈ Rn+1 : ξη ≤ 0} [10]. Let
◦
Γ denote

the domain bounded by the cone Γ, i.e., the interior of Γ. Below it will be
assumed without loss of generality that

Γ∗− ⊂
◦
Γ, (28)

since otherwise this can be achieved by a subsequent change of the indepen-
dent variables x′i = εxi, i = 1, . . . , n, t′ = t in system (1) for a sufficiently
small ε = const.

For k1 ≤ k ≤ k2 we denote by lk a ray coming out of the origin with the
direction vector (0, . . . , 0, k, 1), i.e., lk : τ(0, . . . , 0, k, 1), 0 < τ < +∞. By
virtue of the assumptions made for the supports of the data of problem (1),
(6) we have

lk ⊂
◦
Γ∗−. (29)

Denote by Hk an arbitrary noncharacteristic hyperplane of temporal type
containing the ray lk. Take an arbitrary point P ∈ lk and choose a Carte-
sian system x0

1, . . . , x
0
n, t0 which is connected with this point and has the

vertex at the point P so that the t0-axis could be directed along the ray
lk, and the x0

n-axis along the normal to Hk at this point towards increasing
values of time. Denote by H+

k that part of the half-space Rn+1 with the
boundary Hk which contains the positive x0

n-semiaxis. Denote by Q0(ξ)
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and p̃0(ξ) = det Q0(ξ) respectively the characteristic matrix and the poly-
nomial of system (1) written in terms of the coordinate system x0

1, . . . , x
0
n, t0

connected with an arbitrarily chosen point P ∈ lk.
By (29) there is a convex cone Γ1 which is tangential to the hyper-

plane Hk along the ray lk, lies in the half-space H+
k , and is contained

in the set
◦
Γ∗− ∪ O, where O = O(0, . . . , 0) is the vertex of Γ−. Hence

by (28) and the arguments from [12] it follows that when system (1) is
strictly hyperbolic, exactly m characteristic hyperplanes of system (1) pass
inwards the angle t0 > 0, x0

n > 0 through the (n − 1)-dimensional plane
t0 = x0

n = 0 connected with an arbitrary point P ∈ lk. Hence in turn it
follows that for Re s > 0 the number of roots λj(ξ1, . . . , ξn−1, s) is equal
to m, i =

√
−1, provided that we take into account the multiplicity of

the polynomial p̃0(iξ1, . . . , iξn−1, λ, s) with Re λj < 0 [12]. The polynomial
p̃0(iξ1, . . . , iξn−1, λ, s) can be written in the form of product ∆−(s)∆+(s),
where for Re s > 0 the roots of the polynomials ∆−(λ) and ∆+(λ) lie respec-
tively to the left and to the right of the imaginary axis, while the coefficients
are continuous for s, Re s ≥ 0, (ξ1, . . . , ξn−1) ∈ Rn−1, ξ2

1 + · · ·+ξ2
n−1+ |s|2 =

1 [13]. Denote by ˜Q0(iξ1, . . . , iξn−1, λ, s) an m ×m matrix whose element
˜Q0

pq(iξ1, . . . , iξn−1, λ, s) is equal to an algebraic complement to the element
Q0

pq(iξ1, . . . , iξn−1, λ, s) in the characteristic matrix Q0(iξ1, . . . , iξn−1, λ, s)
of system (1).

Let us consider

Condition 1. System (1) is strictly hyperbolic. For an arbitrary non-
characteristic hyperplane of temporal type Hk, passing through the ray
lk : τ(0, . . . , 0, k, 1), 0 < τ < +∞ when k1 ≤ k ≤ k2, and for an arbitrary
point P ∈ lk and any s, Re s ≥ 0, and (ξ1, . . . , ξn−1) ∈ Rn−1 such that
ξ2
1 + · · ·+ ξ2

n−1 + |s|2 = 1, the rows of the matrix ˜Q0(iξ1, . . . , iξn−1, λ, s) are
linearly independent as polynomials of λ modulo the polynomial ∆−(λ).

It will be assumed below that the functions f1 and f2 in the boundary
conditions (6) vanish on γ0 = S1 ∩ S2, i.e.,

fi
∣

∣

γ0
= 0, i = 1, 2. (30)

Denote by
◦

W 1
2(Si, γ0) functions of the class W 1

2 (Si) which satisfy equality

(30), i.e.,
◦

W 1
2(Si, γ0) = {f ∈ W 1

2 (Si) : f |γ0 = 0}, i = 1, 2.
We have

Theorem 1. Let condition 1 be fulfilled. Then for any fi ∈
◦

W 1
2(Si, γ0),

i = 1, 2, F ∈ L2(D) there exists a unique strong solution u of problem (16),
(6) of the class W 1

2 , for which estimate (7) is valid.
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Proof. Here only a short scheme of the proof is given. The detailed proof
of Theorem 1 for one equation of hyperbolic type is given in [5].

Denote by S0
i : kit − xn = 0, 0 ≤ t < +∞, i = 1, 2, a half-plane

containing the support Si of the boundary conditions (6), and by D0 the
dihedral angle between the half-planes S0

1 and S0
2 . As is known, the function

fi ∈ W 1
2 (Si, Γ) can be extended in the half-plane S0

i as a function ˜fi of the

class
◦

W 1
2(S

0
i ), i.e., (fi − ˜fi)|Si = 0, ˜fi ∈

◦
W 1

2(S
0
i ), i = 1, 2. We set

˜F (P ) =

{

F (P ), P ∈ D,
0, P ∈ D0\D.

It is obvious that ˜F ∈ L2(D0). If C∞0 (D0), C∞0 (S0
i ), i = 1, 2, are the spaces

of finite infinitely differentiable functions, then, as we know, these spaces will

be dense everywhere in the spaces L2(D0),
◦

W 1
2(S

0
i ), i = 1, 2, respectively.

Therefore there are sequences Fn ∈ C∞0 (D0) and fin ∈ C∞0 (S0
i ), i = 1, 2,

such that

lim
n→∞

‖ ˜F − Fn‖L2(D) = lim
n→∞

‖ ˜fi − ˜fin‖W 1
2 (S0

i ) = 0, i = 1, 2. (31)

In the domain of the variables xn, t we introduce the polar coordinates
r, ϕ, taking the t-axis as a polar axis, and counting the polar angle ϕ from
the polar axis and assuming it positive in the clockwise direction. Let ϕi be
the dihedral angle formed by the half-planes S0

i and xn = 0, 0 ≤ t < +∞,
i = 1, 2.

In passing from the Cartesian system x1, x2, . . . , xn, t to the system x1, ...,
xn−1, τ = log r, ϕ the dihedral angle D0 becomes an infinite layer

H =
{

−∞ < xi < ∞, i = 1, . . . , n− 1, −∞ < τ < ∞, −ϕ1 < ϕ < ϕ2
}

,

and equation (16) in the previous terms for the functions u and F takes the
form

e−2τL1(τ, ϕ, ∂)u = F, (32)

where ∂ = ( ∂
∂x1

, . . . , ∂
∂xn−1

, ∂
∂τ , ∂

∂ϕ ), L1(τ, ϕ, ∂) is a second-order matrix
differential operator of hyperbolic type with respect to τ with infinitely
differentiable coefficients depending on τ and ϕ.

Denote by Hβk ⊂ H, βk = const > 0, a cylindrical domain Ωk×(−∞,∞)
of the class C∞, where (−∞,∞) is the τ -axis, and by ∂Hβk its lateral
surface ∂Ωk × (−∞,∞). It is assumed that the cylinder H∗

βk
= {|xi| <

βk, i = 1, . . . , n − 1, −∞ < τ < ∞, −ϕ1 < ϕ < ϕ2} is contained in Hβk .
Under the inverse transformation (x1, . . . , xn−1, τ, ϕ) → (x1, . . . , xn, t) the
cylindrical domain Hβk will transform to the infinite domain Gβk ⊂ D0

bounded by the surfaces ˜Si = S0
i ∩ ∂Gβk , i = 1, 2, and also by the surfaces
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˜S3, ˜S4. It can be shown that the surfaces ˜S3 and ˜S4 are of temporal type
and the following conditions are fulfilled on them:

αn+1
∣

∣

(S̃3∪S̃4)\ω
< 0, αn+1

∣

∣

ω = 0, (33)

where ω ⊂ ˜S3 ∪ ˜S4 is some set of zero n-dimensional measure and ν =
(α1, . . . , αn, αn+1) is the external unit normal vector to ∂Gβk .

Choose a number βk so large that

supp fik ⊂ ˜Si, i = 1, 2, supp Fk ⊂ Gβk .

Hence the function gk(x, t) defined on the boundary ∂Gβk of the domain
Gβk as

gk
∣

∣

S̃i
= fik, i = 1, 2, gk

∣

∣

S̃3
= gk

∣

∣

S̃4
= 0 (34)

will belong to the class C∞0 (∂Gβk).
In passing to the variables x1, . . . , xn−1, τ, ϕ, the functions gk and Fk

will transform to some functions which will be denoted as previously. It is
obvious that

gk ∈ C∞0 (∂Hβk), Fk ∈ C∞0 (Hβk). (35)

For the hyperbolic equation (32) with F = Fk we consider, in the cylinder
Hβk , the following mixed-type problem with the ”Cauchy zero conditions”
for τ = −∞:

e−2τL1(τ, ϕ, ∂)v = Fk, (36)

v
∣

∣

∂Hβk
= gk. (37)

Using condition 1 and the results from [13], [14], the mixed-type problem
(36), (37) has, by virtue of (35), a unique solution v = vk of the class
C∞(Hβk) which identically vanishes for τ < −M , where M = const is a
sufficiently large positive number.

Returning to the initial variables x1, . . . , xn, t and using the previous
notations for the functions vk and Fk, we obtain the following facts:

(1) the function u0
k = vk|G∗βk

, where G∗βk
= Gβk ∩D, belongs to the class

C∞(G
∗
βk

) and satisfies the equation L0u0
k = Fk;

(2) on the lateral part ∪4
i=1

˜S0
i of the boundary G∗βk

the function u0
k

satisfies the conditions u0
k|S̃0

3∪S̃0
4

= 0, u0
k|S̃0

i
= fik, i = 1, 2, where, as one

can easily verify, the surface ˜S0
i is a part of the surface Si for i = 1, 2, and

a part of the surface ˜Si for i = 3, 4 figuring in conditions (33).
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Therefore, choosing a value of βk sufficiently large and applying (33),
(34), Lemma 3, and Remark 1 we conclude that the function

uk(P ) =

{

u0
k(P ), P ∈ G∗βk

,
0, P ∈ D\G∗βk

,

belongs to the class C∞∗ (D) and is a solution of problem (16), (6) for fi =
fik, i = 1, 2, and F = Fk.

By virtue of inequality (7) we obtain

‖uk − up‖W 1
2 (D) ≤

≤ c
(

2
∑

i=1

‖fik − fip‖W 1
2 (Si) + ‖Fk − Fp‖L2(D)

)

. (38)

It follows from (31) and (38) that the sequence of functions uk is funda-
mental in the space W 1

2 (D). The completeness of the space W 1
2 (D) implies

that there exists a function u ∈ W 1
2 (D) such that uk → u in the space

W 1
2 (D), L0uk → F in the space L2(D), and uk|Si → fi in W 1

2 (Si), i = 1, 2,
for k → ∞. Therefore the function u is a strong solution of problem (16),
(6) of the class W 1

2 . The uniqueness of this strong solution follows from
inequality (7).

Let us now turn to problem (1), (6). In the space W 1
2 (D) we introduce

a norm depending on the parameter λ

‖u‖2D,1,λ =
∫

D
e−λt

(

uu + utut +
n

∑

i=1

uxiuxi

)

dxdt, λ > 0.

In a similar manner we introduce norms ‖F‖D,0,λ and ‖fi‖Si,1,λ in the
spaces L2(D) and W 1

2 (Si), i = 1, 2.
Arguments similar to those in [4] enable us to prove

Lemma 4. For any u ∈ W 2
2 (D) the a priori estimate

‖u‖D,1,λ ≤
c1√
λ

(
2

∑

i=1

‖fi‖Si,1,λ + ‖F‖D,0,λ

)

(39)

holds, where fi = u|Si , F = L0u, and the positive constant c1 does not
depend on u and the parameter λ.

By virtue of estimate (39), for a sufficiently large value of λ the lowest
terms in equation (1) give arbitrarily small perturbations in the sense of the
above-introduced equivalent norms of the spaces L2(D), W 1

2 (D), W 1
2 (Si),

i = 1, 2, which due to Theorem 1 and the resuls of [4] enables us to prove
the unique solvability of problem (1), (6) in the class W 1

2 .
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Theorem 2. Let condition 1 be fulfilled. Then for any fi ∈
◦

W 1
2(Si,Γ),

i = 1, 2, F ∈ L2(D) there exists a unique strong solution u of problem (1),
(6) of the class W 1

2 , for which estimate (7) is true.

Remark 3. In Theorems 1 and 2 it is required that system (1) or (16) be
strictly hyperbolic, and also that the other part of condition 1 be fulfilled.
These requirements can be left out for one class of hyperbolic systems of
form (1). These are systems of form (1) for which inequality (1) holds
and the symmetrical constant matrices Aij are pairwise permutable, i.e.,
AijAks = AksAij . Then there exists an orthogonal matrix T0 with constant
elements such that T−1

0 AijT0 is diagonal for any i, j = 1, . . . , n. Therefore
for the new unknown function v = T−1

0 u we shall have, instead of system
(1), a second-order hyperbolic system with the split principal part. But
a problem of the Darboux type with boundary conditions of form (6) on
temporal hyperplanes is uniquely solvable for one hyperbolic equation of
second-order with constant coefficients at higher derivatives and estimate
(39) holds for its solution [5]. Therefore the same arguments that enabled
us to prove Theorem 2 on the basis of Lemma 4 and Theorem 1 make it
possible to prove

Theorem 3. Let the matrices Aij in system (1) be pairwise permutable.

Then for any fi ∈
◦

W 1
2(Si,Γ), i = 1, 2, F ∈ L2(D) there exists a unique

strong solution u of problem (1), (6) of the class W 1
2 , for which estimate (7)

holds.
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