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ON THE INTEGRABILITY OF STRONG MAXIMAL
FUNCTIONS CORRESPONDING TO DIFFERENT
FRAMES

G. ONIANI

ABSTRACT. For the frame 6 in R", let B2(0)(x) (z € R™) be a family
of all n-dimensional rectangles containing x and having edges parallel
to the straight lines of 6, and let Mp, ) be a maximal operator
corresponding to B2(#). The main result of the paper is the following

Theorem. For any function f € L(1 +Int L)(R™) (n > 2) there
exists a measure preserving and invertible mapping w : R* — R"

such that
1. {z : w(z) # =} C supp f;
2. sup f Mp, ) (fow) < co.

959(R"){1v132<9)(f0w)>1}
This theorem gives a general solution of M. de Guzmén’s problem
that was previously studied by various authors.

1. DEFINITIONS AND THE NOTATION

Let B be a mapping defined on R™ such that, for every z € R", B(z) is
a family of open bounded sets in R™ containing x. The maximal operator
Mg corresponding to B is defined as follows: for f € Lj,.(R™) and « € R™

1 .
Mp(P)@) = swp I[ fl it Bl £o,

ReB(x)

and
Mp(f)(z)=0 if B(z)=2.

A frame in R™ will be called a set whose elements are n pairwise ortho-
gonal straight lines passing through the origin O. Frames will be denoted
by 6, § = {6',...,6™}. Under 6, will be meant a frame {Oz!,..., Oz"},
where Oz!,..., Oz™ are the coordinate axes of R”. A set of all frames in
R™ will be denoted by 6(R™).
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A set congruent to a set of the form Iy x --- x I,, where Iy,...,I,
are intervals of positive length on the straight line, will be called an n-
dimensional rectangle or simply a rectangle in R™.

The frame 0 = {0',...,0"} for which the sides of the rectangle I are
parallel to the corresponding straight lines 67 (j = 1,...,n) will be called
the frame of I which will be denoted by 6(I).

For a nonempty set E C §(R™) we shall denote by Bs(F)(z) (x € R™) a
family of all rectangles I in R™ with the properties « € I, 8(I) € E. Instead
of Bo({0}) we shall write By(f) when E = {0}, and By when 6 = 6.

Since Mp, is said to be a strong maximal operator, it is natural to call
M, ) the strong maximal operator corresponding to the frame 6.

By Bi(z) (x € R™) we denote a family of all cubic intervals in R™ con-
taining x (for n = 1 a one-dimensional interval is understood here as a
square interval).

The support {z € R™ : f(x) # 0} of the function f : R™ — R will be
denoted by supp f.

2. FORMULATION OF THE QUESTION AND THE MAIN RESULT

The class L(1 4+ In™ L)(R") was characterized by Guzmén and Welland
([1, 2], Ch. II, §6) by means of the maximal operator Mp,. In particular,
they have shown that for f € L(R") the following conditions are equivalent:

1. feLl+mntL)(R"),

2. / Mp, (f) < oc.

{I\/[B1 (f)>1}

From the strong maximal Jessen—Marcinkiewicz—Zygmund’s theorem it
follows that if

fe€L(1+mn" L)"(R"), (2.1)
then
Mp,(f) < co. (2.2)
{Mp, (£)>1}

Guzman (see [2], Ch. II, §6) posed the question whether it was possible
to characterize the class L(1 + In™ L)2(R?) by the operator Mp, as it was
done for the class L(1 + In™ L)(R™) using the operator Mp,, i.e., whether
conditions (2.1) and (2.2) are equivalent for f € L(R?). Gogoladze [4, 5]
and Bagby [6] answered this question in the negative.
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It can be easily verified that much more than (2.2) is fulfilled for f €
L(1 +In" L)*(R™), in particular,

wp [ Ma () < (2.3)
0co(R)
{MBp,0)(f)>1}

A question arises if it is possible to characterize the class L(14+In™ L)™(R™)
by condition (2.3), i.e., if conditions (2.1) and (2.3) are equivalent for
fe€L®") (n>2).

This question was answered in the negative for n = 2 in [7]. The answer
remains negative for an arbitrary n > 2 as well. In particular, the following
theorem is valid.

Theorem 1. For any function f € L(1+In™ L)(R™) (n > 2) there exists
a measure preserving and tnvertible mapping w : R™ — R™ such that

1. {z:w(z)#z} Csuppf,

2. sup / Mp, ) (f ow) < 0.
0cO(R)
{Mp, o) (fow)>1}
Note that we had to use many new arguments to proceed from the case
to n = 2 to the case of arbitrary (n > 2).
Theorem 1 was first formulated by us in a less general for in [8].

3. AUXILIARY STATEMENTS

Throughout the discussion preceding Lemma 4 we shall consider the
spaces R” with n > 2.

We shall call a strip in R™ an open set bounded by two different parallel
hyperplanes, i.e., a set of the form

{xER" : a<a1x2+~--+anx”<b},

where a,b (a > b) and ay,...,q, (@ + -+ a2 > 0) are some real num-
bers, and z* (k = 1,...,n) here and everywhere below denotes the k-th
coordinate of the point x € R™. The strip width will be called the distance
between the hyperplanes that bound the strip, i.e., the number b — a will
be called the strip width.

In the sequel it will always be assumed that x, is the characteristic
function of the set A.

Lemma 1. For every x € R™ let B(x) be a family of open bounded and
convex sets in R™, containing x, and let S be a strip in R™ of width §. Then
AL

MB(XS)(x) < m

when  dist(z, S) > 9.
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Proof. Let dist(z,S) > d and R € B(x), RNS # @.
Among the hyperplanes bounding S we denote by I' the hyperplane which
is the closest to x. It is obvious that RNI" # @. For every y € RNT let A,

be a segment connecting x and y. It is assumed that K = |J A,. Since
yeRNT
R is convex, we have

K CR. (3.1)

Let H be the homothety centered at x and with the coefficient

_ dist(x,S) + 0
~ dist(x, )

Let us show that
RNS cC HK)\K. (3.2)

Indeed, assume that z € RN S and denote by y the point at which the
segment connecting = and z intersects with I'. Since z,z € R, by virtue of
the convexity of R we have y € R. Therefore y € RNT'. By the definitions
of the set K and homothety H we easily obtain z € H(A,) C H(K).
(RNS)NK = @. Therefore z ¢ K. Thus z € H(K)\K. Thus, since
z € RN S is arbitrary, we have proved (3.2).

Usmg (3.1), (3.2), the definition of H and obvious inequality o™ — 1 <
7355) we can write

dist(
/ |RﬂS| [HENK] _ (a" —DIK] 273
[R| - K] K] dist(z, )’

which, obviously, proves the lemma. [

For the rectangle I in R™ having pairwise orthogonal edges of lengths
61,02,...,0p, where 61 < 6y < --- < §,,, we introduce the notation:

(1) #(I) is a number d5/d1;

(2) when r(I) > 1, for h > 1, J(I,h) is an open rectangle with the
following properties: J(I,h) has the same center and frame as I; the length
of the edges of J(I,h) parallel to the edges of I of the length ¢; is equal to
(2"*+1h +1)d;, while the length of the edges of J(I,h) parallel to the edges
of I of length 6; (j =2,...,n) is equal to 34;;

(3) for r(I) > 1, £; is a straight line passing through O and parallel to
the edges of I of length §7.

For the straight line £ in R” and 0 < ¢ < 7/4 we assume

={0€OR™): L(t,07) <m/2—¢, j=1,...,n},

where Z(-,-) is the angle lying between the two straight lines.
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Lemma 2. Let I be a rectangle in R™, h > 1, 0<e <w/4, r(I) > S?nhg,
and E = E({;,€). Then
{MBQ(E)(hXI) > 1} - J(Ivh)a
and therefore
Proof. Without loss of generality we assume that
I=(-61/2,61/2) x - x (—=0,/2,0,,/2),

where §; < 01 < -+ < 6,. We write
1
— n . 1 n -
Sl—{xeR |zt < (2 h+2)61},
S;={z eR":|27| <35;/2} (j=2,...,n).
As is easily seen, J(I,h) is the intersection of the strips Si,...,S,.
Let S = {z € R" : |z!| < 61/2} and = € S;. Obviously, dist(z,9) >
2"hdé1. Now by lemma 1 we write
h2™4q
Mp, gy (hx,)(®) = hMp,g)(X,)(x) < hMp, () (xs)(2) < dist(z, ) =

Hence we conclude that

{Mp, (g (hx,) > 1} C S1. (3.3)

Consider arbitrary 2 < j <n. Let x ¢ S}, J € Bo(E)(z), and JNI # @.
Obviously, dist(x, ) > d;, and we have

dist(z,I) < diamI <ty +ta+ -+ ty,

where t1,ts,...,t, are lengths of orthogonal edges of J. Therefore there
exists a side of J with the length greater than 6;/n. We can represent .J
as a union of pairwise nonintersecting intervals equal and parallel to above-
mentioned edge: J = |J A,. Obviously,
acT
|Aa|1 >5j/n ((XGT). (34)

(Here and everywhere below, for the set A contained in some k-dimensional
(k =1,...,n — 1) affine subspace R™, we denote by |A|; k-dimensional
measure of A.)

Let us prove that

hl|As NIy
|Aa|1

Indeed, let £ be the straight line containing the segment A,. It is easy to
see that [£ N S|; = 61/ cos Z(¢,0xt). J € By(E)(w), Therefore /(¢,0x') <

<1 (aeT). (3.5)
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/2 —e. Consequently, [{NS|; < W which by virtue of (3.4)

sms’

and the inequality 0; > r(I)§ > nhoL implies

— sine

h|AaﬂI|1 < h‘gﬂSh < h51 sine

=1.
|Aqli T 6;/n T sine hoy
It is not difficult to verify that
/ h|JmI| o MAGN Ty
7] aer 1Aal

Hence, by (3.5),

1

— | hy, <1

7 ]/ e

which, taking into account the arbitrariness of J € Ba(E)(z), LNI # &,
allowsus to conclude that

MBQ(E)(hXI)(‘r)Sl ($¢SJ‘, QSJSH)
This and (3.3) imply

{Mp,gy(hx,) > 1} € N S;=J(I,h). O
=1

Lemma 3. If among the pairwise different straight lines £y, ... 0 (k>
n) in R™ which pass through the same point none of n lie in the same
hyperplane, then there exists € > 0 such that for every straight line ¢ in R™
and every 1 < k; <ko <. ---<k,<k

VAN - —
1r<r§1n (€, Ly;) <z 5 €
Proof. Let z; € R™, |lz;|| =1 (]| - || is the norm in R™, j = 1,...,n) be
the direction vector of the straight line £;. If we assume the contrary to
the assertion of the lemma, then for every m € N there exist y,, € R",
lym| = 1, and numbers 1 < ky(m) < ko(m) < ---ky(m) < k such that

1

arccos | (Yms T, (m))| > I_—=
bl j(m 2 m

for j = 1,...,n, where (-,-) is the scalar product in R™. Hence by the
compactness of the unit sphere in R™ and the continuity of the scalar product
there exist y € R™, |ly]| =1, and 1 < k; < ko < --+ < ky, < k such that

(y)xkj> =0

for j = 1,...,n. This implies that the points z,,...,z, belong to the
hyperplane which is orthogonal to y. Thus the straight lines ¢, , ..., 0k, lie
in the same hyperplane which contradicts the condition of the lemma. [
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Lemma 4. Let f be a continuous function on R™, 8 € 6(R™), A > 0,
and an open set G contain {Mp,g)(f) > A}. If for the rectangle I in R"
with (1) = 6, I\G # @, then

/ Fl<AING)

InG

Proof. We prove the lemma by induction with respect to n. For n = 1 the
proof is obvious. Consider the passage from n — 1 to n.
Without loss of generality we assume that § = 6y and I is closed.
Introduce the notation:
Iy = {xeR”:xl :t},
It:IﬂFt, Gt:GmFt,
J={teR": I #+ o},
Slz{tGJ:ItCGt},
SQ = {t € J: It\Gt 7£ @}

(teR)

It is easy to see that S is open by the natural topology on the interval
J. Therefore S; divides into pairwise nonintersecting intervals {0y }xercn.
Obviously, the n-dimensional rectangles A, = |J I; (k € T) satisfy the

tESy
conditions
OALNIOG A2 (keT), (3.6)
where A and 0G are the boundaries of Ay and G, respectively;

O(AL) =0(I) =0, and A,CING (keT), (3.7)
AcNAp =2 (k#m). (3.8)

By the conditions of the lemma, Mg, (f)(z) < A for z € G and therefore,
with (3.6) and (3.7) taken into account, we have

/|f| <A (keT),
Ay

which on account to (3.8) implies

JRIER (39
Ua keT

keT
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Estimate now the integral of | f| on (ING)\ |J Ag. Let M be an (n—1)-
keT
dimensional strong maximal operator. For each t € R consider the function

g:(y) = f(t,y) (y € R""1) and assume that
F(ty)=M(g)(y) (teR, yeR")
For t € Sy we have
{F(t,-) > A} C G.. (3.10)

Indeed, assume the contrary, i.e., there exist ty € So, yo € R*~! and an
(n — 1)-dimensional interval R such that (to,v0) ¢ G, R 3 4o, and

/ 1910 ()| dy > ARln_s.
R

Then by the continuity of f, for a sufficiently small one-dimensional interval
A > tg we shall have

/ F(t, )| dtdy > AA x R].
AXR

Hence Mp,(f)(to,y0) > A. On the other hand, since (tp,y9) ¢ Gt,, we have
(to,y0) ¢ G D {Mp,(f) > A}. The obtained contradiction proves (3.10).
By virtue of (3.10) and the induction assumption we easily obtain

lf(t, )| dy < AN N Gylp—1

I.NGy

for t € Ss.
Thus we can immediately write

[ =[] [ o] a<

NG\ |J Ak Sz IiNG,
keT

S/AMHGmﬁ:wUOQ\UA4
g keT

whence by (3.7) and (3.9) we conclude that Lemma 4 is valid. O

Denote by L(R™) a class of all functions f € L(R™) for each of which
there exists, for € > 0, a continuous function g € L(R™) on R" such that
lg(z)| < |f(x)| almost everywhere on R™, and || f — g|l1 < €.
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Lemma 5. Let f € L(R"), § € O(R"), A > 0, and then open set G
contain {Mp,g)(f) > A}. If for the rectangle I in R™ with 6(I) = 0,
I\G # @, then

/LﬂSAHﬂﬂ-
ING

Proof. f € L(R™). Therefore for arbitrarily given ¢ > 0 there exists a
continuous function g € L(R™) on R™ such that |g(x)| < |f(x)| almost
everywhere on R™, and || f — g|j1 < . It is obvious that

{Mp,9)(9) > A} € {Mp,@)(f) > X} CG.

Now by Lemma 4

[ 1ol < xirnal
NG
and therefore
[ 1n-e<ana,
NG

whence by the arbitrariness of € > 0 we conclude that Lemma 5 is valid. O

Lemma 6. Let f, € L(R"), fx >0 (k€ N), EC (R"), E# @, A >0,
and let for k,m € N and k # m the following conditions be fulfilled:
supp fx N supp fm = &,
supp fr N {Mp,(g)(fm) > A} = 2,
{Mp,z)(fr) > A} N {Mp,z)(fm) > A} = @.
Then

{MB2(E)<§fk) > )\} = kgl{MBg(E)(fk) > A}

Proof. Denote Gy, = {MBQ(E)(fk) > )\}, k € N. For each k € N
fr(z) <A almost everywhere on R™\Gj,. (3.11)

Indeed, otherwise, since the differential bases Bz (0), 6 € (R"™), are dense
(see, for e.g., [2], Ch.IL, §3), for arbitrary § € E and A; = (R"\Gx) N {fx >
A+1/5} (4 € N) we shall have

[INA,
im
IeB3(0)(x), diam I—0 ‘I‘

Hence Mg, g)(fr) > Mp,9)(fx) > A for almost all 2 € (R"\Gx) N {fr >
A}, which contradicts the definition of Gj,.

for almost all z € A;.
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By (3.11) and the condition of the lemma we write
> oo
ka(m) < A for almost all x ¢ |J G.
k=1

Hence, by the conditions of the lemma and by Lemma 5, we find that for
oo
every x ¢ |J Gy and I € By(E)(z)
k=1

I/ifkﬁi Jr+ oo/ éfkﬁ
U

k=1 k=1 ING,,
I\ G
k=1
< SONINGy| + AN U Gk] = AII.
k=1

Therefore
MBQ(E)(ka) </\ fOI‘ .T¢ UGk [l

The next assertion belongs to Jessen, Marcinkiewicz, and Zygmund and
is referred to as the strong maximal theorem (see [3] or [2], Ch. II, §3).

Theorem. If f € L(1 4 InT L)"~Y(R™), then

[{Mp,(f) > A} gq/%(uln* %')H (A > 0),

Rn

where ¢y is the constant depending only on n.
The foollowing lemma is a simple improvement of this result.
Lemma 7. If f € L(141In" L)~ Y(R™), then for every 6 € O(R™)

{Mp,0)(£) > A} < 2 / e S (1+m 2';')" " o),
tfI>x/2}

where the constant co depends only on n.

Proof. For arbitrary fixed A>0 assume fi. =X/ ;<y/2, 204 [*"=FX( ;1512
f = f«+ f*. Therefore Mp,(f) < Mp,(f«) + Mp,(f*). Hence

{M32 > )\} C {MBz(f*) > /\/2} U {MB2<f*) > )\/2}
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But {Mp,(f.) > A\/2} = @ and therefore by the strong maximal theorem

{Mp,(£) > M} < [{ M, (f7) >/\/2}\§cl/2|f*| (1+1 + 2|§*\)"*1 -

R

2
< 2e, / “;‘ (1+1 |Af|) . (3.12)
(1£1>7/2}

Let vg, 0 € O(R™), be a rotation such that § = {v4(Ox'),...,v(Oz™)}.
In view of the fact that the rotation is a measure preserving mapping, we
readily obtain

Mp,0)(f)(@) = Mp,(f o 76) (75 ' () (z €R™) (3.13)
Therefore
{Mp,0)(f) > A} = [{MB,(fore) > A}| (A >0).
By this and (3.12) we conclude that the lemma is valid. O
Lemma 8. If f € L(141In" L)*(R™), then for every 6 € O(R™)
Mao () < %/Ifl et o)
{Mpy, (o) (f)>A}

where the constant cs depends only on n.

Proof. Let f € L(1 +1In* L)"(R") and A > 0. We have

Mp,(f) = —/tdF(t) =[—tF@)]5 +/F(t) dt,
{Mp,0)(f)>A} A A

where F(t) = {Mp,(f) > t}| (t > 0). By Lemma 7

tR(t) < e / \f|(1 +In |f|) (t > 0). (3.14)
{If1>t/2}
Hence
Mp,(f) = AF(\ +/F (3.15)
{MBpy ) (F)>A} A
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Lemma 7 yields

/ dt < c / )|(1+1 |f§m)|>n_1dmdt:

2|f(x)|)"*1dt du <
" <

{lf(@)>xr/2} A

2| f(x)]\n1
1+1 T) dt da <

\
\

{lF(@)I>xr/2} A

<o |f<x>\(1+1n2‘ff)')"dx7
{If(=)|>N/2}

whence with regard for (3.14) and (3.15) we obtain
/ Mp, (f <202/|f| 1+In" |f|) (A > 0)
{Mp, (£)>X}
for f € L(1+1In" L)"(R™).
(3.13) readily implies
Mpo( )= [ Ma(ferw) (>0
{MBp,0)(f)>A} {MBp, (fove)>A}

for f € L(14+1In™ L)*(R™) and 0 € 6(R™).

(3.16)

(3.17)

Since the rotation is the measure preserving mapping, by (3.16) and

(3.17) we immediately conclude that Lemma 8 is valid. [

Lemma 9. Let f € L(1 +In" L)(R"), g : R® — R be a measurable

function, and a,b >0 and A > 0. If

Qo> <$ [ 1 @z,

{lf1>bt}

/ \g|§a/|f|(1+ln+%).

{lgl>A} R

then

(3.18)
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Proof. We have

/ |g|:—/tdF(t) [—tF(t +/F
{lg/>7} A A

where F(t) = [{|g|] > t}| (¢t > 0). By (3.18)

0 <a [If (k2. (3.19)
{IfI>bt}
Hence
9| = AF(A) + / F(t) dt. (3.20)
{lgl>x} A
By (3.18)

oo 001
/F dt<a/t /|f(ac)|da:dt:
A A A{lf(@)]>0t}

If(I)I/b )|
~o [u@l [ Fa-o [i@m
{1f (@) [>bA} A {17 (@)|>bA}

Hence with (3.19) and (3.20) taken into account, we conclude that Lemma
9 is valid. [

Lemma 10. Let f; and fo be the nonnegative measurable functions de-
fined on R™. Then

/ (fi+ fo) < 1+)\( / i+ / fg) (A>0).

{fi+f2>2)} {f1i>X7} {f2>X}

Proof. The validity of the lemma follows from the following relations easy
to verify:

(1) / (fi+ f2) < / (f1+ f2);
{f1+f2>2)} {fi>A3U{f2>A2}

(2) / fi < /fj+/\|{fi>)\}|,Wherej,i€ﬁandj7éi. O
{fi>X3u{fa>A}  {fi>A}

The set E C R" is called elementary if it is a union of a finite number of
n-dimensional intervals.
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Lemma 11. Let A be a subset of R™ of positive measure. Then for each
9 > 0 (k € N) with f: 3k < |A| and €, > 0 (k € N) there exist pairwise
nonintersecting elemeI;L:lftlzry sets Gy (k € N) such that

|Gi| =0, and |Gp\A| < ek.

Proof. Let us construct the sequence {Gy} with the needed properties. For
this we shall need the following simple facts:

(1) For each measurable set E and number § with 0 < ¢ < |E| there
exists a measurable set E' C F with |E'| = 0;

(2) For each open set E C R™ and number § with 0 < § < |E| there
exists an elementary set E/ C E with |E'| = .

By virtue of (1), there exists E C A with |E| = §;. Let an open set
Q be such that @ D E, |Q| > |E| = 6 and |Q\E| < 1. According to
(2), there exists an elementary set Gi C @ with |G1| = ;. Obviously,
[G\A| < |Q\E| < e

Suppose the pairwise nonintersecting elementary sets Gi,..., Gy with
the properties

Gjl =06; and [G)\A|<¢e; (j€T1,k)

have already been constructed. Then
ko k
AU (G0 A)| 2141 =365 > e,
j=1 j=1
where G; is the closure of G;. Therefore by (1), there exists
ko __
EcA\U(G;nA)
j=1

with |E| = dg4+1. We can easily obtain an open set Q D E with the proper-
ties
E __
QN UG =9, Q> |E]=/0kt1, [Q\E|<értar
j=1

By (2), we can choose an elementary set G111 C @ such that |Gyyi| =
Or+1. By virtue of the properties of () we have

|Gri1\A| < |Q\E| < eg1,

k
Gr1 N U Gj =g,
j=1

which obviously proves Lemma 11. [J

We shall need the following simple lemma (see [2], Ch. III, §1).
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Lemma 12. Let G be an open bounded set in R™, and K be a compact set
in R™ with |K| > 0. Then there exists a sequence { Ky} of pairwise noninter-
secting sets, homothetic to K, contained in G and such that |G\ U Kk‘ =0.

k

We shall also need the following well-known fact from the measure theory
(see, e.g., [9], Ch. “Uniform Approximation”).

Lemma 13. For every measurable sets A1, Ay C R™, |A1] = |Az|, there
exrists a measure preserving and invertible mapping w : Ay — As.

4. PROOF OF THEOREM 1

Without loss of generality we assume that f>0 and f¢ (1+In™ L)*(R"™).
Denote

G=suppf, Apr={k—-1Zf<k} (keN),

ko = min{k >2 i 9"m| A, | < |G\}7
m=k

N ={k > ko : |As] > 0}.

Choose natural numbers my > n (k € N) such that

ZM<1. (4.1)

m
keN k

For k € N, let l;1,...,0km, be the straight lines passing through the
origin with none of n lying in the same hyperplane. Then by Lemma 2 there
exists €, > 0 such that

T
in / v - — 4.2
oin Z(6 b)) < 5 = e (4.2)
for every 1 < vy <o < --- < v, < my and for every straight line /.

For every k € N and m € 1, my, let us consider the rectangle Iy, ,, with

the properties:

, o Mgm| = ——, £ =lim- 4.3
| ie,m| - Lo = Uk, (4.3)

Iiom) >
( k, )= sin ey,
Denote Jim = J(Ii,m, 4k), Ex.m = E(lkm.cr) (k€ N, m € 1,my). By

Lemma 2
{MBZ(Ek,m)(ZLkXIk,m) > 1} C Jk,m-

From the definition of ky and J ,,, and from (4.3), we conclude by virtue
of Lemma 11 that there exist pairwise nonintersecting open sets Q,, such
that

|Qk,m| = |Jk:,m| and |Qk,m\G| < kak .
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For each k € N and m € 1,m;, we complete @ ,, with pairwise nonin-
tersecting rectangles {Jk?myq} which are homothetic to the rectangle Jj, ,,
(see Lemma 12), i.e.,

Jkmq = Him,g(Je,m), where Hy p, o is the homothety (¢ € N),
Jemq C Qem (¢ €N),
Tismig N Temg =2 (0 # ),

Qk,m\ U Jk,m,q = 0.
qeN

Let I m.q = Him.g(I,m) (K € N, m € 1,my, ¢ € N). Because of the
homothety properties we can easily see that
Jkm,q = J(Ik,m,Qv4k)v (4.4)
{MB2(Ek,m)(4kX1k,myq) > ]-} C Jk,m,q

forke N, me1l,mg, g €N, and

A
D Mimgl = Him| = 4] (4.6)
geN Mk
for k € N, m € 1, mg.
Denote

gk,mzsup{kxlkmq :q €N} (ke N, melmy),
g:sup{ghm:kEN, mel,mk},

and prove that

s [ M) <o, (4.7)
0cO(R)
{MBp,0)(9)>1/2}

The following estimate is valid:
card Sp, <n? (f € O(R"), ke N), (4.8)

where Sp, = {m € 1,my : 0 ¢ E ., }. Indeed, let us assume the contrary,
ie., that card Spy > n? for some 6§ € G(R™) and k € N. Then there
exist 1 < v < .-+ < 2 < my such that 0 € Ey,, (j € 1,n?), ie,

max 20" ley,) > 5 — ek (j € 1,n?). Hence there exist a straight line
<i<n

0" € 0 and indices v}, ... v, € {v1,...,v,2} such that Z(Qi,fk,,,;) >3 —ck
(j € 1,n), which contradicts (4.2). Therefore (4.8) is proved.
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Let us consider an arbitrary frame 6. Suppose

sup{gr,m : k€ N, me Spi} if U Sor # 9,
keN

0 if U Sg’k =J.
keN

go =

By Lemma 8, (4.1), (4.3), (4.6) and (4.8) we have

Mys)(g0) < c3 /99(1 +1In"4gy)" <
{Mr9y(g90)>1/4} Rm

A k(Ilnk)*|A
< c3 Z n?k(1 + In 4k)™ 14| < 5"n’c3 Z k(n k)" | Ax| < 5"n%c3. (4.9)
kEN "Mk keEN e

Denote

T:{(k,m,q):kEN, m € 1,mu \So, qEN},
Jem,gAN) = JTgm,q:. k/A) for (k,m,q) €T and 1/4 <A < k.

Obviously,

(I ) > 4kn S kn
r m . = .
kom.g sin ey Asiney

for (k,m,q) € T and 1/4 < A < k, whence on account of (4.4), (4.5) and
Lemma 2

{Mp, (50 (kX ) > A} =
= {Mp, .0 (§ Xogs) > 1} € ki) € Tk
Consequently, since § € Ej, ,,, we have
{Mp,0)(kx,, ) > A} C Timg(N) € Timeg- (4.10)
On the other hand, it is clear that
{Mp,0)(kx,,,, ) > =92 (4.11)

for (k,m,q) € T and A > k.

It is easy to see that the functions kx,,  ~ belong to the class L(R™) and
therefore, keeping in mind that the rectaﬁgies Jk,m,q are pairwise noninter-
secting and using (4.10), (4.11) and Lemma 6 we have

{MBQ(Q)(g —gp) > )\} C U Jem,q(A) for A >1/4.
(k,m,q)€T, k>\
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The above inequality, (4.3), (4.6) and the definition of g imply that

’{MBZ(Q)(Q - 99) > )\H < Z |Jk,m,q()‘)| <
(k,m,q)ET, k>\

A o= o K 9n 297
< Y XN ihmd=g X HalsT [ g

KEN, k>X m=1q=1 KEN, k> (F52/2}

for A > 1/4.
Consequently, by Lemma 9 we obtain

/ M, 6)(9 —90) < 2 9"/f(1 +Int8f).  (4.12)
{Ms, ) (9-g0)>1/4} B

From (4.9), (4.12) and Lemma 10 we find that

/ Mp,(9)(9) < 2-5”n2c3+4-9"/f(1+1m+ 8f),
{MBQ(e)(g)>1/2} R™

whence by virtue of the arbitrariness of § we conclude that (4.7) is valid.
Denote

Po= U Ulimen@) (keN).

m=1q=1
By our choice of sets Q. we easily see that

1
0< |4l =Pl < 5 (ke N). (4.13)

Let A} C Ay (k € N) be some measurable set with |A}| = |Py|. By
Lemma 13 there exists a measure preserving and invertible mapping w :
R™ — R™ such that

w(P,) = A, (keN), w(G\ U pk) - G\ngA;,

kEN
w(z)==z (x€R"\G). (4.14)
Suppose
pr=(Fowlx |y, md pa=(fowlx, ),

Obviously, fow = ¢ + 2. We have

/¢2(1+1n+<p2)”= /f(1+1n+f)”=

R™ R™\ U A;c
keEN



ON INTEGRABILITY OF STRONG MAXIMAL FUNCTIONS 167

= / fA+m* 4> fA+W™ )" = a1 + as.
{0<F<ko—1} REN g \AL

It can be seen that ay < oo, and by (4.13)

E(1+1Ink)"
0y < 30 MLEDT o
keEN
Thus ¢y € L(1+In" L)"(R™). Therefore, by the obvious inequality 1 < g,
(4.7) and Lemmas 8 and 10, we conclude that

sup / Mp,g)(f ow) < oo,
0cO(R™)
{MBp,9)(fow)>1}

which together with (4.14) completes the proof of Theorem 1.

5. REMARKS

(1) By the equality Mp,g)(af) = aMp,g)(f) (a > 0), we can easily
verify that Theorem 1 remains valid if instead of {Mp, s (f ow) > 1} we
shall take the integrals on { Mp, (4)(fow) > A}, where A > 0 is an arbitrarily
fixed number.

(2) Theorem 1 immediately yields the following improvement:

Theorem 2. For every function f € L(1 + In™ L)(R™) (n > 2) and
measurable sets G1,Ga € R™ such that fxg..., € L(1+ In™ L)*(R") and
|G1| = |Ga2| there exists a measure preserving and invertible mapping w :
R"™ — R™ such that

1) w(G1)=Gs and {z:w(x)+#2x} C G UGy,

2)  sup / Mp, o) (f ow) < oo.
PE)
{Mp, o) (fow)>1}

Proof. Let wy : R™ — R”™ be a measure preserving and invertible mapping
such that (see Lemma 12) wi(G1) = G2 and {z : w(x) # 2} C G1 U Ga.
Consider the function g = (f ow1)x,,. Then supp g C G2, and by virtue of
Theorem 1 (see Remark (1)) there exists a measure preserving and invertible
mapping ws : R™ — R™ such that

{z :wa(x) #x} Csuppg C G2 and  sup / Mp,(9)(gows) < oo.
0co(R
( ){MBQ(H)(QOW2)>1/2}
Obviously, (f o w1)Xun\g, € L(1+ In™ L)"(R™). Therefore, by Lemmas
8 and 10, one can take wy o wq as w. [
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(3) For arbitrary e > 0, a mapping w “correcting” the function f €
L(1 +1In" L)(R™) can be chosen so that

{fow# f} <e.

For this it is enough in Theorem 2 to take G; and G5 with measures less
than /2.

(4) When G; = {|f| > 1}, and G2 is a cubic interval, Theorem 2 has
been proved for n = 2 in [7] and announced for n > 2 in [8].
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