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Some results of (Ćirić, 1974) on a nonunique fixed point theorem on the class of metric spaces are
extended to the class of cone metric spaces. Namely, nonunique fixed point theorem is proved in
orbitally T complete cone metric spaces under the assumption that the cone is strongly minihedral.
Regarding the scalar weight of cone metric, we are able to remove the assumption of strongly
minihedral.

1. Introduction and Preliminaries

In 1980, Rzepecki [1] introduced a generalizedmetric dE on a setX in a way that dE : X×X →
S where E is a Banach space and S is a normal cone in E with partial order �. In that paper,
the author generalized the fixed point theorems of Maia type [2].

In 1987, Lin [3] considered the notion of K-metric spaces by replacing real numbers
with coneK in the metric function, that is, d : X×X → K. In that manuscript, some results of
Khan and Imdad [4] on fixed point theorems were considered for K-metric spaces. Without
mentioning the papers of Lin and Rzepecki, in 2007, Huang and Zhang [5] announced the
notion of cone metric spaces (CMSs) by replacing real numbers with an ordering Banach
space. In that paper, they also discussed some properties of convergence of sequences and
proved the fixed point theorems of contractive mapping for cone metric spaces.

Recently, many results on fixed point theory have been extended to cone metric spaces
(see, e.g., [5–13]).

Ćirić type nonunique fixed point theoremswere considered bymany authors (see, e.g.,
[14–20]). In this paper, some of the known results (see, e.g., [2, 14, 15]) are extended to cone
metric spaces.

Throughout this paper E := (E, ‖ · ‖) stands for a real Banach space. Let P := PE always
be a closed nonempty subset of E. P is called cone if ax + by ∈ P for all x, y ∈ P and non-
negative real numbers a, b where P ∩ (−P) = {0} and P /= {0}.
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For a given cone P , one can define a partial ordering (denoted by ≤ or ≤P )with respect
to P by x ≤ y if and only if y − x ∈ P . The notation x < y indicates that x ≤ y and x /=y
while x � y will show y − x ∈ intP , where intP denotes the interior of P . From now on, it is
assumed that intP /= ∅.

The cone P is called normal if there is a number K ≥ 1 for which 0 ≤ x ≤ y ⇒ ‖x‖ ≤
K‖y‖ holds for all x, y ∈ E. The least positive integerK, satisfying this equation, is called the
normal constant of P . The cone P is said to be regular if every increasing sequence which is
bounded from above is convergent, that is, if {xn}n≥1 is a sequence such that x1 ≤ x2 ≤ · · · ≤ y
for some y ∈ E, then there is x ∈ E such that limn→∞‖xn − x‖ = 0.

Lemma 1.1. (i) Every regular cone is normal.
(ii) For each k > 1, there is a normal cone with normal constant K > k.
(iii) The cone P is regular if every decreasing sequence which is bounded from below is

convergent.

Proof of (i) and (ii) are given in [6] and the last one follows from definition.

Definition 1.2. Let X be a nonempty set. Suppose that the mapping d : X ×X → E satisfies

(M1) 0 ≤ d(x, y) for all x, y ∈ X,

(M2) d(x, y) = 0 if and only if x = y,

(M3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y ∈ X,

(M4) d(x, y) = d(y, x) for all x, y ∈ X,

then d is called cone metric on X, and the pair (X, d) is called a cone metric space (CMS).

Example 1.3. Let E = R
3, P = {(x, y, z) ∈ E : x, y, z ≥ 0}, and X = R. Define d : X ×X → E by

d(x, x̃) = (α|x − x̃|, β|x − x̃|, γ |x − x̃|), where α, β, and γ are positive constants. Then (X, d) is a
CMS. Note that the cone P is normal with the normal constant K = 1.

Definition 1.4. Let (X, d) be a CMS, x ∈ X, and {xn}n≥1 a sequence in X. Then

(i) {xn}n≥1 converges to x whenever for every c ∈ E with 0 � c there is a natural
number N, such that d(xn, x) � c for all n ≥ N. It is denoted by limn→∞xn = x or
xn → x.

(ii) {xn}n≥1 is a Cauchy sequence whenever for every c ∈ Ewith 0 � c there is a natural
number N, such that d(xn, xm) � c for all n,m ≥ N.

(iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Lemma 1.5 (see [5]). Let (X, d) be a CMS, P a normal cone with normal constant K, and {xn} a
sequence in X. Then,

(i) the sequence {xn} converges to x if and only if d(xn, x) → 0 (or equivalently
‖d(xn, x)‖ → 0),

(ii) the sequence {xn} is Cauchy if and only if d(xn, xm) → 0 (or equivalently ‖d(xn, xm)‖ →
0 as m,n → ∞),

(iii) the sequence {xn} converges to x and the sequence {yn} converges to y, then d(xn, yn) →
d(x, y).
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Lemma 1.6 (see [8]). Let (X, d) be a CMS over a cone P in E. Then

(1) int(P) + int(P) ⊆ int(P) and λ int(P) ⊆ int(P), λ > 0.

(2) If c � 0, then there exists δ > 0 such that ‖b‖ < δ implies that b � c.

(3) For any given c � 0 and c0 � 0 there exists n0 ∈ N such that c0/n0 � c.

(4) If an, bn are sequences in E such that an → a, bn → b, and an ≤ bn, for all n, then a ≤ b.

Definition 1.7 (see [21]). P is called minihedral cone if sup{x, y} exists for all x, y ∈ E and
strongly minihedral if every subset of E which is bounded from above has a supremum.
(equivalently, if every subset of E which is bounded from below has an infimum.)

Lemma 1.8. (i) Every strongly minihedral normal (not necessarily closed) cone is regular.
(ii) Every strongly minihedral (closed) cone is normal.

The proof of (i) is straightforward, and for (ii) see, for example, [22].

Example 1.9. Let E = C[0, 1] with the supremum norm and P = {f ∈ E : f ≥ 0}. Then P is
a cone with normal constant M = 1 which is not regular. This is clear, since the sequence xn

is monotonically decreasing but not uniformly convergent to 0. This cone, by Lemma 1.8, is
not strongly minihedral. However, it is easy to see that the cone mentioned in Example 1.3 is
strongly minihedral.

2. Non unique Fixed Points on Cone Metric Spaces

Definition 2.1. Amapping T on CMS (X, d) is said to be orbitally continuous if limi→∞Tni(x) =
z implies that limi→∞T(Tni(x)) = Tz. A CMS (X, d) is called T orbitally complete if every
Cauchy sequence of the form {Tni(x)}∞i=1, x ∈ X, converges in (X, d).

Remark 2.2. It is clear that orbital continuity of T implies orbital continuity of Tm for any
m ∈ N.

Theorem 2.3. Let T : X → X be an orbitally continuous mapping on CMS (X, d) over strongly
minihedral normal cone P . Suppose that CMS (X, d) is T orbitally complete and that T satisfies the
condition

u
(

x, y
) − inf

{

d
(

x, T
(

y
))

, d
(

T(x), y
)} ≤ kd

(

x, y
)

(2.1)

for all x, y ∈ X and for some 0 ≤ k < 1, where u(x, y) ∈ {d(x, T(x)), d(T(x), T(y)), d(T(y), y)}.
Then, for each x ∈ X, the iterated sequence {Tn(x)} converges to a fixed point of T .

Proof. Fix x0 ∈ X. For n ≥ 1 set x1 = T(x0) and recursively xn+1 = T(xn) = Tn+1(x0). It is clear
that the sequence xn is Cauchy when the equation xn+1 = xn holds for some n ∈ N. Consider
the case xn+1 /=xn for all n ∈ N. By replacing x and y with xn−1 and xn, respectively, in (2.1),
one can get

u(xn−1, xn) − inf{d(xn−1, T(xn)), d(T(xn−1), xn)}
= {d(xn, xn+1), d(xn−1, xn)} ≤ kd(xn−1, xn),

(2.2)
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where u(xn−1, xn) ∈ {d(xn−1, T(xn−1)), d(T(xn−1), T(xn)), d(T(xn), xn)}. Since k < 1, the case
d(xn−1, xn) ≤ kd(xn−1, xn) yields contradiction. Thus, d(xn, xn+1) ≤ kd(xn−1, xn). Recursively,
one can observe that

d(xn, xn+1) ≤ kd(xn−1, xn) ≤ k2d(xn−2, xn−1) ≤ · · · ≤ knd(x0, T(x0)). (2.3)

By using the triangle inequality, for any p ∈ N, one can get

d
(

xn, xn+p
) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d

(

xn+p−1, T
(

xn+p
))

≤
(

kn + kn+1 + · · · + kn+p−1
)

d(x0, T(x0))

= kn
(

1 + k + · · · + kp−1
)

d(x0, T(x0)) ≤ kn

1 − k
d(x0, T(x0)).

(2.4)

Let c ∈ int(P). Choose a natural number M0 such that (kn/(1 − k))d(T(x0), x0) � c for all
n > M0. Thus, for any p ∈ N, d(xn+p, xn) � c for all n > M0. So {xn} is a Cauchy sequence
in (X, d). Since (X, d) is T orbitally complete, there is some z ∈ X such that limn→∞xn =
limn→∞Tn(x0) = z. Regarding the orbital continuity of T , T(z) = limn→∞T(Tn(x0)) =
limn→∞Tn+1(x0) = z, that is, z is a fixed point of T .

A point z is said to be a periodic point of a function T of period m if Tm(z) = z, where
T0(x) = x and Tm(x) is defined recursively by Tm(x) = T(Tm−1(x)).

Theorem 2.4. Let T : X → X be an orbitally continuous mapping on T orbitally complete CMS
(X, d) over strongly minihedral normal cone P and c ∈ int(P). Suppose that there exists a point
x0 ∈ X such that d(x0, T

n(x0)) � c for some n ∈ N and that T satisfies the condition

0 < d
(

x, y
) � c =⇒ u

(

x, y
) ≤ kd

(

x, y
)

(2.5)

for all x, y ∈ X and for some k < 1, where u(x, y) ∈ {d(x, T(x)), d(T(x), T(y)), d(T(y), y)}. Then,
T has a periodic point.

Proof. Set M = {n ∈ N : d(x, Tn(x)) � c for some x ∈ X}. By assumption of theorem M/= ∅.
Set m = minM and let x ∈ X such that d(x, Tm(x)) � c which is equivalent to saying that
c − d(x, Tm(x)) ∈ int(P).

Suppose that m = 1. By replacing y = T(x) in (2.5), one can get

u(x, T(x)) ≤ kd(x, T(x)), (2.6)

where u(x, T(x)) ∈ {d(x, T(x)), d(T(x), T(T(x))), d(T(T(x)), T(x))}. There are two cases.
Consider the first case, d(x, T(x)) ≤ kd(x, T(x)), which is a contraction by, regarding k < 1.
Thus, one has d(T(x), T(T(x))) = d(T(x), T2(x)) ≤ kd(x, T(x)).
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As in the proof of Theorem 2.3, one can consider the iterative sequence xn+1 =
T(xn), x = x0 and observe that Tz = z for some z ∈ X.

Suppose that m ≥ 2. It is equivalent to saying that for each y ∈ X, the condition

c − d
(

T
(

y
)

, y
)

/∈ int(P). (2.7)

Taking account of d(x, Tm(x)) � c and applying into (2.5), one can get

u(x, Tm(x)) ≤ kd(x, Tm(x)), (2.8)

where u(x, Tm(x)) ∈ {d(x, T(x)), d(T(x), T(Tm(x))), d(T(Tm(x)), Tm(x))}.
Recall that Tm(x) ∈ X and say that Tm(x) = z. Then, d(T(Tm(x)), Tm(x)) = d(T(z), z)

is observed. Regarding (2.7), c − d(T(z), z) = c − d(T(Tm(x)), Tm(x))/∈ int(P) and also c −
d(T(x), x)/∈ int(P). Thus,

min{d(x, T(x)), d(T(x), T(Tm(x))), d(T(Tm(x)), Tm(x))} = d
(

T(x), Tm+1(x)
)

, (2.9)

and hence, (2.8) turns into

d
(

T(x), Tm+1(x)
)

≤ kd(x, Tm(x)). (2.10)

Recursively, one can get

d
(

T2(x), Tm+2(x)
)

≤ kd
(

T(x), Tm+1(x)
)

≤ k2d(x, Tm(x)). (2.11)

Continuing in this way, for each p ∈ N, one can obtain

d(Tp(x), Tm+p(x)) ≤ kd
(

Tp−1(x), Tm+p−1(x)
)

≤ · · · ≤ kpd(x, Tm(x)). (2.12)

Thus, for the recursive sequence xn+1 = Tm(xn) where x0 = x,

d(xn, xn+1) = d
(

Tnm(x0), T (n+1)m(x0)
)

= d(Tnm(x0), Tm+nm(x0)) ≤ knmd(x0, T
m(x0)). (2.13)

By using the triangle inequality, for any p ∈ N, one can get

d
(

xn, xn+p
) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d

(

xn+p−1, xn+p
)

= knm
(

1 + km + · · · + k(p−1)m
)

d(x0, T(x0)) ≤ knm

1 − km
d(x0, T

m(x0)).
(2.14)

Let c ∈ int(P). Choose a natural number M0 such that ((knm)/(1 − km))d(T(x0), x0) � c for
all n > M0. Thus, for any p ∈ N, d(xn+p, xn) � c for all n > M0. So {xn} is a Cauchy sequence
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in (X, d). Since (X, d) is T orbitally complete, there is some z ∈ X such that limn→∞Tn(x0) = z.
Regarding Remark 2.2, the orbital continuity of T implies that

Tm(z) = lim
n→∞

Tm(Tnm(x0)) = lim
n→∞

T (n+1)m(x0) = z, (2.15)

that is, z is a periodic point of T .

Theorem 2.5. Let T : X → X be an orbitally continuous mapping on CMS (X, d) over strongly
minihedral normal cone P . Suppose that T satisfies the condition

u
(

x, y
) − inf

{

d
(

x, T
(

y
))

, d
(

T(x), y
)}

< d
(

x, y
)

(2.16)

for all x, y ∈ X, x /=y where u(x, y) ∈ {d(x, T(x)), d(T(x), T(y)), d(T(y), y)}. Suppose that the
sequence {Tn(x0)} has a cluster point z ∈ X, for some x0 ∈ X. Then, z is a fixed point of T .

Proof. Suppose that Tm(x0) = Tm−1(x0) for some m ∈ N, then Tn(x0) = Tm(x0) = z for all
n ≥ m. It is clear that z is a required point.

Suppose that Tm(x0)/= Tm−1(x0) for allm ∈ N. Since {Tn(x0)} has a cluster point z ∈ X,
one can write limi→∞Tni(x0) = z. By replacing x and ywith Tn−1(x0) and Tn(x0), respectively,
in (2.16),

u
(

Tn−1(x0), Tn(x0)
)

− inf
{

d
(

Tn−1(x0), T(Tn(x0))
)

, d
(

T
(

Tn−1(x0)
)

, Tn(x0)
)}

< d
(

Tn−1(x0), Tn(x0)
)

,

(2.17)

where u(Tn−1(x0), Tn(x0)) lies in {d(Tn−1(x0), T(Tn−1(x0))), d(T(Tn−1(x0)), T(Tn(x0))),
d(T(Tn(x0)), Tn(x0))}. The case d(Tn−1(x0), Tn(x0)) < d(Tn−1(x0), Tn(x0)) is impossible. Thus,
(2.17) is equivalent to d(Tn(x0), Tn+1(x0)) < d(Tn−1(x0), Tn(x0)). It shows that

{

d
(

Tn(x0), Tn+1(x0)
)}∞

1
(2.18)

is decreasing. Since the cone P is strongly minihedral, then by Lemma 1.1 (iii) and Lemma 1.8
(i), {d(Tn(x0), Tn+1(x0))}∞1 is convergent. Due to Lemma 1.5, and T orbital continuity,

lim
i→∞

d
(

Tni(x0), Tni+1(x0)
)

= d(z, Tz). (2.19)

By {d(Tni(x0), Tni+1(x0))}∞1 ⊂ {d(Tn(x0), Tn+1(x0))}∞1 and (2.19),

lim
n→∞

d
(

Tn(x0), Tn+1(x0)
)

= d(z, Tz). (2.20)
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Regarding limi→∞Tni+1(x0) = Tz, limi→∞Tni+2(x0) = T2z{d(Tni+1(x0), Tni+2(x0))}∞1 ⊂
{d(Tn(x0), Tn+1(x0))}∞1 , and (2.20),

d
(

Tz, T2z
)

= d(z, Tz). (2.21)

Assume that Tz/= z, that is, d(z, Tz) > 0. So, one can replace x and y with z and Tz,
respectively, in(2.16)

u(z, Tz) − inf{d(z, T(T(z))), d(T(z), T(z))} < d(z, T(z)), (2.22)

where u(z, Tz) ∈ {d(z, T(z)), d(T(z), T(T(z))), d(T(T(z)), T(z))}.
It yields that d(Tz, T2z) < d(z, Tz). But it contradicts (2.21). Thus, Tz = z.

3. Non unique Fixed Points on Scalar Weighted Cone Metric Spaces

Definition 3.1. Let (X, d) be a CMS. The scalar weight of the cone metric d is defined by
ds(x, y) := ‖d(x, y)‖.

Notice that for normal cone P with the normal constantK = 1, the scalar weight of the
cone metric ds behaves as a metric onX. In the following theorems normal constantK has no
restriction.

Theorem 3.2. Let T : X → X be an orbitally continuous mapping on T orbitally complete CMS
(X, ds) over normal cone P with normal constant K. Suppose that T satisfies the condition

min
{

ds(x, T(x)), ds

(

T(x), T
(

y
))

, ds

(

T
(

y
)

, y
)}

−min
{

ds

(

x, T
(

y
))

, ds

(

T(x), y
)} ≤ kds

(

x, y
)

(3.1)

for all x, y ∈ X and for some k < 1. Then, for each x ∈ X, the iterated sequence {Tn(x)} converges to
a fixed point of T .

Proof. Fix x0 ∈ X. For n ≥ 1 set x1 = T(x0) and recursively xn+1 = T(xn) = Tn+1(x0). It is
clear that the sequence xn is Cauchy when xn+1 = xn hold for some n ∈ N. Consider the case
xn+1 /=xn for all n ∈ N. By replacing x and y with xn−1 and xn, respectively, in (3.1), one can
get

min{ds(xn−1, T(xn−1)), ds(T(xn−1), xn), ds(xn, T(xn))}
−min{ds(xn−1, T(xn)), ds(T(xn−1), xn)}

= min{ds(xn, xn+1), ds(xn−1, xn) ≤ kds(xn−1, xn) .

(3.2)

Since k < 1, the case ds(xn−1, xn) ≤ kds(xn−1, xn) yields contradiction. Thus,
ds(xn, xn+1) ≤ kds(xn−1, xn). Recursively, one can observe that

ds(xn, xn+1) ≤ kds(xn−1, xn) ≤ k2ds(xn−2, xn−1) ≤ · · · ≤ knds(x0, T(x0)). (3.3)
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By using the triangle inequality, for any p ∈ N, one can get

ds

(

xn, xn+p
) ≤ K

(

ds(xn, xn+1) + ds(xn+1, xn+2) + · · · + ds

(

xn+p−1, T
(

xn+p
)))

≤ K
((

kn + kn+1 + · · · + kn+p−1
)

ds(x0, T(x0))
)

= Kkn
(

1 + k + · · · + kp−1
)

ds(x0, T(x0)) ≤ Kkn

1 − k
ds(x0, T(x0)).

(3.4)

By routine calculation, one can obtain that {xn} is a Cauchy sequence in (X, d). Since (X, d) is
T orbitally complete, there is some z ∈ X such that

lim
n→∞

xn = lim
n→∞

Tn(x0) = z. (3.5)

Regarding the orbital continuity of T ,

T(z) = lim
n→∞

T(Tn(x0)) = lim
n→∞

Tn+1(x0) = z, (3.6)

that is, z is a fixed point of T .

Theorem 3.3. Let T : X → X be an orbitally continuous mapping on T orbitally complete CMS
(X, d) over normal cone P with normal constant K and ε > 0. Suppose that there exists a point
x0 ∈ X such that ds(x0, T

n(x0)) < ε for some n ∈ N and that T satisfies the condition

0 < ds

(

x, y
)

< ε =⇒ min
{

ds(x, T(x)), ds

(

T(x), T
(

y
))

, ds

(

T
(

y
)

, y
)} ≤ kds

(

x, y
)

(3.7)

for all x, y ∈ X and for some k < 1. Then, T has a periodic point.

Proof. Set M = {n ∈ N : ds(x, Tn(x)) < ε : for x ∈ X}. By assumption of the theorem M/= ∅.
Let m = minM and x ∈ X such that ds(x, Tm(x)) < ε.

Suppose that m = 1, that is, ds(x, T(x)) < ε. By replacing y = T(x) in (3.7), one can get

min{ds(x, T(x)), ds(T(x), T(T(x))), ds(T(T(x)), T(x))} ≤ kds(x, T(x)). (3.8)

The case ds(x, T(x)) ≤ kds(x, T(x)) implies a contraction due to the fact that k < 1. Thus,
ds(T(x), T(T(x))) = ds(T(x), T2(x)) ≤ kds(x, T(x)).

As in the proof of Theorem 3.2, one can consider the iterative sequence xn+1 =
T(xn), x = x0 and observe that Tz = z for some z ∈ X.

Suppose that m ≥ 2. It is equivalent to saying that the condition

ds

(

T
(

y
)

, y
) ≥ ε (3.9)

holds for each y ∈ X. Then, from ds(x, Tm(x)) < ε and (3.7) it follows that

min{ds(x, T(x)), ds(T(x), T(Tm(x))), ds(T(Tm(x)), Tm(x))} ≤ kds(x, Tm(x)). (3.10)
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Considering Tm(x) ∈ X, say Tm(x) = z, one has ds(T(Tm(x)), Tm(x)) = ds(T(z), z). Regarding
(3.9), ds(T(z), z) = ds(T(Tm(x)), Tm(x)) ≥ ε and ds(T(x), x) ≥ ε. Thus,

min{ds(x, T(x)), ds(T(x), T(Tm(x))), ds(T(Tm(x)), Tm(x))} = ds

(

T(x), Tm+1(x)
)

. (3.11)

and hence

ds

(

T(x), Tm+1(x)
)

≤ kds(x, Tm(x)). (3.12)

Recursively, one can get

ds

(

T2(x), Tm+2(x)
)

≤ ds

(

T(x), Tm+1(x)
)

≤ k2ds(x, Tm(x)). (3.13)

Continuing in this way, for each p ∈ N, one can obtain

ds(Tp(x), Tm+p(x)) ≤ ds

(

Tp−1(x), Tm+p−1(x)
)

≤ · · · ≤ kpds(x, Tm(x)). (3.14)

Thus, for the recursive sequence xn+1 = Tm(xn) where x0 = x,

ds(xn, xn+1) = ds

(

Tnm(x0), T (n+1)m(x0)
)

= ds(Tnm(x0), Tm+nm(x0)) ≤ knmds(x0, T
m(x0)).

(3.15)

By using the triangle inequality and regarding the normality of the cone, for any p ∈ N, one
can get

ds

(

xn, xn+p
) ≤ K

[

ds(xn, xn+1) + ds(xn+1, xn+2) + · · · + ds

(

xn+p−1, xn+p
)]

= Kknm
[

1 + km + · · · + k(p−1)m
]

ds(x0, T
m(x0))

≤ Kknm

1 − km
ds(x0, T

m(x0)).

(3.16)

Let ε > 0. Choose a natural numberM0 such that (Kknm/(1−km))ds(Tm(x0), x0) < ε for
all n > M0. Thus, for any p ∈ N, ds(xn+p, xn) < ε for all n > M0. So {xn} is a Cauchy sequence
in X. Since X is T orbitally complete, there is some z ∈ X such that limn→∞Tn(x0) = z.
Regarding Remark 2.2, the orbital continuity of T implies that

Tm(z) = Tm

(

lim
n→∞

Tnm(x0)
)

= lim
n→∞

Tm(Tnm(x0)) = lim
n→∞

T (n+1)m(x0) = z, (3.17)

that is, z is a periodic point of T .
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Theorem 3.4. Let T : X → X be an orbitally continuous mapping on CMS (X, d) over normal cone
P with normal constant K. Suppose that T satisfies the condition

min
{

ds(x, T(x)), ds

(

T(x), T
(

y
))

, ds

(

T
(

y
)

, y
)}

−min
{

ds

(

x, T
(

y
))

, ds

(

T(x), y
)}

< ds

(

x, y
)

(3.18)

for all x, y ∈ X, x /=y. If the sequence {Tn(x0)} has a cluster point z ∈ X, for some x0 ∈ X, then z is
a fixed point of T .

The proof of Theorem 3.4 is omitted by regarding the analogy with the proof of
Theorem 2.5. In the proof of Theorem 2.5, to conclude that the decreasing sequence (2.18)
is convergent, we need to use the assumption of strong minihedrality of the cone P . Since we
use the scalar weight of cone metric in the proof of Theorem 3.4, we can conclude that the
corresponding decreasing sequence of (2.18) is convergent without the assumption of strong
minihedrality of the cone P .

Theorem 3.5. Let T : X → X be an orbitally continuous mapping on T orbitally complete CMS
(X, d) over normal cone P with normal constant K and ε > 0. Suppose that T satisfies the condition

0 < ds

(

x, y
)

< ε =⇒ min
{

ds(x, T(x)), ds

(

T(x), T
(

y
))

, ds

(

T
(

y
)

, y
)}

< ds

(

x, y
)

(3.19)

for all x, y ∈ X. If for some x0 ∈ X, the sequence {Tn(x0)}∞n=1 has a cluster point of z ∈ X, then z is a
periodic point of T .

Proof. Set limi→∞Tni(x0) = z, that is, for any ε > 0 there exists N0 ∈ N such that
ds(Tni(x0), z) < ε/2K for all i > N0. Hence, by triangle inequality and normality of the cone
it yields that

ds(Tni(x0), Tni+1(x0)) ≤ ds(Tni(x0), z) + ds(z, Tni+1(x0)) < ε. (3.20)

Define a set

M =
{

j ∈ N : ds

(

Tn(x0), Tn+j(x0)
)

< ε for some n ∈ N

}

(3.21)

which is nonempty by assumption of the theorem. Let m = minM. Consider two cases.
Suppose ds(Tn(x0), Tn+m(x0)) = 0 for some n ∈ N. Then, z = Tn(x0) = Tn+m(x0) =
Tm(Tn(x0)) = Tm(z) and the assertion of theorem follows.

Suppose that ds(Tn(x0), Tn+m(x0)) > 0 for all n ∈ N. Let r ∈ N be such that
ds(Tr(x0), Tr+m(x0)) < ε.

If m = 1, then replacing x and y with Tn(x0) and Tn+1(x0), respectively, in (3.19) one
can obtain that

min
{

ds(Tn(x0), T(Tn(x0))), ds

(

T(Tn(x0)), T
(

Tn+1(x0)
))

, ds

(

T
(

Tn+1(x0)
)

, Tn+1(x0)
)}

< ds

(

Tn(x0), Tn+1(x0)
)

.

(3.22)
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Since the case ds(Tn(x0), Tn+1(x0)) < ds(Tn(x0), Tn+1(x0)) is impossible, (3.22) turns into
ds(Tn+1(x0), Tn+2(x0)) < ds(Tn(x0), Tn+1(x0)), that is, the sequence {ds(Tn(x0), Tn+1(x0))} is
decreasing for n ≥ r. Thus, by routine calculation, one can conclude that Tz = z.

Assume that m ≥ 2, that is, for every n ∈ N,

ds

(

Tn(x0), Tn+1(x0)
)

≥ ε. (3.23)

By orbital continuity of T , limi→∞Tni+r(x0) = Tr(z), and by (3.23), one can get

ds

(

Tr(z), Tr+1(z)
)

= lim
i→∞

ds

(

Tni+r(x0), Tni+r+1(x0)
)

≥ ε. (3.24)

for every r ∈ N

Regarding (3.19) under the assumption 0 < ds(Tj(x0), T j+m(x0)) < ε one can obtain

min
{

ds

(

Tj(x0), T j+1(x0)
)

, ds

(

Tj+1(x0), T j+m+1(x0)
)

, ds

(

Tj+m(x0), T j+m+1(x0)
)}

< ds

(

Tj(x0), T j+m(x0)
)

.

(3.25)

Thus, due to (3.23), ds(Tj+1(x0), T j+m+1(x0)) < ds(Tj(x0), T j+m(x0)) < ε.
By continuing this process, it yields that

· · · < ds

(

Tj+2(x0), T j+m+2(x0)
)

< ds

(

Tj+1(x0), T j+m+1(x0)
)

< ds

(

Tj(x0), T j+m(x0)
)

< ε.

(3.26)

Hence, the sequence {ds(Tn(x0), Tn+m(x0)) : n ≥ j} is decreasing and thus is
convergent. Notice that the subsequences {ds(Tni(x0), Tni+m(x0)) : i ∈ N} and {ds(Tni+1(x0),
Tni+1+m(x0)) : i ∈ N} are convergent to d(z, Tmz) and d(Tz, Tm+1z), respectively. By orbital
continuity of T and limi→∞Tni(x0) = z, one can get

ds

(

T(z), Tm+1(z)
)

= ds(z, Tm(z)) = lim
n→∞

ds(Tn(x0), Tn+m(x0)). (3.27)

One can conclude that ds(z, Tmz) < ε from (3.26) and (3.27). If ds(z, Tmz) = 0, then
Tmz = z. Thus, the desired result is obtained. Suppose that ds(z, Tmz) > 0. Applying (3.19),

min{ds(z, T(z)), ds(T(z), T(Tm(z))), ds(T(Tm(z)), Tm(z))} < ds(z, Tmz) < ε. (3.28)

Taking account of (3.24), (3.28) yields that ds(T(z), Tm+1(z)) < ds(z, Tmz) which contradicts
(3.27). Thus, ds(z, Tmz) = 0, and so Tmz = z.
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Theorem 3.6. Let T : X → X be an orbitally continuous mapping on T orbitally complete CMS
(X, ds) over normal cone P with normal constant K. Suppose that T satisfies the condition

min
{

[ds(x, T(x))]
2, ds

(

x, y
)

ds

(

T(x), T
(

y
))

,
[

ds

(

T
(

y
)

, y
)]2

}

−min
{

ds(x, T(x))ds

(

T
(

y
)

, y
)

, ds

(

x, T
(

y
))

ds

(

T(x), y
)} ≤ kds(x, T(x))ds

(

T
(

y
)

, y
)

(3.29)

for all x, y ∈ X and for some k < 1. Then, for each x ∈ X, the iterated sequence {Tn(x)} converges to
a fixed point of T .

Proof. As in the proof of Theorem 3.2, fix x0 ∈ X and define the sequence {xn} in the following
way. For n ≥ 1 set x1 = T(x0) and recursively xn+1 = T(xn) = Tn+1(x0). It is clear that the
sequence xn is Cauchy when xn+1 = xn hold for some n ∈ N. Consider the case xn+1 /=xn for
all n ∈ N. By replacing x and y with xn−1 and xn, respectively, in (3.29), one can get

min
{

[ds(xn−1, T(xn−1))]
2, ds(xn−1, xn)ds(T(xn−1), T(xn)), [ds(T(xn), xn)]

2
}

−min{ds(xn−1, T(xn−1))ds(T(xn), xn), ds(xn−1, T(xn))ds(T(xn−1), xn)}
≤ kds(xn−1, T(xn−1))ds(T(xn), xn).

(3.30)

Since k < 1, the case ds(xn−1, xn)ds(xn, xn+1) ≤ kds(xn−1, xn)ds(xn, xn+1) yields contradiction.
Thus, one gets

ds(xn, xn+1) ≤ kds(xn−1, xn). (3.31)

Recursively, one can observe that

ds(xn, xn+1) ≤ kds(xn−1, xn) ≤ k2ds(xn−2, xn−1) ≤ · · · ≤ knds(x0, T(x0)). (3.32)

By routine calculation as in the proof of Theorem 3.2, one can show that T has a fixed
point.

Theorem 3.7. Let X be a nonempty set endowed in two cone metrics d, ρ, and let T be a mapping of
X into itself. Suppose that

(i) X is orbitally complete space with respect to ds,

(ii) ds(x, y) ≤ ρs(x, y) for all x, y ∈ X,

(iii) T is orbitally continuous with respect to ds,

(iv) T satisfies

min
{

[

ρs
(

T(x), T
(

y
))]2

, ρs
(

x, y
)

ρs
(

T(x), T
(

y
))

,
[

ρs
(

y, T
(

y
))]2

}

−min
{

ρs(x, T(x))ρs
(

y, T
(

y
))

, ρs
(

x, Ty
)

ρs
(

y, T(x)
)} ≤ kρs(x, T(x)), ρs

(

y, Ty
)

(3.33)

for all x, y ∈ X, where 0 ≤ k < 1.
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Then T has a fixed point in X.

Proof. As in the proof of Theorem 3.2, fix x0 ∈ X and define the sequence {xn} in the following
way. For n ≥ 1 set x1 = T(x0) and recursively xn+1 = T(xn) = Tn+1(x0). Replacing x, y with
xn−1, xn, respectively, in (3.33), one can get

min
{

[

ρs(T(xn−1), T(xn))
]2
, ρs(xn−1, xn)ρs(T(xn−1), T(xn)),

[

ρs(xn, T(xn))
]2
}

−min
{

ρs(xn−1, T(xn−1))ρs(xn, T(xn)), ρs(xn−1, T(xn))ρs(xn, T(xn−1))
}

≤ kρs(xn−1, T(xn−1)), ρs(xn, T(xn)).

(3.34)

Since the case kρs(xn−1, T(xn−1)), ρs(xn, T(xn)) ≤ kρs(xn−1, T(xn−1)), ρs(xn, T(xn)), (3.34) is
equivalent to ρs(xn, xn+1) ≤ kρs(xn−1, xn). Recursively one can obtain

ρs(xn, xn+1) ≤ kρs(xn−1, xn) ≤ · · · ≤ knρs(x0, x1). (3.35)

Regarding the triangle inequality and the normality of the cone, (3.35) implies that

ρs
(

xn, xn+p
) ≤ Kkn

1 − k
ρs(x0, x1), (3.36)

for any p ∈ N. Taking account of assumption (ii) of the theorem, one can get

ds

(

xn, xn+p
) ≤ Kkn

1 − k
ρs(x0, x1). (3.37)

Thus, {xn} is a Cauchy sequence with respect to ds. Since X is T orbitally complete, there
exists z ∈ X such that limn→∞Tn(x) = z. From orbital continuity of T , one can get the desired
result, that is, Tz = limn→∞T(Tn(x)) = z.

Remark 3.8. Theorem 3.6 can be restated by replacing (3.29)with

min
{

[

ds

(

T(x), T
(

y
))]2

, ds

(

x, y
)

ds

(

T(x), T
(

y
))

,
[

ds

(

T
(

y
)

, y
)]2

}

−min
{

ds

(

x, T
(

y
))

, ds

(

y, T(x)
)} ≤ kds(x, T(x))ds

(

T
(

y
)

, y
)

.

(3.38)

Note also that, Theorem 3.7 remains valid by replacing (3.33)with

min
{

[

ρs
(

T(x), T
(

y
))]2

, ρs
(

x, y
)

ρs
(

T(x), T
(

y
))

,
[

ρs
(

T
(

y
)

, y
)]2

}

−min
{

vs

(

x, T
(

y
))

, ρs
(

y, T(x)
)} ≤ kρs(x, T(x))ρs

(

T
(

y
)

, y
)

.

(3.39)
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points,” International Journal of Pure and Applied Mathematics, vol. 26, no. 3, pp. 399–408, 2006.
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