Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2010, Article ID 128934, 19 pages
doi:10.1155/2010/128934

Research Article

A New Method to Prove and Find Analytic
Inequalities

Xiao-Ming Zhang,* Bo-Yan Xi,? and Yu-Ming Chu’

1 Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China
2 Department of Mathematics, Inner Mongolia University for the Nationalities, Tongliao 028000, China

Correspondence should be addressed to Yu-Ming Chu, chuyuming2005@yahoo.com.cn
Received 19 October 2009; Revised 26 January 2010; Accepted 2 February 2010
Academic Editor: John Rassias

Copyright © 2010 Xiao-Ming Zhang et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We present a new method to study analytic inequalities. As for its applications, we prove the well-
known Holder inequality and establish several new analytic inequalities.

1. Monotonicity Theorem

Throughout the paper R denotes the set of real numbers and R, denotes the set of strictly
positive real numbers. Let n > 2, n € N, and x = (x1,xp,...,x,) € R"; the arithmetic
mean A(x) and the power mean M, (x) of order r with respect to the positive real numbers
X1,X2,...,%, are defined by A(x) = (1/n) 3%, xi, M, (x) = ((1/n) >, xl.’)l/r for r#£0, and
Mo(x) = (TT, x:) "™, respectively.

In [1], Pachpatte gave many basic methods and tools for researchers working in
inequalities. In this section, we present a monotonicity theorem which can be used as
powerful tool to prove and find analytic inequalities.

Lemma 1.1. Suppose that m < M, D = {(x1,x2) | m < x < x3 < ML Iff: D — R
has continuous partial derivatives, then 0f /0x1 > (<)0f/0xy holds in D if and only if f(a,b) >
() f(a—1,b+1) holds for all (a,b) € Dand1>0withb<b+I<a-Il<a.

Proof. We only prove the case of 0f/0x1 > 0f/0xx.
Necessity. For all (x1,x) € Dand I € Ry withm < x; <xp +1 < x1 -1 <x1 < M, by the
assumption we have f(x; — [, xp + 1) — f(x1,x2) < 0. Then from the Langrange’s mean value
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theorem we know that there exists ¢, € (0,1) such that

l(_af(xl =&, X2+ &) N Of (x1 - ¢, x2 +§l)> <0

0x; 0x2 ’
(1.1)
Of (x1—é,xa+¢) Of(x1—&,%2+¢)
- + <0.
0x1 0x2
Letting I — 0+, we get
af(xlr-XZ) > af(xllxz). (1.2)
6x1 axz
According to the continuity of partial derivatives, we know that
of (x1,x1) > Of (x1,x1) (1.3)

ax1 6x2

holds also.
Sufficiency. For all (a,b) € Dand [ > 0 withb < b +1< a-1 < g, from the assumption
and the Langrange’s mean value theorem we know that there exists ¢; € (0,) such that

fla,b) - f(a=Lb+1)=~(f(a=Lb+1) - f(a,b))
=_l<_af(a_§lrb+§l) + af(a—gl,b+§l)>

6x1 ax2
(1.4)
y(laciibrt) dfaibrd))
a.’)C1 axz
> 0.
Therefore the proof of Lemma 1.1 is completed. O

Theorem 1.2. Suppose that D C R" is a symmetric convex set with nonempty interior, f : D — R
has continuous partial derivatives, and

D; = {xeDlxi=max{xj}}—{x€D|x1=x2=---=xn},
1<j<n
(1.5)
D; = {xeD|xl-:{1S1j1§r,11{xj}}—{xeD|x1:x2:---:xn},
i=1,2,...,nlfforalli,j=1,2,..., nwithi#j,
of of
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holds in 5,- N Bj, then
f(ay,az,...,a,) 2 (2)f(A(a), Aa),..., A(a)) (1.7)

foralla= (ay,ay,...,a,) € D, with equality ifonly ifay = ax = --- = a,.

Proof. If n = 2, then Theorem 1.2 follows from Lemma 1.1 and I = |a; — a,|/2. We assume that
n > 3 in the next discussion. Without loss of generality, we only prove the case of 0f/0x; >
Of/0x; withi#j.

If a; = ap = - -+ = a,, then inequality (1.7) is clearly true. If maxi<j<,{a;} # mini<j<p{a;},
then without loss of generality we assume that a; > a> > --- > a,1 > ay,.

(1) If a > maxycj<n{aj} and a, < minigjcp-1{a;}, then (ai, a, ..., a,) € 131 N D,,. From
Lemma 1.1 and the conditions in Theorem 1.2 we know that there exist ail) and asll) such that

_ agl) 1 O (1)

l=m =a, —a,>0,a; =ayora, =a,i,and

f(all a2/ a3/ sty an) 2 f(agl)/aZI a3/ sty a511)>' (18)

O]

For the sake of convenience, we denote a; ’ = a;, 2 <i < n - 1. Consequently,

n 1 @ 1
f(ai,az,as,...,a,) > f<a§ ),aé ),aé ),...,ail)). (1.9)
faV =gl =... = a,(ql), then Theorem 1.2 holds. Otherwise, for the case of al = g > aill),
1 2 H 1 2
(ail), aél), aél), ey, aﬁ,l)) € D1ND, and
of (x of (x
/o oty w0
X1 x:(agl),a;l),uél),...,ui,l)) Xn x:(agl),ag),ag) ..... all)
From the continuity of partial derivatives we know that there exists £ > 0 such that
87 (% L 0f )
axl x:(s,ag),a?) ..... t) axn X:(S,agl),agl),.,.,t), ’

where s € [agl) -, agl)] and t € [a,(ql),a,(}) + €]. Denote agz) = agl) —-g, a,(f) =al +e afz) =

al(l) (2<i<n-1). By Lemma 1.1, we get

) 1 1 2) @ @ 2
f<a§),a;),a§),...,a§l)>2f<a§),a§),a§),...,a$l)>, (1.12)

m M

and aéz) = maxj<j<y { agz) }. For the case of ail) > a,’, = ay’, after a similar argument, we get

inequality (1.12) with ailz_)l = Minj<jcy { al@ }.
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Repeating the above steps, we get {agi), ag), ey aif)} (i =1,2,...) such that 27:1 a](.i)

is a constant and {a](.i)} (i =1,2,...) are monotone increasing (decreasing) sequences if a; >
() A(a),j=1,2,3,...,n,and

f(agl), agl), agl), e, aﬁll)) > f(agi), ag), ag), e, af?). (1.13)
If there exists i € N such that ali) = aéi) = ... = a?, then the proof of Theorem 1.2 is completed.
Otherwise, we denote a = infey{max{ agﬂ, a;l), .., as ) }}; without loss of generality, we

assume that

i) () i G
maxya; ,d, ,...,4a =a; —a,

. G) () (i) (1.14)
jlirfm(alf ,a, . ay ) = (a,by,bs,...,by),
where {i; };':1’ is a subsequence of N. Then from the continuity of function f, we get
f(ai,az,as3,...,a,) > f(a,by,b3,...,by,). (1.15)

If a # min{b,, b3, ..., b,}, then we repeat the above arguments and get a contradiction to the
definition of . Hence « = b, = b3 = --- = b,. Froma + X[, b; = /., ai we geta = by = b3 =
.-+ =b, = A(a); the proof of Theorem 1.2 is completed.

(2) The proof for the case of a; = maxyqj<,{a;j} or a, = minicj<,-1{a;} is implied in the
proof of (1). O

In particular, according to Theorem 1.2 the following corollary holds.

Corollary 1.3. Suppose that D C R" is a symmetric convex set with nonempty interior, f : D — R
is a symmetric function with continuous partial derivatives, and

Di = {xeDlxl ——max{xj}}—{xeD|x1 =Xy ==X,
1<j<n X =
D, = {xeD | x2 = min{x;‘}} —{xe€D|x1=x2="+-=xy}, (1.16)
1<j<n
D* = D111152.

Ifof/0x1 > (<)0f/0xy holds in D*, then

f(a1,a,...,a0) > () f(A@), A@), ..., Aa)) (1.17)

foralla= (ay,ay,...,a,) € D, and equality holds if and only if a; = a, = - - - = a,,.
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2. Comparing with Schur’s Condition

The Schur convexity was introduced by I. Schur [2] in 1923; the following Definitions 2.1 and
2.2 can be found in [2, 3].

Definition 2.1. For u = (uy,uy,...u,),v = (v1,02,...v,) € R", without loss of generality one
assumes that 1y > up > -+ > u, and v; > v, > -+ > v,. Then u is said to be majorized by v (in
symbols u < v) if 211'(:1 u; < Zle vifork=1,2,...,n—-1and X/, u; = 3\, vi.

Definition 2.2. Suppose that Q C R". A real-valued function ¢ : Q — R is said to be Schur
convex (Schur concave) if u < v implies that ¢(u) < (>) @(v).

Recall that the following so-called Schur’s condition is very useful for determining
whether or not a given function is Schur convex or concave.

Theorem 2.3 (see [2, page 57]). Suppose that Q C R" is a symmetric convex set with nonempty
interior int Q. If ¢ : Q — R is continuous on Q and differentiable in intQ, then ¢ is Schur convex
(Schur concave) on Q if and only if it is symmetric and

(u1 - uz)<a—‘p - a—"’) > ()0 (2.1)

8u1 au2

holds for any u = (u1, uy, ..., u,) € int Q.

It is well known that a convex function is not necessarily a Schur convex function, and
a Schur convex function need not be convex in the ordinary sense either. However, under the
assumption of ordinary convexity, f is Schur convex if and only if it is symmetric [4].

Although the Schur convexity is an important tool in researching analytic inequalities,
but the restriction of symmetry cannot be used in dealing with nonsymmetric functions.
Obviously, Theorem 1.2 is the generalization and development of Theorem 2.3; the following
results in Sections 3-5 show that a large number of inequalities can be proved, improved, and
found by Theorem 1.2.

3. A Proof for the Holder Inequality

Using Theorem 1.2 and Corollary 1.3, we can prove some well-known inequalities, for
example, power mean inequality, Holder inequality, and Minkowski inequality. In this
section, we only prove the Holder inequality.

Proposition 3.1 (Holder inequality). Suppose that
(x1,%2,..,%n), (Y1, Y2, .-, Yn) € R (3.1)

Ifp,g>1and1/p+1/q =1, then

n Up s Va 5
<in> <Zyz> > > XYk (3.2)
k=1
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Proof. Let (ay,ay,...,a,) € R? and

n Vp /oy Va
g :b_><2”"> <Z“k”’<> - Yokl beR:. (33)
k=1 k=1 k=1
Then

1/p 1/g9-1
af 1 - B 1 1/g-1
T = <Zak> <éakbk> ai= -k

k=1

AN}

(3.4)

n 1/p
of of 1/ >iqak 1 -1/p ~1/p
= = ai—aj) - —(ab, '’ —aib;'").
ob;  0b; q<ZZ:1bkak ( 2 q< 7 >

Letb € 151' N 15]- (see (1.5)).
(1) If a; > aj, then

n 1/p
of of _1/( i a 1/ p “1/p
= -—=—2>-| ——— ai—aj)——(aib,”"" —a;b,

abi ab] q<biZZ_1 253 ( ]) 6]< ! 7 )
1

3.5

_ a]‘ <b;1/p _ b;l/p) ( )
q

> 0.

(2) If a; < aj, then

abi ab] - b] ZZ:l agk

— <bT”P - b.‘””)
q

n 1/p
of _of |1 M) (ai-a) - 1<aib;1/p o)
q q !
1 (3.6)

] 1

> 0.

From Theorem 1.2 we get

f(b) > f(A(b), A(b),..., A(b)), (3.7)

that is,

n 1/p n 1/q n
<Zak> <Zakbk> - Zakb}(/ 7> 0. (3.8)
k=1 k=1

k=1

Therefore, the Holder inequality follows from (3.8) with aj = xZ and by = yz / xZ. O
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4. Improvement of the Sierpinski Inequality

In the section, we give some improvements of the well-known Sierpiriski inequality:

[M_l(a)](n—l)/n[A(a)]l/n < Mo(a) < [M_l(a)]l/n[A(a)](n_l)/n‘

(4.1)

Theorem 4.1. Suppose that n > 3,a = (a1, az,...,a,) €ERE, > 0> a. If A = 2a/n(p - a) for

p+a>0and A =1/nfor f+a <0, then

[Ma(@)]'"™ - [Mp(@@)]" < My(a).

Proof. Let f(x) = (1/np) In(TTyx:) — (1= A)/a)In((1/n) T, x/F), x € R™. Then

a/p-1
of(x) _ 1 1-1 xjﬂ

oxj  npx; p s P J

i=1 "

=1,2,

Of() 0f() x-m 1-dx oy

0x1 ox, npxix; p s xP
i

i

Case1. a+ > 0. Let

Then

1o (t) = (B +a)tf — ptFe —a,

15/ ®)] = (8 + @)= (7~ 1) >0
Therefore, t**1¢'(t) is monotone increasing in (1, +0). From

. a+l ) - T ﬁ_ ﬂ+a_ =
g O = Jim [+ )t pr o] =0,

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)
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we know that t**1¢’(t) > 0, ¢'(t) > 0. Then lim;_,1,g(t) = 0 leads to g(#) > 0 and

Eifﬁ”—¢ﬁ+r“—ﬁif>o,
[24

_ p-a
ﬂ+atﬁ— <1+2—a>t“—t“+ﬁ+1 >0,
p-a p-a (4.7)
+ 2
p Tpp_ <n—1+—“>t“—t”‘+’5+(n—1) >0,
p-a p-a
1-n)tP —(n-1-n\)t* =P + (n-1) >0,
1-tF -1
_ . 4.8
(1 )‘)t“+(n—1)> ntf (48)
We assume that x € D* (see (1.16)). Let t = (x1 /xz)l/ﬁ. Then inequality (4.8) becomes
a/p-1  _a/p-1
x -x -
(1-1) /2 1 - X1 le
xf Py (n- 1)x; Foomxixp
(4.9)

S X1~ X2
ﬂ Z,'q_l x;‘/ﬁ Tlﬂxle.

Combining inequalities (4.3) and (4.9) yields that 0f(x)/0x1 — 0f(x)/0x, > 0. Using
Corollary 1.3 we have

f(x1,%x2,...,%,) 2 f(A(X), A(x), ..., A(X)),
1 n . 1 —.)L 1 n a/ﬁ .A, 1 n . (410)
n—pln<1i__l[xl> - Tln(;j_zlxi > > Bln<;§xl>.

1/[5, i=1,2,...,n,we get

Letting a; = x;
(Mo (@] - [My(@)]" < My (a). (411)

Case2. a+ f <0.Lett>1.Then from a <0 and a + <0, one has
(n-1)> (n-2)t* + t**P, (4.12)

Hence inequality (4.8) holds. The rest is similar to above, so we omit it.

The proof of Theorem 4.2 is similar to the proof of Theorem 4.1, and so we omitit. [
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Theorem 4.2. Suppose that n > 3, a = (aj,az,...,a,) € R}, >0>a. If0 = (n—-1)/n for
p+a>0and0=1-2p/n(f-a)for p+a<0,then

My (a) < [Ma(@)]"" - [My(a)]”. (4.13)

Theorem 4.3. Suppose thatn>3,a = (a1, az,...,a,) ERL Ifr =-Inn/(n—-1)[Inn-In(n-1)],
then r < =1 and

[M1/,(@)] "V "[A@)]"" < Mo(a) < [M,(a)]"/"[A(a)] "D/ (4.14)

Proof. Letn > 3 and

k=1

1/r(n-1) 1/r(n-1)
Sk X Ur Dot Xk -
: n = - . 4.15
fixe(0,40)" — . o | |xk (4.15)

Then

Inn Inn
r=-— 71<——:—lnn<—1,
In(1+1/(n-1)" Ine

a-r/r n 1/r(n-1) n 1/r (1/r(n-1))-1
0 X k=1 Xk k- >k
f_x < k=1 > L 2k X k=1 % (416)

0x1 rn n rn?(n - 1) n

1/r(n-1)
Cr(n-1x 1)x1 <ka> '

Therefore, we get

0x; Oxy rn\'! 2 n

1/r(n-1)
1 1
r(n 1) <ka> (x_l - x_2>'

1/r(n-1)
ﬂ_ﬂ_ i(x(l—r)/r x(l r/r)(Zk 1xk>
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1/(-r(n-1)) 1-r)/(~ 1-r)/ (- 1/(-r)(n-1)
o) (E oy AT
k=1 0x;  0xz —rnxil_r)/ (_r)xél_r)/ N\ Xpo1 Xk
X1 — X2
T(TL - 1)X1.7C2

B x;l—r)/(—r) _ xél—r)/(—r) < n >1/(—r)(n—l)

N N A I y =

X1 — X2
r(n—1)xix;
(4.17)

We assume that x € D* (see (1.16)). Then we have

, /-r(n-1)
(=) (Z-2)

xil—r)/(—r) _ x;l—r)/(—r) < . >1/(—T’)("—1) Xy — %o
-(n-1)
X

> .
a7 407 (- D" r(n—1)xx,

(4.18)

1+1/r(n-1) _ nl—(lnn—ln(n—l))/lnn

Letting x1/x, =t > 1, fromn =n-1, we get

" 1/-r(n-1)
(=) (-2

1 x%l—r)/(—r) _ xél—r)/(—r) < x1x£‘_1 >(1nn—1n(n—1))/1nn

n-1 _pn/En  4-n/en

v

x1+(n-1)x;

. X1 — X% (4.19)
r(n—-1)x1x

~ 1 t(l_r)/(_r) -1 t (Inn-In(n-1))/Inn F—1
C—r(n-1)xy | A1/ \t+n-1 t

B 1 t(l—r)/(—r) -1 s n-1 —(Inn-In(n-1))/Inn F-1
C—r(n-T)xp | tA-n/En t F |
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According to Bernoulli’s inequality (1 + x)* <1+axwithx > -1, x#0,and 0 <a <1,
one has

e “"‘”‘”(ﬂﬁ)
iy ox; 0xp
1 [tﬂ—r)/ n_1 1 t— 1]
ta-n/n 1+ (Inn-In(n-1)/Inn-(n-1)/t ¢t
( (n-1)) (n-1) (4.20)

-r(n—-1)x;

1 tA-n/(=r) _q -1
T —r(n=1)x, [t/ /et

1 1 +1/r)t/ ) — 1/ ¢/ 1) _q
—-r(n—1)x ‘ A=)/ (=r) — $1/(=1) /¢

For 0 < s <1andt > 1, itis not difficult to verify that (1 - s)t* +st*1 —=1 > 0. Letting s = -1/7,
we have

(1 N 1>t1/(—r> L amen Z1sy,
r r
(4.21)

of of
a—x_l—a—xz>0.

Using Corollary 1.3, we know that

fx1,%x2,...,x,) 2 f(A(X), A(x), ..., A(X)),

ZZ:l x]l(/r ZZ=1 xi 1/r(n-1) n 1/r(n-1) (422)
- (T1)
n n k=1

Letting a; = x}/’ (i=1,2,...,n), we get

n nogr 1/r(n-1) n 1/(n-1)
k-1 %k < Py > > Hak , (4.23)
n n 1

[A@)]" D" [ M, (a)]"" > Mo(a). (4.24)

From (4.23), we get

n r n (n-1)r n r
<]‘[ak> > <—Z"‘1 a"> | ket B (4.25)
1 n n
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Letting a; — ag/r (i=1,2,...,n), wehave

" 1/, (n-1)r n
1 a
Hak> (Zkl > Zk;ll k’

Mo(@) > [Mi/, ()] " V" A@)] "
Inequality (4.14) is proved.

5. Five New Inequalities

Letn>3and a=(ay, ay,...,a,) € R?. Then

n
X 1k 1/( k)
[T@=( TI 2=
n 1<ii<-<ix<n ' j=1

References [5, 6] is the third symmetric mean of a.

Theorem 5.1. If2<k<n-1,p=(k-1)/(n-1), then

k

[[@ > [A@) [Mo(a)]”

n

with the best possible constant p = (k- 1)/ (n - 1).

Proof. Leta = (ay,ay,...,a,) € R” and

[1 Zau

1<ii<- <1k<n j=1

. ]—<n—k>~<2>/n<n—1>

f(a) = [Hai
i=1

Then

of (n—k)'<n> n —("—k)~(:)/n(n—1)
aar = = | L 1 i3

71(11 - 1)611 1<iy<- <lk<7l j=1

w70k ) /nn-)
|14 T g3e(
i=1

1<ip<- <lk<n =1

1

2<iq<-ig1<n A1 + Zl 1 a,]

)

(4.26)

(5.1)

(5.2)

(5.3)

(5.4)
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n

(n—k)- w10y /nneD) K
ﬂﬂ#[r{] R e

O0a; Oa n(n-1) i=1 1<ij<<ig<n '+ j=1

~(n=k)-() /m(n-1) Lk
I1 EE;%

I<ii<<ig<n ~ j=

< s < 1 B 1 >> (5.5)
3<ii<iga<n \ 41+ 25(:_11 ai; a + Z:(:_ll ai;

w1 R) /) Lk
=(a1-az) - [Hai] 11 %Zaij
i=1 1<ii<<ig<n  j=1

(n-k)-(;) 1

n(n - 1)[11 az 3<iy<ig1<n <a1 + Z::ll a,-/.) <a2 + Z::ll ai/.>

n
+ | |ai
i=1

If a € D* (see (1.16)), then

a + (k - 1)[12 > ai,

e0-(G) ()

n(n-1aja; = kax(a; + (k-1)ay)’

(n-k)-(}) 1 (5.6)
(a1 + (k - 1)(12)]((12,

n(n — 1)111512 3<iy < ik <n

-0 (;) 1

> .
1’1(1’1 - 1)6116!2 3<iy<ig-1<n <[11 + Z::f ai].> <[12 + Z::f ai].>

Combining inequalities (5.5) and (5.6) yields that 0f/0a; — 0f/0a, > 0. Then from
Corollary 1.3 we have

flai,ay,...,a,) 2 f(A(a), Aa),..., A(a)) (5.7)

foralla = (ai, a,...,a,) € R?, which implies that

i} 7(n—k)-(Z)/n(n*1) k (k=1 )/ (n-1)
[Hai] - 1 ' Xa > 1a@1 69
i=1

1<ij<-<ix<n j=1

Therefore, inequality (5.2) is proved. O
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Taking a; = a» = - -+ = ay,1 = 1 and a, = x in inequality (5.2), we get

n-1

x+k-1 (,)/(n) x+n-1\" _
(m2ty L (2 o

(5.9)
(k/n)In((x+k-1)/k) - (1/n)Inx
p< :
In(x +n-1) - In(nyx)
Letting x — +oo, we get
. k/n-1/(x+k-1)-1/nx . kx/(x+k-1)-1 k-1
< = = . .
p_xl—lgloo 1/(x+n-1)-1/nx xl—lgloonx/(x+n—1)—1 n-1 (510)
Sop = (k—-1)/(n—1) is the best possible constant.
Forn>2,a=(ai,a,...,a,) € R}, Alzer [7] established the following inequality:
n-1 1
TA(a) + ;M,‘l(a) > Mo(a). (511)
Theorems 5.2 and 5.3 are the improvements of Alzer’s inequality.
Theorem 5.2. Ifp = n?/(n* + 4n — 4), then
pA(a) + (1 -p)M_1(a) > My(a). (5.12)
Proof. Firstly, let p > n?/(n* + 4n — 4), and
n n -1
fx)=p/n- Zex" +(1-p)n- (Ze‘x"> , x=(x1,x,...,x,) ER". (5.13)
i=1 i=1
Then
of p n _
3~ ¢ t-p)
0x n (i e)?
of of (5.14)
___:E X1 _ pX2) _ _ X2 _ ,—X1
axl axz n(e € ) (1 p) 2( e )
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If x1 = maxycicn {Xi} > X2 = minjic, {x;}, £ = €972 > 1, then

of Oof P x n Y
a_xl_a_xzzg(e -e )—(1—79)((11_1)64]+eix2)2(e —e™)
— (ex1 — ex2) _ X2 x1\2 _ _ 2 X x
- n((n—1)ex + exr)? [p((n 1)e* +e")” - (1-p)n°e*e ]
€3x2(t— 1)

T —Dyer s g P 1 ] (5.15)

3x2 (4 _ 2 2
U 5| = 1 (n-1+8t>-n’t+ 2n—n2t
n((n-1)ex +ex)” | n +4n -4 n?+4n-4

o onee(t-1)(t-n+1)° -0
(n2 +4n—4)((n—-1)ex +en)>

Then from Corollary 1.3, we get

fx) 2 f(A(X), AX),..., A(X)),
(5.16)

P n A(X) -
P e+ (1-p) sy 2" = (T e,
"1; Sie 11:1[

Let e* = a; in above inequality. Then we know that inequality (5.12) holds. From continuity
we know that inequality (5.12) holds also for p = n?/(n* + 4n — 4). O

Theorem 5.3. Ifp = (1 - n—v5n% - 6n+1)/(2n), then

nT_lA(a) + %M,,(a) > My(a). (5.17)
Proof. Let
fla)y=y f[a}/P - @ : ia}/”, acR" (5.18)
i=1 n i=1
Then

0 1 1 -1 _
_f=_ nHai/p_nZ ai/P 1,
oa; npa; ) n?p
(5.19)

of of  am-a lf-[a}/np B n_—1<a1/p—1 B al/p—1>.

- i 2 1 2
oa; Oap npaiaz 4 n’p
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If a1 = maxicicp{ai} > a» = minigi<p{a;} > 0 and a;/ax =t > 1, then from p < 0 and
—(a1 — az)/npara; > 0 we get

of _of M@ 1w n-1)/p) 1 <a1/p—l B al/p—l)

da; Oay ~— npajap ! 2 n2p \'! 2
5.20
al/p—l 1 ( )
=1 [_nt;tl—(n—l)/(np) —(n- 1)(1 _ tl—l/p)] .
n’p t

Let g(t) = —nt! =D/ () 4 pp=(=1)/(p) 4 (3 — 1)$1-1/P — (n— 1), t > 1. Then

71+

gt = )t (n-1)/(np) _ n_lt_ ~(=1)/(np) 4 (- 1)(1 — 1>t‘1/’”,
P

p

Pt 1)(1 - 1)9‘““‘?’),
p p

+(n- 1)(1 - %) (1 - nl—p>t‘1/(””)
DREICHICE

<t1+(n 1)/ (np) (t)

>

FLH)/(p) of () = < N+ "p 1

:
+
:
=
;_\
S— —

pz
=0.
(5.21)
Thus t1*(*=D/(") ¢'(t) is a monotone increasing function. This monotonicity and

lim D/ g'(1) = lim [(—n Lot >t _n-t, (n-1) (1 - 1>t1-<1/np>]
t—1+ t—1+ p p

__q_n-1 (5.22)

P
>0

lead to t1*(=D/(p) ¢/ (t) > 0. Therefore ¢’(t) > 0 and g(t) is a monotone increasing function.
From lim; _, 1, g(t) = 0 and the monotonicity of g(t) we know that g(t) > 0. By (5.20), we know
that 0f/0a;1 — 0f/0a, < 0. According to Corollary 1.3 we get

f(@) < f(A(a), A(a),..., Aa)),

n " (5.23)
T -2t e < L g
a. ai — n (a)

i 2
i=1 n i1
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Finally, let a; — af (i=1,2,...,n) in the above inequality. Then we know that Theorem 5.3
holds.

Ifn>2and 0 < a; < a, < -+ < ay, then the following inequalities can be found in
[8-10]:

2 2
lek]’gn (ai - aj) < Aa) - My(a) < Zlgi<j§n (ai - a]-) )
2n2a, 2n2a;
X (5.24)
a; (
al_a]) <M0(a) M- l(a) = (al_u]) .
2n2a;, 1<§<n 2n? %1<§<n
Theorems 5.4 and 5.5 are the improvements of inequalities (5.24). O
Theorem 5.4. Ifn >2and 0 <m < ay, ay,...,a, < M, then
Zl<i< i<n (ai - ')2 Zl<i< j<n (ai - af)z
o < A(@) - Mo(a) € 55— (5.25)

212 . Mn-1)/n . Al/n( ) - an,m(n—l)/n,Al/n(a)’

Proof. Let

1 n 1/11 1 n n

frae[m M]" —><;Zak> ;Zak ~ 4T Tax
k=1 k=1 k=1 (5.26)
2
Dicicj<n (ai - aj)
- 22 M (n-1)/n

Then

1/n-1

af 1 1& 1
9 _2(iv, . .
o0a; n2<n; k> <ng k H k>
1/

noona\ G ‘ mMm-1)/n 7
o O a-a, na Za e DY)
dai 0ay  nmap \ 117" k T

111 - a2 ( 1)/ n 1 1 1/n
-y e n— nana . _ _
= i, M7 M kl _1| aj <nk§1ak aa | .

(5.27)
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We assume that a € D* (see (1.16)). Then

0 0 a|—a _
of _of 1- @ [ MO ngl/ngo=D/im gl _ az]
om aaz naja, M®-1/n
ap—a (n-1)/ l/n (n O/ m_ ] (5.28)
= naia;Me-D/n o R

=0.

According to Corollary 1.3, we get

f(@) > f(A(a), A(a),..., Aa)),

Zlﬁi<j§n (ai- aj)z (5.29)

AG) - Moa) 2 2T

Let

2
Dici<j<n (ai - aj)

g:ac [m' M] - 212m(n-1)/n

y (5.30)
ANETST
—|— > ax — > ax— 4 ag | .
= = k=1
A similar argument as above leads to
lekan (ai - af)2 (5.31)
A(a) - My(a) < PO AT () :
The proof of Theorem 5.4 is completed. O
Let
11 1 M3/ 11\ 1
f:xe[—,—]%—-ﬁ <———> vy
M’ m 2n2  m2n-3)/ 1s§§n Xi o Xj Mpy(x) 552)

xe[l 1] 1 mn-D/n 1 1Y)
: —,—| — - ——— ).
& M'm|] " M) 2@2MEDn &\ X x

The proof of Theorem 5.5 is similar to the proof of Theorem 5.4, and so we omit it.
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Theorem 5.5. Letn>2,0<m < ay,ayp,...,a, < M. Then

m(ﬂ—l)/ﬂ Z ( )2
— ai—aj)” < Mp(a) - M_q(a)
212 M@n-1)/n e i ]
5.33
M(n=3)/n ) ( )
< 212 (2n=-3)/n Z (ai - a]) :

1<i<j<n

Remark 5.6. More applications for Theorem 1.2 and Corollary 1.3 were shown in [11].
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