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We introduce a new hybrid iterative scheme for finding a common element in the solutions set of a
system of equilibrium problems and the common fixed points set of an infinitely countable family
of relatively quasi-nonexpansive mappings in the framework of Banach spaces. We prove the
strong convergence theorem by the shrinking projection method. In addition, the results obtained
in this paper can be applied to a system of variational inequality problems and to a system of
convex minimization problems in a Banach space.

1. Introduction

Let E be a real Banach space, and let E∗ be the dual of E. Let C be a closed and convex subset
of E. Let {fj}j∈Λ be bifunctions from C × C to R, where R is the set of real numbers and Λ is
an arbitrary index set. The system of equilibrium problems is to find x̂ ∈ C such that

fj
(

x̂,y
) ≥ 0, ∀y ∈ C, j ∈ Λ. (1.1)

If Λ is a singleton, then problem (1.1) reduces to find x̂ ∈ C such that

f
(

x̂, y
) ≥ 0, ∀y ∈ C. (1.2)

The set of solutions of the equilibrium problem (1.2) is denoted by EP(f).
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Combettes and Hirstoaga [1] introduced an iterative scheme for finding a common
element in the solutions set of problem (1.1) in a Hilbert space and obtained a weak
convergence theorem.

In 2004, Matsushita and Takahashi [2] introduced the following algorithm for a
relatively nonexpansive mapping T in a Banach space E: for any initial point x0 ∈ C, define
the sequence {xn} by

xn+1 = ΠCJ
−1(αnJxn + (1 − αn)JTxn), n ≥ 0, (1.3)

where J is the duality mapping on E, ΠC is the generalized projection from E onto C, and
{αn} is a sequence in [0, 1]. They proved that the sequence {xn} converges weakly to fixed
point of T under some suitable conditions on {αn}.

In 2008, Takahashi and Zembayashi [3] introduced the following iterative scheme
which is called the shrinking projection method for a relatively nonexpansive mapping T
and an equilibrium problem in a Banach space E:

x0 = x ∈ C, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTxn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0 ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0, n ≥ 0.

(1.4)

They proved that the sequence {xn} converges strongly to ΠF(T)∩EP(f)x0 under some
appropriate conditions.

2. Preliminaries and Lemmas

Let E be a real Banach space, and let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. A Banach
space E is said to be strictly convex if, for any x, y ∈ U,

x /=y implies
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

< 1. (2.1)

It is also said to be uniformly convex if, for each ε ∈ (0, 2], there exists δ > 0 such that, for any
x, y ∈ U,

∥

∥x − y
∥

∥ ≥ ε implies
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

< 1 − δ. (2.2)
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It is known that a uniformly convex Banach space is reflexive and strictly convex. The
function δ : [0, 2] → [0, 1] which is called the modulus of convexity of E is defined as follows:

δ(ε) = inf
{

1 −
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

: x, y ∈ E, ‖x‖ =
∥

∥y
∥

∥ = 1,
∥

∥x − y
∥

∥ ≥ ε

}

. (2.3)

The space E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. A Banach space E is
said to be smooth if the limit

lim
t→ 0

∥

∥x + ty
∥

∥ − ‖x‖
t

(2.4)

exists for all x, y ∈ U. It is also said to be uniformly smooth if the limit (2.4) is attained
uniformly for x, y ∈ U. The duality mapping J : E → 2E

∗
is defined by

J(x) =
{

x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2
}

(2.5)

for all x ∈ E. If E is a Hilbert space, then J = I, where I is the identity operator. It is also known
that, if E is uniformly smooth, then J is uniformly norm-to-norm continuous on bounded
subset of E (see [4] for more details).

Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ
(

x, y
)

= ‖x‖2 − 2
〈

x, Jy
〉

+
∥

∥y
∥

∥

2 (2.6)

for all x, y ∈ E. In a Hilbert space H, we have φ(x, y) = ‖x − y‖2 for all x, y ∈ H.
Let C be a closed and convex subset of E, and let T be a mapping from C into itself.

A point p in C is said to be an asymptotic fixed point of T [5] if C contains a sequence {xn}
which converges weakly to p such that limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed
points of T will be denoted by ̂F(T). A mapping T is said to be relatively nonexpansive [6–8]
if ̂F(T) = F(T) and φ(p, Tx) ≤ φ(p, x) for all p ∈ F(T) and x ∈ C. The asymptotic behavior
of a relatively nonexpansive mapping was studied in [6, 7]. T is said to be relatively quasi-
nonexpansive if F(T)/= ∅ and φ(p, Tx) ≤ φ(p, x) for all p ∈ F(T) and x ∈ C. It is obvious that the
class of relatively quasi-nonexpansive mappings is more general than the class of relatively
nonexpansive mappings. The class of relatively quasi-nonexpansive mappings was studied
by many authors (see, for example, [9–12]). Recall that T is closed if

xn −→ x, Txn −→ y imply Tx = y. (2.7)

The aim of this paper is to introduce a new hybrid projection algorithm for finding a
common element in the solutions set of a system of equilibrium problems and the common
fixed points set of an infinitely countable family of closed and relatively quasi-nonexpansive
mappings in the frameworks of Banach spaces.

We will need the following lemmas.
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Lemma 2.1 (Kamimura and Takahashi [8]). Let E be a uniformly convex and smooth Banach
space, and let {xn}, {yn}be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded,
then ‖xn − yn‖ → 0 as n → ∞.

Let E be a reflexive, strictly convex, and smooth Banach space, and let C be a
nonempty, closed, and convex subset of E. The generalized projection mapping, introduced by
Alber [13], is a mapping ΠC : E → C that assigns to an arbitrary point x ∈ E the minimum
point of the function φ(y, x); that is, ΠCx = x, where x is the solution of the minimization
problem

φ(x, x) = min
{

φ
(

y, x
)

: y ∈ C
}

. (2.8)

The existence and uniqueness of the operatorΠC follows from the properties of the functional
φ and strict monotonicity of the duality mapping J (see, for instance, [4, 8, 13–15]). In a
Hilbert space, ΠC is coincident with the metric projection.

Lemma 2.2 (Alber [13], Kamimura and Takahashi [8]). Let C be a nonempty, closed, and convex
subset of a smooth, strictly convex, and reflexive Banach space E, let x ∈ E, and let z ∈ C. Then
z = ΠCx if and only if

〈

y − z, Jx − Jz
〉 ≤ 0, ∀y ∈ C. (2.9)

Lemma 2.3 (Alber [13], Kamimura and Takahashi [8]). Let C be a nonempty, closed, and convex
subset of a smooth, strictly convex, and reflexive Banach space E. Then

φ
(

x,ΠCy
)

+ φ
(

ΠCy, y
) ≤ φ

(

x, y
) ∀x ∈ C, y ∈ E. (2.10)

Lemma 2.4 (Qin et al. [16]). Let E be a uniformly convex, smooth Banach space, and let C be a
closed and convex subset of E. Let T be a closed and relatively quasi-nonexpansive mapping from C
into itself. Then F(T) is closed and convex.

For solving the equilibrium problem, let us assume that a bifunction f satisfies the
following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone; that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C, lim supt↓0f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

Lemma 2.5 (Blum andOettli [17]). LetC be a closed and convex subset of a smooth, strictly convex,
and reflexive Banach space E, let f be a bifunction from C × C to R which satisfies conditions (A1)–
(A4), and let r > 0 and x ∈ E. Then there exists z ∈ C such that

f
(

z, y
)

+
1
r

〈

y − z, Jz − Jx
〉 ≥ 0, ∀y ∈ C. (2.11)
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Lemma 2.6 (Takahashi and Zembayashi [18]). Let C be a closed and convex subset of a uniformly
smooth, strictly convex, and reflexive Banach space E, and let f be a bifunction from C×C to R which
satisfies conditions (A1)–(A4). For all r > 0 and x ∈ E, define the mapping T

f
r : E → C as follows:

T
f
r (x) =

{

z ∈ C : f
(

z, y
)

+
1
r

〈

y − z, Jz − Jx
〉 ≥ 0, ∀y ∈ C

}

. (2.12)

Then, the following statements hold:

(1) Tf
r is single valued;

(2) Tf
r is of firmly nonexpansive type [19]; that is, for all x, y ∈ E,

〈

T
f
r x − T

f
r y, JT

f
r x − JT

f
r y

〉

≤
〈

T
f
r x − T

f
r y, Jx − Jy

〉

; (2.13)

(3) F(Tf
r ) = EP(f);

(4) EP(f) is closed and convex.

Lemma 2.7 (Takahashi and Zembayashi [18]). Let C be a closed and convex subset of a smooth,
strictly, and reflexive Banach space E, let f be a bifunction from C ×C to R which satisfies conditions
(A1)–(A4), and let r > 0. Then, for all x ∈ E and q ∈ F(Tf

r ),

φ
(

q, T
f
r x

)

+ φ
(

T
f
r x, x

)

≤ φ
(

q, x
)

. (2.14)

3. Strong Convergence Theorems

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty, closed, and convex subset of E. Let {fj}Mj=1 be bifunctions from C × C to R which satisfies
conditions (A1)–(A4), and let {Ti}∞i=1 be an infinitely countable family of closed and relatively quasi-
nonexpansive mappings from C into itself. Assume that F := (

⋂∞
i=1 F(Ti)) ∩ (

⋂M
j=1 EP(fj))/= ∅. For

any initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, define the sequence {xn} as follows:

yn,i = J−1(αnJxn + (1 − αn)JTixn),

un,i = T
fM
rM,n

T
fM−1
rM−1,n · · · T

f1
r1,nyn,i,

Cn+1 =

{

z ∈ Cn : sup
i≥1

φ(z, un,i) ≤ φ(z, xn)

}

,

xn+1 = ΠCn+1x0, n ≥ 1.

(3.1)

Assume that {αn} and {rj,n} for j = 1, 2, . . . ,M are sequences which satisfy the following conditions:

(B1) lim supn→∞αn < 1;

(B2) lim infn→∞rj,n > 0.

Then the sequence {xn} converges strongly toΠFx0.
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Proof. We divide our proof into six steps as follows.

Step 1. F ⊂ Cn for all n ≥ 1.
From Lemma 2.4 we know that F(Ti) is closed, and convex for all i ≥ 1. From

Lemma 2.6(4), we also know that EP(fj) is closed and convex for each j = 1, 2, . . . ,M. Hence
F := (

⋂∞
i=1 F(Ti))∩ (

⋂M
j=1 EP(fj)) is a nonempty, closed and convex subset of C. Clearly C1 = C

is closed and convex. Suppose that Ck is closed and convex for some k ∈ N. For each z ∈ Ck

and i ≥ 1, we see that φ(z, uk,i) ≤ φ(z, xk) is equivalent to

2〈z, Jxk〉 − 2〈z, Juk,i〉 ≤ ‖xk‖2 − ‖uk,i‖2. (3.2)

By the construction of the set Ck+1, we see that

Ck+1 =

{

z ∈ Ck : sup
i≥1

φ(z, uk,i) ≤ φ(z, xk)

}

=
∞
⋂

i=1

{

z ∈ Ck : φ(z, uk,i) ≤ φ(z, xk)
}

.

(3.3)

Hence Ck+1 is also closed and convex.
It is obvious that F ⊂ C1 = C. Now, suppose that F ⊂ Ck for some k ∈ N, and let

p ∈ F := (
⋂∞

i=1 F(Ti)) ∩ (
⋂M

j=1 EP(fj)). Then

φ
(

p, uk,i

)

= φ
(

p, T
fM
rM,n

T
fM−1
rM−1,n · · · T

f1
r1,nyk,i

)

≤ φ
(

p, T
fM−1
rM−1,nT

fM−2
rM−2,n · · · T

f1
r1,nyk,i

)

...

≤ φ
(

p, T
f1
r1,nyk,i

)

≤ φ
(

p, yk,i

)

= φ
(

p, J−1(αkJxk + (1 − αk)JTixk)
)

=
∥

∥p
∥

∥

2 − 2
〈

p, αkJxk + (1 − αk)JTixk

〉

+ ‖αkJxk + (1 − αk)JTixk‖2

≤ ∥

∥p
∥

∥

2 − 2αk〈p, Jxk〉 − 2(1 − αk)〈p, JTixk〉

+ αk‖xk‖2 + (1 − αk)‖Tixk‖2

= αkφ
(

p, xk

)

+ (1 − αk)φ
(

p, Tixk

)

≤ φ
(

p, xk

)

.

(3.4)

Hence F ⊂ Ck+1. By induction, we can conclude that F ⊂ Cn for all n ≥ 1.
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Step 2. limn→∞φ(xn, x0) exists.
From xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), n ≥ 1. (3.5)

From Lemma 2.3 we get that

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ
(

p, x0
) − φ

(

p, xn

) ≤ φ
(

p, x0
)

. (3.6)

Combining (3.5) and (3.6), we get that limn→∞φ(xn, x0) exists.

Step 3. {xn} is a Cauchy sequence in C.
Since xm = ΠCmx0 ∈ Cm ⊂ Cn for m > n, we obtain from Lemma 2.3 that

φ(xm, xn) = φ(xm,ΠCnx0) ≤ φ(xm, x0) − φ(ΠCnx0, x0)

= φ(xm, x0) − φ(xn, x0).
(3.7)

We see that φ(xm, xn) → 0 as m,n → ∞, which implies with Lemma 2.1 that ‖xm − xn‖ → 0
as m,n → ∞. Therefore {xn} is a Cauchy sequence. By the completeness of the space E and
the closedness of the set C, we can assume that xn → q ∈ C as n → ∞. Moreover, we get that

lim
n→∞

φ(xn+1, xn) = 0. (3.8)

Since xn+1 = ΠCn+1x0 ∈ Cn+1, we have for all i ≥ 1 that

φ(xn+1, un,i) ≤ φ(xn+1, xn) −→ 0. (3.9)

Applying Lemma 2.1 to (3.8) and (3.9), we derive

lim
n→∞

‖un,i − xn‖ = 0, ∀i ≥ 1. (3.10)

This shows that un,i → q as n → ∞ for all i ≥ 1. Since J is uniformly norm-to-norm
continuous on bounded subsets of E, we obtain that

lim
n→∞

‖Jun,i − Jxn‖ = 0, ∀i ≥ 1. (3.11)

Step 4. q ∈ ⋂∞
i=1 F(Ti).

Denote Θj
n = T

fj
rj,nT

fj−1
rj−1,n · · · T

f1
r1,n for any j ∈ {1, 2, . . . ,M} and Θ0

n = I for all n ≥ 1. We note
that un,i = ΘM

n yn,i for all i ≥ 1. From (3.4) we observe that

φ
(

p,ΘM−1
n yn,i

)

≤ φ
(

p,ΘM−2
n yn,i

)

≤ · · · ≤ φ
(

p, yn,i

) ≤ φ
(

p, xn

)

, ∀i ≥ 1. (3.12)
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Since p ∈ EP(fM) = F(TfM
rM,n

) for all n ≥ 1, it follows from (3.12) and Lemma 2.7 that

φ
(

un,i,ΘM−1
n yn,i

)

≤ φ
(

p,ΘM−1
n yn,i

)

− φ
(

p, un,i

)

≤ φ
(

p, xn

) − φ
(

p, un,i

)

.

(3.13)

From (3.10) and (3.11), we get that limn→∞φ(un,i,ΘM−1
n yn,i) = 0 for all i ≥ 1. From Lemma 2.1,

we have

lim
n→∞

∥

∥

∥un,i −ΘM−1
n yn,i

∥

∥

∥ = 0, ∀i ≥ 1. (3.14)

From (3.10) and (3.14), we have

lim
n→∞

∥

∥

∥xn −ΘM−1
n yn,i

∥

∥

∥ = 0, ∀i ≥ 1, (3.15)

and hence,

lim
n→∞

∥

∥

∥Jxn − JΘM−1
n yn,i

∥

∥

∥ = 0, ∀i ≥ 1. (3.16)

Again, since p ∈ EP(fM−1) = F(TfM−1
rM−1,n) for all n ≥ 1, it follows from (3.12) and Lemma 2.7 that

φ
(

ΘM−1
n yn,i,ΘM−2

n yn,i

)

≤ φ
(

p,ΘM−2
n yn,i

)

− φ
(

p,ΘM−1
n yn,i

)

≤ φ
(

p, xn

) − φ
(

p,ΘM−1
n yn,i

)

.

(3.17)

From (3.15) and (3.16), we also have

lim
n→∞

∥

∥

∥ΘM−1
n yn,i −ΘM−2

n yn,i

∥

∥

∥ = 0, ∀i ≥ 1. (3.18)

Hence, from (3.15) and (3.18), we get

lim
n→∞

∥

∥

∥xn −ΘM−2
n yn,i

∥

∥

∥ = 0, ∀i ≥ 1, (3.19)

lim
n→∞

∥

∥

∥Jxn − JΘM−2
n yn,i

∥

∥

∥ = 0, ∀i ≥ 1. (3.20)

In a similar way, we can verify that

lim
n→∞

∥

∥

∥ΘM−2
n yn,i −ΘM−3

n yn,i

∥

∥

∥ = · · · = lim
n→∞

∥

∥

∥Θ1
nyn,i − yn,i

∥

∥

∥ = 0 (3.21)



Abstract and Applied Analysis 9

for all i ≥ 1,

lim
n→∞

∥

∥

∥xn −ΘM−3
n yn,i

∥

∥

∥ = · · · = lim
n→∞

∥

∥xn − yn,i

∥

∥ = 0 (3.22)

for all i ≥ 1,

lim
n→∞

∥

∥

∥Jxn − JΘM−3
n yn,i

∥

∥

∥ = · · · = lim
n→∞

∥

∥Jxn − Jyn,i

∥

∥ = 0 (3.23)

for all i ≥ 1. Hence, we can conclude that

lim
n→∞

∥

∥

∥Θ
j
nyn,i −Θj−1

n yn,i

∥

∥

∥ = 0 (3.24)

for each j = 1, 2, . . . ,M and i ≥ 1. Observe that

∥

∥Jyn,i − Jxn

∥

∥ = ‖αnJxn + (1 − αn)JTixn − Jxn‖
= (1 − αn)‖JTixn − Jxn‖,

(3.25)

then we obtain from (B1) and (3.23) that

lim
n→∞

‖JTixn − Jxn‖ = 0, ∀i ≥ 1. (3.26)

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets, we get that

lim
n→∞

‖Tixn − xn‖ = 0, ∀i ≥ 1. (3.27)

Since Ti is closed for all i ≥ 1 and xn → q, we conclude that q ∈ ⋂∞
i=1 F(Ti).

Step 5. q ∈ ⋂M
j=1 EP(fj).

From (3.24) and (B2), we have that ‖JΘj
nyn,i − JΘj−1

n yn,i‖/rj,n → 0 as n → ∞. Then,
for each j = 1, 2, . . . ,M, we obtain that

fj
(

Θj
nyn,i, y

)

+
1
rj,n

〈

y −Θj
nyn,i, JΘ

j
nyn,i − JΘj−1

n yn,i

〉

≥ 0, ∀y ∈ C. (3.28)

From (A2) we have that

∥

∥

∥y −Θj
nyn,i

∥

∥

∥

∥

∥

∥JΘ
j
nyn,i − JΘj−1

n yn,i

∥

∥

∥

rj,n
≥ 1

rj,n

〈

y −Θj
nyn,i, JΘ

j
nyn,i − JΘj−1

n yn,i

〉

≥ −fj
(

Θj
nyn,i, y

)

≥ fj
(

y,Θj
nyn,i

)

, ∀y ∈ C.

(3.29)
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From (A4) and the fact that Θj
nyn,i → q for i ≥ 1, we get fj(y, q) ≤ 0 for all y ∈ C. For each

0 < t < 1 and y ∈ C, denote yt = ty + (1 − t)q. Then yt ∈ C, which implies that fj(yt, q) ≤ 0.
From (A1) and (A4), we obtain that 0 = fj(yt, yt) ≤ tfj(yt, y) + (1 − t)fj(yt, q) ≤ tfj(yt, y).
Thus, fj(yt, y) ≥ 0. From (A3), we have fj(q, y) ≥ 0 for all y ∈ C and j = 1, 2, . . . ,M. Hence
q ∈ ⋂M

j=1 EP(fj).

Step 6. q = ΠFx0.
From xn = ΠCnx0, we have

〈Jx0 − Jxn, xn − z〉 ≥ 0 ∀z ∈ Cn. (3.30)

Since F ⊂ Cn, we also have

〈

Jx0 − Jxn, xn − p
〉 ≥ 0 ∀p ∈ F. (3.31)

Letting n → ∞ in (3.31), we obtain that

〈

Jx0 − Jq, q − p
〉 ≥ 0 ∀p ∈ F. (3.32)

From Lemma 2.2 we conclude that q = ΠFx0. This completes the proof.

Remark 3.2. Theorem 3.1 improves and extends Theorem 3.1 of Takahashi and Zembayashi in
[3] in the following senses:

(i) from the case of an equilibrium problem to a finite family of equilibrium problems;

(ii) from a single relatively nonexpansive mapping to an infinitely countable family of
relatively quasi-nonexpansive mappings;

(iii) if M = 1 and Ti = T for all i ≥ 1, then our restriction on {αn} is weaker than that of
Theorem 3.1 of [3].

Remark 3.3. The iteration (3.1) is a modification of (1.4) in the following ways.

(i) We use the composition of mappings {Tfj
rj,n}Mj=1 in the second step.

(ii) We construct the set Cn+1 by using the concept of supremum concerning an
infinitely countable family of closed and relatively quasi-nonexpansive mappings
{Ti}∞i=1. If M = 1 and Ti = T for all i ≥ 1, then the iteration (3.1) reduces to that of
(1.4).

If we take αn = 0 for all n ∈ N in Theorem 3.1, then we have the following corollary.

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty, closed, and convex subset of E. Let {fj}Mj=1 be bifunctions from C × C to R which satisfies
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conditions (A1)–(A4), and let {Ti}∞i=1 be an infinitely countable family of closed and relatively quasi-
nonexpansive mappings from C into itself. Assume that F := (

⋂∞
i=1 F(Ti)) ∩ (

⋂M
j=1 EP(fj))/= ∅. For

any initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, define the sequence {xn} as follows:

yn,i = Tixn,

un,i = T
fM
rM,n

T
fM−1
rM−1,n · · · T

f1
r1,nyn,i,

Cn+1 =

{

z ∈ Cn : sup
i≥1

φ(z, un,i) ≤ φ(z, xn)

}

,

xn+1 = ΠCn+1x0, n ≥ 1.

(3.33)

If lim infn→∞rj,n > 0 for each j = 1, 2, . . . ,M, then {xn} converges strongly toΠFx0.

4. Applications

In this section, we give several applications of Theorem 3.1 in the framework of Banach spaces
and Hilbert spaces.

Let A : C → E∗ be a nonlinear mapping. The classical variational inequality problem
is to find that x̂ ∈ C such that

〈

Ax̂, y − x̂
〉 ≥ 0 ∀y ∈ C. (4.1)

The solutions set of (4.1) is denoted by V I(C,A). For each r > 0 and x ∈ E, define themapping
TA
r : E → C as follows:

TA
r (x) =

{

z ∈ C :
〈

Az, y − z
〉

+
1
r

〈

y − z, Jz − Jx
〉 ≥ 0, ∀y ∈ C

}

. (4.2)

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty, closed, and convex subset of E. Let {Aj}Mj=1 be continuous and monotone operators from
C to E∗, and let {Ti}∞i=1 be an infinitely countable family of closed and relatively quasi-nonexpansive
mappings from C into itself such that F := (

⋂∞
i=1 F(Ti)) ∩ (

⋂M
j=1 V I(C,Aj))/= ∅. For any initial point

x0 ∈ E with x1 = ΠC1x0 and C1 = C, define the sequence {xn} as follows:

yn,i = J−1(αnJxn + (1 − αn)JTixn),

un,i = TAM
rM,n

TAM−1
rM−1,n · · · TA1

r1,nyn,i,

Cn+1 =

{

z ∈ Cn : sup
i≥1

φ(z,un,i) ≤ φ(z, xn)

}

,

xn+1 = ΠCn+1x0, n ≥ 1.

(4.3)
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Assume that {αn} and {rj,n} for j = 1, 2, . . . ,M are sequences which satisfy conditions (B1) and (B2)
of Theorem 3.1.

Then the sequence {xn} converges strongly toΠFx0.

Proof. Define fj(x, y) = 〈Ajx, y − x〉 for all x, y ∈ C and j = 1, 2, . . . ,M. First, we see that

F(T
fj
rj ) = EP(fj) = V I(C,Aj) = F(T

Aj

rj ) for each j = 1, 2, . . . ,M.
Next, we show that {fj}Mj=1 satisfy conditions (A1)–(A4).

(A1) Consider fj(x, x) = 〈Ajx, x − x〉 = 0 for all x ∈ C and j = 1, 2, . . . ,M.

(A2) For each x, y ∈ C and j = 1, 2, . . . ,M, we observe that

fj
(

x, y
)

+ fj
(

y, x
)

=
〈

Ajx, y − x
〉

+
〈

Ajy, x − y
〉

=
〈

Ajx −Ajy, y − x
〉

.
(4.4)

By the monotonicity ofAj , we obtain that fj is monotone. Thus {fj}Mj=1 satisfy condition (A2).

(A3) For each x, y, z ∈ C and j = 1, 2, . . . ,M, we have by the continuity of Aj that

lim sup
t↓0

fj
(

tz + (1 − t)x, y
)

= lim sup
t↓0

〈

Aj(tz + (1 − t)x), y − (tz + (1 − t)x)
〉

=
〈

Ajx, y − x
〉

= fj
(

x, y
)

.

(4.5)

This shows that {fj}Mj=1 satisfy condition (A3).

(A4) Let u, v ∈ C and s ∈ (0, 1). Then, for each x ∈ C and j = 1, 2, . . . ,M, we have

fj(x, su + (1 − s)v) =
〈

Ajx, su + (1 − s)v − x
〉

= s
〈

Ajx, u − x
〉

+ (1 − s)
〈

Ajx, v − x
〉

= sfj(x, u) + (1 − s)fj(x, v).

(4.6)

Thus fj is convex in the second variable. Let un ∈ C and limn→∞un = u. Then

fj(x, u) =
〈

Ajx, u − x
〉

= lim
n→∞

〈

Ajx, un − x
〉

= lim
n→∞

fj(x, un).

(4.7)

This shows that fj is lower semicontinuous in the second variable. Hence {fj}Mj=1 satisfy
condition (A4). From Theorem 3.1 we obtain the desired result.

If we take αn = 0 for all n ∈ N in Theorem 4.1, then we have the following corollary.
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Corollary 4.2. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty, closed, and convex subset of E. Let {Aj}Mj=1 be continuous and monotone operators from
C to E∗, and let {Ti}∞i=1 be an infinitely countable family of closed and relatively quasi-nonexpansive
mappings from C into itself such that F := (

⋂∞
i=1 F(Ti)) ∩ (

⋂M
j=1 V I(C,Aj))/= ∅. For any initial point

x0 ∈ E with x1 = ΠC1x0 and C1 = C, define the sequence {xn} as follows:

yn,i = Tixn,

un,i = TAM
rM,n

TAM−1
rM−1,n · · · TA1

r1,nyn,i,

Cn+1 =

{

z ∈ Cn : sup
i≥1

φ(z, un,i) ≤ φ(z, xn)

}

,

xn+1 = ΠCn+1x0, n ≥ 1.

(4.8)

If lim infn→∞rj,n > 0 for each j = 1, 2, . . . ,M, then {xn} converges strongly toΠFx0.
Let ϕ : C → R be a real-valued function. The convex minimization problem is to find that

x̂ ∈ C such that

ϕ(x̂) ≤ ϕ
(

y
) ∀y ∈ C. (4.9)

The solutions set of (4.9) is denoted by CMP(ϕ). For each r > 0 and x ∈ E, define the mapping
T
ϕ
r : E → C as follows:

T
ϕ
r (x) =

{

z ∈ C : ϕ
(

y
)

+
1
r

〈

y − z, Jz − Jx
〉 ≥ ϕ(z), ∀y ∈ C

}

. (4.10)

Theorem 4.3. Let E be a uniformly convex and uniformly smooth Banach space, and let C be
a nonempty, closed, and convex subset of E. Let {ϕj}Mj=1 be lower semicontinuous and convex
functions from C to R, and let {Ti}∞i=1 be an infinitely countable family of closed and relatively quasi-
nonexpansive mappings from C into itself such that F := (

⋂∞
i=1 F(Ti)) ∩ (

⋂M
j=1 CMP(ϕj))/= ∅. For

any initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, define the sequence {xn} as follows:

yn,i = J−1(αnJxn + (1 − αn)JTixn),

un,i = T
ϕM

rM,n
T
ϕM−1
rM−1,n · · · T

ϕ1
r1,nyn,i,

Cn+1 =

{

z ∈ Cn : sup
i≥1

φ(z, un,i) ≤ φ(z, xn)

}

,

xn+1 = ΠCn+1x0, n ≥ 1.

(4.11)
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Assume that {αn} and {rj,n} for j = 1, 2, . . . ,M are sequences which satisfy conditions (B1) and (B2)
of Theorem 3.1.

Then the sequence {xn} converges strongly toΠFx0.

Proof. Define fj(x, y) = ϕj(y) − ϕj(x) for all x, y ∈ C and j = 1, 2, . . . ,M. Then F(T
fj
rj ) =

EP(fj) = CMP(ϕj) = F(T
ϕj

rj ) for each j = 1, 2, . . . ,M, and therefore {fj}Mj=1 satisfy conditions
(A1) and (A2).

Next, we show that {fj}Mj=1 satisfy conditions (A3) and (A4). For each x, y, z ∈ C, we
have by the lower semicontinuity of ϕj that

lim sup
t↓0

fj
(

tz + (1 − t)x, y
)

= lim sup
t↓0

(

ϕj

(

y
) − ϕj(tz + (1 − t)x)

)

≤ ϕj

(

y
) − ϕj(x)

= fj
(

x, y
)

.

(4.12)

This implies that {fj}Mj=1 satisfy condition (A3).
Let u, v ∈ C and s ∈ (0, 1). For each x ∈ C, we have by the convexity of ϕj that

fj(x, su + (1 − s)v) = ϕj(su + (1 − s)v) − ϕj(x)

≤ sϕj(u) + (1 − s)ϕj(v) − ϕj(x)

= s
(

ϕj(u) − ϕj(x)
)

+ (1 − s)
(

ϕj(v) − ϕj(x)
)

= sfj(x, u) + (1 − s)fj(x, v).

(4.13)

On the other hand, let un ∈ C and limn→∞un = u. By the lower semicontinuity of ϕj we have

fj(x, u) = ϕj(u) − ϕj(x)

≤ lim inf
n→∞

(

ϕj(un) − ϕj(x)
)

= lim inf
n→∞

fj(x, un).

(4.14)

Thus {fj}Mj=1 satisfy condition (A4). From Theorem 3.1 we also obtain the desired result.

If we take αn = 0 for all n ∈ N in Theorem 4.3, then we have the following corollary.

Corollary 4.4. Let E be a uniformly convex and uniformly smooth Banach space, and let C be
a nonempty, closed, and convex subset of E. Let {ϕj}Mj=1 be lower semicontinuous and convex
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functions from C to R, and let {Ti}∞i=1 be an infinitely countable family of closed and relatively quasi-
nonexpansive mappings from C into itself such that F := (

⋂∞
i=1 F(Ti)) ∩ (

⋂M
j=1 CMP(ϕj))/= ∅. For

any initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, define the sequence {xn} as follows:

yn,i = Tixn,

un,i = T
ϕM

rM,n
T
ϕM−1
rM−1,n · · · T

ϕ1
r1,nyn,i,

Cn+1 =

{

z ∈ Cn : sup
i≥1

φ(z, un,i) ≤ φ(z, xn)

}

,

xn+1 = ΠCn+1x0, n ≥ 1.

(4.15)

If lim infn→∞rj,n > 0 for each j = 1, 2, . . . ,M, then {xn} converges strongly toΠFx0.

As a direct consequence of Theorem 3.1, we obtain the following application in a
Hilbert space.

Theorem 4.5. Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let
{fj}Mj=1 be bifunctions from C × C to R which satisfies conditions (A1)–(A4), and let {Ti}∞i=1 be an
infinitely countable family of closed and quasi-nonexpansive mappings from C into itself such that
F := (

⋂∞
i=1 F(Ti)) ∩ (

⋂M
j=1 EP(fj))/= ∅. For any initial point x0 ∈ H with x1 = PC1x0 and C1 = C,

define the sequence {xn} as follows:

yn,i = αnxn + (1 − αn)Tixn,

un,i = T
fM
rM,n

T
fM−1
rM−1,n · · · T

f1
r1,nyn,i,

Cn+1 =

{

z ∈ Cn : sup
i≥1

‖z − un,i‖ ≤ ‖z − xn‖
}

,

xn+1 = PCn+1x0, n ≥ 1,

(4.16)

where P is the metric projection. Assume that {αn} and {rj,n} for j = 1, 2, . . . ,M are sequences which
satisfy conditions (B1) and (B2) of Theorem 3.1.

Then the sequence {xn} converges strongly to PFx0.

Proof. Taking E = H in Theorem 3.1, the result is obtained immediately.

Remark 4.6. Theorem 4.5 improves and extends the main results of [20–22] in the following
senses:

(i) from the case of an equilibrium problem to a finite family of equilibrium problems;

(ii) from the class of nonexpansive mappings to the class of an infinitely countable
family of quasi-nonexpansive mappings.
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