
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2010, Article ID 127363, 13 pages
doi:10.1155/2010/127363

Review Article
Existence of Positive Solutions for
a Functional Fractional Boundary Value Problem

Chuanzhi Bai

Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsu 223300, China

Correspondence should be addressed to Chuanzhi Bai, czbai8@sohu.com

Received 18 February 2010; Accepted 29 April 2010

Academic Editor: Dumitru Baleanu

Copyright q 2010 Chuanzhi Bai. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We study the existence of positive solutions for a boundary value problem of fractional-order
functional differential equations. Several new existence results are obtained.

1. Introduction

Fractional differential equations can describe many phenomena in various fields of science
and engineering such as physics, mechanics, chemistry, control, and engineering. Due to their
considerable importance and application, significant progress has been made in there are a
great number of excellent works about ordinary and partial differential equations involving
fractional derivatives; see, for instance, [1–15].

As pointed out in [16], boundary value problems associated with functional
differential equations have arisen from problems of physics and variational problems of
control theory appeared early in the literature; see [17, 18]. Since then many authors (see,
e.g., [19–23]) investigated the existence of solutions for boundary value problems concerning
functional differential equations. Recently an increasing interest in studying the existence of
solutions for boundary value problems of fractional-order functional differential equations is
observed; see for example, [24–26].

For τ > 0, we denote by Cτ the Banach space of all continuous functions ψ : [−τ, 0] →
R endowed with the sup-norm

∥
∥ψ
∥
∥
[−τ,0] := sup

{∣
∣ψ(s)

∣
∣ : s ∈ [−τ, 0]}. (1.1)
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If u : [−τ, 1] → R, then for any t ∈ [0, 1], we denote by ut the element of Cτ defined by

ut(θ) = u(t + θ), for θ ∈ [−τ, 0]. (1.2)

In this paper we investigate a fractional-order functional differential equation of the
form

Dρu(t) = f(t, ut), t ∈ [0, 1], (1.3)

where ρ ∈ (m − 1, m] (m ≥ 3 is a natural number), f(t, ut) : [0, 1] × Cτ → R is a continuous
function, associated with the boundary condition

u′(0) = · · · = u(m−2)(0) = 0, u(m−2)(1) = 0, (1.4)

and the initial condition

u0 = φ, (1.5)

where φ is an element of the space

C+
τ (0) :=

{

ψ ∈ Cτ : ψ(s) ≥ 0, s ∈ [−τ, 0], ψ(0) = 0
}

. (1.6)

To the best of the authors knowledge, no one has studied the existence of positive
solutions for problem (1.3)–(1.5). The aim of this paper is to fill the gap in the relevant
literatures. The key tool in finding our main results is the following well-known fixed point
theorem due to Krasnoselski [27].

Theorem 1.1. Let B be a Banach space and let K be a cone in B. Assume that Ω1 and Ω2 are open
subsets of B, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let A : K ∩ (Ω2 \Ω1) → K be a completely continuous
operator such that either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2, (1.7)

or

‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2, (1.8)

Then A has a fixed point in K ∩ (Ω2 \Ω1).
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2. Preliminaries

Firstly, we recall some definitions of fractional calculus, which can be found in [11–14].

Definition 2.1. The Riemann-Liouville fractional derivative of order α > 0 of a continuous
function f : (0,∞) → R is given by

Dαf(t) =
1

Γ(n − α)
(
d

dt

)n ∫ t

0

f(s)

(t − s)α−n+1
ds, (2.1)

where n = [α] + 1 and [α] denotes the integer part of number α, provided that the right side
is pointwise defined on (0,∞).

Definition 2.2. The Riemann-Liouville fractional integral of order α of a function f : (0,∞) →
R is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t − s)1−α
ds, (2.2)

provided that the integral exists.

The following lemma is crucial in finding an integral representation of the boundary
value problem (1.3)–(1.5).

Lemma 2.3 (see [4]). Suppose that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0.
Then

IαDαu(t) = u(t) + c1tα−1 + c2tα−2 + · · · + cntα−n, (2.3)

for some ci ∈ R, i = 1, 2, . . . , n, where n = [α] + 1.

From Lemma 2.3, we now give an integral representation of the solution of the
linearized problem.

Lemma 2.4. If h ∈ C[0, 1], then the boundary value problem

Dρu(t) + h(t) = 0, 0 < t < 1, m − 1 < ρ ≤ m, (2.4)

u(0) = u′(0) = · · · = u(m−2)(0) = 0, u(m−2)(1) = 0 (2.5)

has a unique solution

u(t) =
∫1

0
G(t, s)h(s)ds, (2.6)
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where

G(t, s) =
1

Γ
(

ρ
)

⎧

⎨

⎩

tρ−1(1 − s)ρ−m+1 − (t − s)ρ−1, s < t,

tρ−1(1 − s)ρ−m+1, t ≤ s.
(2.7)

Proof. Wemay apply Lemma 2.3 to reduce BVP (2.4), (2.5) to an equivalent integral equation

u(t) = c1tρ−1 + c2tρ−2 + · · · + cmtρ−m −
∫ t

0

(t − s)ρ−1
Γ
(

ρ
) h(s)ds. (2.8)

By the boundary condition (2.5), we easily obtain that

c2 = c3 = · · · = cm = 0,

c1 =
1

Γ
(

ρ
)

∫1

0
(1 − s)ρ−m+1h(s)ds.

(2.9)

Hence, the unique solution of BVP (2.4), (2.5) is

u(t) =
∫1

0

1
Γ
(

ρ
) tρ−1(1 − s)ρ−m+1h(s)ds −

∫ t

0

(t − s)ρ−1
Γ
(

ρ
) h(s)ds

=
∫1

0
G(t, s)h(s)ds.

(2.10)

The proof is complete.

Lemma 2.5. G(t, s) has the following properties.

(i) 0 ≤ G(t, s) ≤ B(s), t, s ∈ [0, 1], where

B(s) =
(1 − s)ρ−m+1 − (1 − s)ρ−1

Γ
(

ρ
) ; (2.11)

(ii) G(t, s) ≥ (tρ−1/(m − 2))B(s), for 0 ≤ t, s ≤ 1.
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Proof. It is easy to check that (i) holds. Next, we prove that (ii) holds. If t > s, then

G(t, s)
B(s)

=
tρ−1(1 − s)ρ−m+1 − (t − s)ρ−1
(1 − s)ρ−m+1 − (1 − s)ρ−1

=
tm−2(t − ts)ρ−m+1 − (t − s)ρ−1(t − ts)ρ−m+1

(1 − s)ρ−m+1 − (1 − s)ρ−1

≥ tm−2(t − ts)ρ−m+1 − (t − s)m−2(t − ts)ρ−m+1

(1 − s)ρ−m+1 − (1 − s)ρ−1

=
tρ−m+1(1 − s)ρ−m+1

[

tm−2 − (t − s)m−2
]

(1 − s)ρ−m+1
[

1 − (1 − s)m−2
]

=
tρ−m+1

[

tm−3 + tm−4(t − s) + · · · + (t − s)m−3
]

1 + (1 − s) + · · · + (1 − s)m−3

≥ tρ−m+1tm−3

1 + (1 − s) + · · · + (1 − s)m−3

≥ tρ−m+1tm−3

m − 2
=

tρ−2

m − 2
≥ tρ−1

m − 2
.

(2.12)

If t ≤ s, then

G(t, s)
B(s)

=
tρ−1(1 − s)ρ−m+1

(1 − s)ρ−m+1 − (1 − s)ρ−1
≥ tρ−1(1 − s)ρ−m+1

(1 − s)ρ−m+1

= tρ−1 ≥ tρ−1

m − 2
.

(2.13)

The proof is complete.

3. Main Result

In the sequel we will denote by C0[0, 1] the space of all continuous functions x : [0, 1] → R
with x(0) = 0. This is a Banach space when it is furnished with the usual sup-norm

‖u‖0 = max
t∈[0,1]

|u(t)|. (3.1)
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For each φ ∈ C+
τ (0) and x ∈ C0[0, 1], we define

xt
(

s;φ
)

:=

⎧

⎨

⎩

x(t + s), t + s ≥ 0,

φ(t + s), t + s ≤ 0,
s ∈ [−τ, 0], (3.2)

and observe that xt(;φ) ∈ Cτ .
By a solution of the boundary value problem (1.3)–(1.5), we mean a function u ∈

C0[0, 1] such that Dρu exists on [0, 1] and u satisfies boundary condition (1.4), and for a
certain φ, the relation

Dρu(t) = f
(

t, ut
(·;φ)) (3.3)

holds for all t ∈ [0, 1].
By Lemma 2.4 we know that a function u is a solution of the boundary value problem

(1.3)–(1.5) if and only if it satisfies

u(t) =
∫1

0
G(t, s)f

(

s, us
(·;φ))ds := (Tφu

)

(t), s ∈ [0, 1]. (3.4)

We set

C+
0 [0, 1] = {u ∈ C0[0, 1] : u(t) ≥ 0, t ∈ [0, 1]}. (3.5)

Define the cone P ⊂ C0[0, 1] by

P =
{

y ∈ C+
0 [0, 1] : min

τ≤t≤1
y(t) ≥ 1

m − 2
τρ−1
∥
∥y
∥
∥
0

}

, (3.6)

where 0 < τ < 1.
By Lemma 2.4, the boundary value problem (1.3)–(1.5) is equivalent to the integral

equation

u(t) =
∫1

0
G(t, s)f(s, us)ds, t ∈ [0, 1]. (3.7)

In this paper, we assume that 0 < τ < 1, φ ∈ C+
τ (0), and we make use of the following

assumptions.

(H1) f(t, ψ) ≥ 0 for t ∈ [0, 1] and ψ ∈ C+
τ (0).

(H2) There exist constants M > ‖φ‖[−τ,0] and τi, i = 1, 2, . . . , q, with 0 < τ1 < τ2 < · · · <
τq < τ , as well as continuous functions ak ∈ C[0, 1] and nondecreasing continuous
functions gk : R+ → R+ such that

f
(

t, ψ
) ≤

q
∑

k=1

ak(t)gk
(∥
∥ψ
∥
∥
[−τk,0]

)

, ψ ∈ C+
τ (0),

∥
∥ψ
∥
∥
[−τ,0] ≤M. (3.8)
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(H3) There exist functions ω : [0, 1] → [0, τ], continuous c : [0, 1] → R+, and
nondecreasing η : R+ → R+ such that

f
(

t, ψ
) ≥ c(t)η(ψ(−ω(t))), ψ ∈ C+

τ (0). (3.9)

Similar to the proof of Lemma 3.2 in [4], we have the following

Lemma 3.1. Let (H1) holds. Then Tφ : P → P is completely continuous.

Lemma 3.2. If 0 < τ < 1 and u ∈ P , then we have

∥
∥ut(·;φ)

∥
∥
[−τ,0] ≥ γ‖u‖0, t ∈ [τ, 1], (3.10)

where

γ =
τρ−1

m − 2
. (3.11)

Proof. From the definition of ut(s;φ), for t ≥ τ , we have

ut
(

s;φ
)

= u(t + s), s ∈ [−τ, 0]. (3.12)

Thus, we get for u ∈ P that

∥
∥ut(·;φ)

∥
∥
[−τ,0] = max

s∈[−τ,0]
u(t + s) ≥ u(t) ≥ γ‖u‖0, t ≥ τ. (3.13)

We are now in a position to present and prove our main result.

Theorem 3.3. Let (H1), (H2), and (H3) hold. IfM (as in (H2)), satisfying

q
∑

k=1

gk(M)
∫1

0

[

(1 − s)ρ−m+1 − (1 − s)ρ−1
]

ak(s)ds ≤ Γ
(

ρ
)

M, (3.14)

and there exists a constantm > 0 (m/=M) satisfying

η
(

γm
) γ

Γ
(

ρ
)

∫1

τ

[

(1 − s)ρ−m+1 − (1 − s)ρ−1
]

c(s)ds ≥ m, (3.15)

then (1.3)–(1.5) has a positive solution.
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Proof. If u ∈ P with ‖u‖0 = M, then from (3.8), (3.14), and Lemma 2.4 (i), we get for any
t ∈ [0, 1] that

(

Tφu
)

(t) =
∫1

0
G(t, s)f

(

s, us
(·;φ))ds ≤

∫1

0
B(s)f

(

s, us
(·;φ))ds

≤
q
∑

k=1

∫1

0
B(s)ak(s)gk

(∥
∥us
(·;φ)∥∥[−τk,0]

)

ds

≤
q
∑

k=1

gk(M)
∫1

0
B(s)ak(s)ds

=
1

Γ
(

ρ
)

q
∑

k=1

gk(M)
∫1

0

[

(1 − s)ρ−m+1 − (1 − s)ρ−1
]

ak(s)ds

≤M.

(3.16)

Now if we set

Ω1 = {u ∈ C[0, 1] : ‖u‖0 < M}, (3.17)

then (3.16) shows that ‖Tφu‖0 ≤ ‖u‖0 for u ∈ P ∩ ∂Ω1.
Without loss of generality, we suppose thatm < M. For u ∈ P with ‖u‖0 = m, we have

from Lemma 3.2 and (3.9) that

(

Tφu
)

(t) =
∫1

0
G(t, s)f

(

s, us
(·;φ))ds ≥

∫1

τ

γB(s)f
(

s, us
(·;φ))ds

≥
∫1

τ

γB(s)c(s)η
(

us
(−ω(s);φ))ds =

∫1

τ

γB(s)c(s)η(u(s −ω(s)))ds

≥ η(γ‖u‖0
)
∫1

τ

γB(s)c(s)ds

= ω
(

γm
) γ

Γ
(

ρ
)

∫1

τ

[

(1 − s)ρ−m+1 − (1 − s)ρ−1
]

c(s)ds ≥ m.

(3.18)

Now if we set

Ω2 = {u ∈ C[0, 1] : ‖u‖0 < m}, (3.19)

then (3.18) shows that ‖Tφu‖0 ≥ ‖u‖0 for u ∈ P ∩ ∂Ω2.
Hence by the first part of Theorem 1.1, Tφ has a fixed point u ∈ P ∩ (Ω1 \ Ω2), and

accordingly, u is a solution of (1.3)–(1.5).

Having in mind the proof of Theorem 3.3, one can easily conclude the following
results.
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Theorem 3.4. Let (H1), (H2), (H3), and (3.14) hold. If the function η satisfies the condition

lim sup
x→+∞

η(x)
x

>
Γ
(

ρ
)

γ2
∫1
τ

[

(1 − s)ρ−m+1 − (1 − s)ρ−1
]

c(s)ds
, (3.20)

where γ is as in (3.11). Then (1.3)–(1.5) has a positive solution.

Theorem 3.5. Let (H1), (H2), (H3), and (3.14) hold. If the function η satisfies the condition

lim sup
x→ 0+

η(x)
x

>
Γ
(

ρ
)

γ2
∫1
τ

[

(1 − s)ρ−m+1 − (1 − s)ρ−1
]

c(s)ds
. (3.21)

Then (1.3)–(1.5) has a positive solution.

Theorem 3.6. Let (H1), (H3) and (3.15) hold. Assume that

(H4) f∞ = 0,

uniformly for t ∈ [0, 1], where

f∞ := lim
ψ∈C+

τ ,‖ψ‖[−τ,0] →∞
f
(

t, ψ
)

∥
∥ψ
∥
∥
[−τ,0]

. (3.22)

Then (1.3)–(1.5) has a positive solution.

Proof. Since (H3) and (3.15) hold, we have from the proof of Theorem 3.3 that

∥
∥Tφu

∥
∥
0 ≥ ‖u‖0 for u ∈ P ∩ ∂Ω2. (3.23)

From (H4), we will consider two cases in the following.

Case 1 (f is bounded). In this case, there exists a positive constant L > 0 such that

∣
∣f
(

t, ψ
)∣
∣ ≤ L, t ∈ [0, 1], ψ ∈ C+

τ . (3.24)

We choose a positive constant

M1 ≥ L(m − 2)
Γ
(

ρ + 1
)(

ρ −m + 2
) . (3.25)
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For u ∈ P with ‖u‖0 =M1, we have

(

Tφu
)

(t) =
∫1

0
G(t, s)f

(

s, us
(·;φ))ds ≤

∫1

0
B(s)f

(

s, us
(·;φ))ds

≤
∫1

0
LB(s)ds =

L

Γ
(

ρ
)

∫1

0

[

(1 − s)ρ−m+1 − (1 − s)ρ−1
]

ds

=
L

Γ
(

ρ
)

(
1

ρ −m + 2
− 1
ρ

)

≤M1.

(3.26)

Case 2 (f is unbounded). In this case, there exists a positive constantM2 ≥ ‖φ‖[−τ,0] such that

f
(

t, ψ
) ≤ ε∥∥ψ∥∥[−τ,0], t ∈ [0, 1], ψ ∈ C+

τ with
∥
∥ψ
∥
∥
[−τ,0] ≥M2, (3.27)

where ε > 0 is a constant satisfying

ε ≤ Γ
(

ρ + 1
)(

ρ −m + 2
)

m − 2
. (3.28)

By the definition of us(·;φ), we easily obtain that

∥
∥us(·;φ)

∥
∥
[−τ,0] ≤ max

{

‖u‖0,
∥
∥φ
∥
∥
[−τ,0]

}

. (3.29)

If u ∈ P with ‖u‖0 = M2, then from (3.8), (3.14), and Lemma 2.4 (i), we get for any
t ∈ [0, 1] that

(

Tφu
)

(t) =
∫1

0
G(t, s)f

(

s, us
(·;φ))ds ≤

∫1

0
B(s)f

(

s, us
(·;φ))ds

= εM2

∫1

0
B(s)ds =

εM2

Γ
(

ρ
)

∫1

0

[

(1 − s)ρ−m+1 − (1 − s)ρ−1
]

ds

=
εM2(m − 2)

Γ
(

ρ + 1
)(

ρ −m + 2
) ≤M2.

(3.30)

SetM3 = max{M1,M2, 2m}. Then in either case we may put

Ω3 = {u ∈ C[0, 1] : ‖u‖0 < M3}, (3.31)

and for u ∈ P ∩ ∂Ω3, ‖Tφu‖0 ≥ ‖u‖0. By the first part of Theorem 1.1, Tφ has a fixed point
u ∈ P ∩ (Ω3 \Ω2), and accordingly, u is a solution of (1.3)–(1.5).
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4. An Example

To illustrate our results, we present the following example.

Example 4.1. Consider the boundary value problem of fractional-order functional differential
equations

D2.6u(t) =
√
1 − t

∣
∣
∣
∣
u

(

t − 1
3

)∣
∣
∣
∣

2

+ 2 exp

(∣
∣
∣
∣
u

(

t − 1
2

)∣
∣
∣
∣

1/2
)

, t ∈ [0, 1],

u′(0) = u′(1) = 0,

u(t) = φ(t), t ∈
[

−1
2
, 0
]

,

(4.1)

where φ ∈ C+
1/2(0)with ‖φ‖[−1/2,0] ≤ 4.

Observe that

f
(

t, ψ
)

=
√
1 − t∣∣ψ(−α)∣∣2 + 2 exp

(∣
∣ψ
(−β)∣∣1/2

)

≤ a1(t)g1
(∥
∥ψ
∥
∥
[−τ1,0]

)

+ a2(t)g2
(∥
∥ψ
∥
∥
[−τ2,0]

)

,

(4.2)

where we have set

a1(t) :=
√
1 − t, a2(t) := 2, τ1 = α, τ2 = β, g1(x) := x2, g2(x) := exp

(√
x
)

. (4.3)

Also we obtain

f
(

t, ψ
) ≥ c(t)η(ψ(−ω(t))), (4.4)

where

c(t) := 2, ω(t) = β, η(x) = exp
(√

x
)

, x ≥ 0. (4.5)

Thus, (H1) and (H2) hold. Note that here ρ = 2.6,m = 3, we have

2∑

k=1

gk(4)
∫1

0

[

(1 − s)0.6 − (1 − s)1.6
]

ak(s)ds = 5.2615 < 5.7184 = 4Γ(2.6), (4.6)

and ‖φ‖[−1/2,0] ≤ 4, which implies that condition (3.14) holds withM = 4. Finally, we observe
that limx→+∞(η(x)/x) = +∞, and therefore condition (3.20) is satisfied. Then all assumptions
of Theorem 3.4 hold. Thus, with Theorem 3.4, problem (1.3)–(1.5) has at least one positive
solution.
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