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We investigate the long-term behavior of solutions of the following difference equation: xn+1 =
xn−1xn−2 − 1, n ∈ N0, where the initial values x−2, x−1, and x0 are real numbers. Numerous
fascinating properties of the solutions of the equation are presented.

1. Introduction and Preliminaries

Recently there has been great interest in studying nonlinear difference equations which do
not stem from differential equations (see, e.g., [1–28] and the references therein). Standard
properties which have been studied are boundedness [5, 9, 23–25], periodicity [2, 5, 9, 10, 27],
asymptotic periodicity [3, 4, 8, 11–14, 16, 17, 19, 20, 23], and local and global stability [5, 9–
11, 23–26], as well as existence of specific solutions such as monotone or nontrivial solutions
[1, 6, 7, 13, 15, 18–22].

In this paper, we investigate the long-term behavior of solutions of the third-order
difference equation

xn+1 = xn−1xn−2 − 1, n ∈ N0, (1.1)

where the initial values x−2, x−1, x0 are real numbers.
The difference equation (1.1) belongs to the class of equations of the form

xn+1 = xn−kxn−l − 1, n ∈ N0, (1.2)
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where k, l ∈ N0, k < l, and gcd(k; l) = 1. The case k = 0, l = 1 has been recently investigated
in [8].

2. The Equilibria and Periodic Solutions of (1.1)

This section is devoted to the study of the equilibria and periodic solutions of (1.1).

2.1. Equilibria of (1.1)

If x is an equilibrium of (1.1), then it satisfies the equation

x2 − x − 1 = 0. (2.1)

Hence, (1.1) has exactly two equilibria, one positive and one negative, which we denote by
x1 and x2, respectively:

x1 =:
1 +

√
5

2
, x2 =:

1 − √
5

2
(2.2)

(the golden number and its conjugate).

2.2. Periodic Solutions of (1.1)

Here, we study the existence of periodic solutions of (1.1). For related results, see, for
example, [2, 5, 9, 10, 27] and the references therein. The first two results are simple, but we
will prove them for the completeness, the benefit of the reader, and since we use them in the
sequel.

Theorem 2.1. There are no eventually constant solutions of difference equation (1.1).

Proof. If {xn}∞n=−2 is an eventually constant solution of (1.1), then xN = xN+1 = xN+2 = x, for
some N ∈ N0, where x is an equilibrium point. In this case, (1.1) gives xN+2 = xNxN−1 − 1,
which implies

xN−1 =
xN+2 + 1

xN
=

x + 1
x

= x. (2.3)

Repeating this procedure, we obtain xn = x for −2 ≤ n ≤ N+2. Hence, there are no eventually
constant solutions.

Theorem 2.2. Difference equation (1.1) has no nontrivial period two solutions nor eventually period
two solutions.



Abstract and Applied Analysis 3

Proof. Assume that xN = xN+2k and xN+1 = xN+2k+1, for every k ∈ N0, and some N ≥ −2, with
xN /=xN+1. Then, we have

xN+4 = xN+2xN+1 − 1 = xNxN+1 − 1 = xN+3 = xN+1. (2.4)

From this and since xN+4 = xN , we obtain a contradiction, finishing the proof of the result.

Theorem 2.3. There are no periodic or eventually periodic solutions of (1.1) with prime period three.

Proof. If

xN = xN+3k, xN+1 = xN+3k+1, xN+2 = xN+3k+2, k ≥ 0, (2.5)

for some N ≥ −2, we have

xN+3 = xN+1xN − 1 = xN,

xN+4 = xN+2xN+1 − 1 = xN+1,

xN+5 = xN+3xN+2 − 1 = xNxN+2 − 1 = xN+2.

(2.6)

If xN = 0, xN+1 = 0, or xN+2 = 0, then from (2.6) we easily obtain contradictions in all these
cases. Hence, wemay assume that xN /= 0, xN+1 /= 0, and xN+2 /= 0. Equalities in (2.6) also imply
that

xN+1 =
xN + 1
xN

, xN+2 =
xN+1 + 1
xN+1

, xN =
xN+2 + 1
xN+2

. (2.7)

From (2.7), we get

xN =
xN+2 + 1
xN+2

=
2xN+1 + 1
xN+1 + 1

=
3xN + 2
2xN + 1

, (2.8)

which implies that x2
N − xN − 1 = 0, that is, xN = (1 ± √

5)/2. From this and (2.7) we obtain
xN+1 = xN+2 = (1±√5)/2, implying xn = (1±√5)/2,n ≥ N, fromwhich the result follows.

Theorem 2.4. There are no periodic or eventually periodic solutions of (1.1) with prime period four.

Proof. Assume

xN = xN+4k, xN+1 = xN+4k+1, xN+2 = xN+4k+2, xN+3 = xN+4k+3, k ≥ 0, (2.9)
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for some N ≥ −2. Then we have

xN+4 = xN+2xN+1 − 1 = xN,

xN+5 = xN+3xN+2 − 1 = xN+1,

xN+6 = xN+4xN+3 − 1 = xNxN+3 − 1 = xN+2,

xN+7 = xN+5xN+4 − 1 = xN+1xN − 1 = xN+3.

(2.10)

If xN+i = 0 for some i ∈ {0, 1, 2, 3}, then from (2.10) we easily obtain a contradiction. For
example, if xN = 0, then from (2.10)we get xN+2 = −1 = xN+3. This implies xN+1 = xN+3xN+2−
1 = 0. From this and since xN+2xN+1 − 1 = xN we would get xN = −1, a contradiction. The
other cases are proved analogously.

Hence we may assume that xN+i /= 0, i ∈ {0, 1, 2, 3}. From (2.10)we have

xN =
xN+3 + 1
xN+1

=
(xN+2 + 1)/xN + 1
(xN + 1)/xN+2

=
xN+2(xN+2 + xN + 1)

xN(xN + 1)
=

(xN + 1)(xN+1 + 1)
xNx2

N+1

, (2.11)

that is,

(xNxN+1)2 = (xN + 1)(xN+1 + 1). (2.12)

From (2.10) and (2.12), we obtain

(xN+3 + 1)2 = (xN + 1)(xN+1 + 1). (2.13)

Since the relations in (2.12) are cyclic, we also obtain that

(xN + 1)2 = (xN+1 + 1)(xN+2 + 1),

(xN+1 + 1)2 = (xN+2 + 1)(xN+3 + 1),

(xN+2 + 1)2 = (xN+3 + 1)(xN + 1).

(2.14)

Equalities (2.13) and (2.14) imply that the expressions xN+i + 1,i ∈ {0, 1, 2, 3} have the same
sign. Assume that they are all positive (the case when they are all negative is considered
similarly so it is omitted). We have

(xN+3 + 1)2 = (xN + 1)(xN+1 + 1) = (xN + 1)
√
(xN+3 + 1)(xN+2 + 1)

= (xN + 1)

√
(xN+3 + 1)

√
(xN+3 + 1)(xN + 1),

(2.15)

from which easily follows that xN+3 = xN . From this, (2.13), and (2.14), it follows that xN+i =
xN , i ∈ {1, 2, 3}, which implies the result.
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The following result shows that there exist periodic solutions of (1.1) with prime
period five.

Theorem 2.5. A solution of (1.1) is of period five if and only if

(i) x−2 = a, x−1 = b, ab /= 1, and x0 = (1 + a)/(ab − 1), or

(ii) x−2 = x−1 = −1, or
(iii) x−2 = a, x−1 = 0, and x0 = −a − 1.

Proof. If the initial conditions are as given, then by some calculations it is easy to see that these
solutions are of period five. Now we assume that a solution {xn}∞n=−2 is of period five. Then,
we can write terms of the solution of (1.1) as

x−2 = a,

x−1 = b,

x0 = c,

x1 = d = ab − 1,

x2 = e = bc − 1,

x3 = f = cd − 1 = c(ab − 1) − 1 = a,

x4 = g = (ab − 1)(bc − 1) − 1 = b,

x5 = h = (bc − 1)f − 1 = (bc − 1)a − 1 = c.

(2.16)

Note that the expressions for f and h both yield the same condition, namely, abc =
a + c + 1. The condition for g gives ab2c − ab − bc = b, so that b(abc − a − c − 1) = 0. Hence,
either b = 0 or abc = a + c + 1, which was a restriction coming from f and h. If b = 0, then
f = a = −c− 1. The second restriction can be rewritten as c = (1+a)/(ab− 1), provided ab /= 1.
If ab = 1, then f = a = −1 = b.

Remark 2.6. If xk = 0, where k ≥ −1, then xk starts a 5-cycle (in particular, in view of the above
theorem, we have a 5 cycle if the initial conditions are x−2 = a,x−1 = 0,x0 = c, where a and c
are any real numbers). If k = −1, then we have

x−1 = 0,

x0 = x0,

x1 = x−1x−2 − 1 = −1,
x2 = x0x−1 − 1 = −1,

x3 = x1x0 − 1 = −x0 − 1,

x4 = x2x1 − 1 = 0,

x5 = x3x2 − 1 = −(−x0 − 1) − 1 = x0,

x6 = x4x3 − 1 = −1,

(2.17)

from which the statement follows in this case.
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If k ≥ 0, then by direct calculation we have

xk = 0,

xk+1 = xk−1xk−2 − 1,

xk+2 = xkxk−1 − 1 = −1,
xk+3 = xk+1xk − 1 = −1,

xk+4 = xk+2xk+1 − 1 = −(xk−1xk−2 − 1) − 1 = −xk−1xk−2,

xk+5 = xk+3xk+2 − 1 = 0,

xk+6 = xk+4xk+3 − 1 = −(−xk−1xk−2) − 1 = xk−1xk−2 − 1,

xk+7 = xk+5xk+4 − 1 = −1,

(2.18)

from which the statement follows in this case.

Remark 2.7. There are period-five solutions of (1.1) that do not have a zero term. It is enough
to use a/= − 1 and b ∈ R \ {−1, 0} such that ab /= 1. For example, we can choose x−2 = 2,
x−1 = 2,x0 = 1.

Remark 2.8. There exist solutions that are eventually of period five; for example, choose x−2 =
4, x−1 = 0.5, x0 = 1, or x−2 = 0, x−1 = 4, x0 = −0.5.

3. Solutions in the Interval (−1, 0)
Here, we study the solutions of (1.1) with initial values in the interval (−1, 0) or for which
there are three subsequent terms that are eventually in the interval.

The next result shows that the interval (−1, 0) is an invariant interval for (1.1).

Theorem 3.1. If −1 < x−2, x−1, x0 < 0, then −1 < xn < 0 for all n ≥ −2.

Proof. If −1 < x−2, x−1, x0 < 0, then −1 < x1 = x−1x−2 − 1 < 0. From (1.1) and by induction, we
then have that −1 < xn < 0 for all n ≥ −2.

Remark 3.2. There are solutions that eventually enter the interval (−1, 0). One example of such
a solution is one with the initial conditions x−2 = 1.3, x−1 = 1.5, and x0 = 1.6.

3.1. Convergence to Period-Five Solutions

The next theorem is devoted to the convergence of solutions of (1.1)with initial conditions in
the interval (−1, 0) to period-five solutions. For related results on the asymptotic periodicity
of difference equations, see [3, 4, 8, 10–14, 16, 17, 19, 20, 23].

Note that if a, b ∈ (−1, 0), then ab /= 1, and we have that (1 + a)/(ab − 1) ∈ (−1, 0).
Indeed, since a, b ∈ (−1, 0), then clearly (1+a)/(ab−1) < 0, and ab < −a so that 1+a < 1−ab,
from which it follows that (1 + a)/(ab − 1) > −1. Hence, by Theorems 2.5 and 3.1 it follows
that these solutions are periodic of period five belonging to the interval (−1, 0).
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Before we formulate and prove the main result in this section, we need an auxiliary
result. Relations of this type were first discovered and used by Stević in [12] and then
subsequently used in several papers (e.g., in [16]).

Lemma 3.3. Any solution of (1.1) satisfies the following equality

xn+5 − xn = xn(xn+4 − xn−1), for n ≥ −1. (3.1)

Proof. If n ≥ −1, we have

xn+2 = xnxn−1 − 1,

xn+3 = xn+1xn − 1,

xn+4 = xn+2xn+1 − 1 = (xnxn−1 − 1)xn+1 − 1

= xn+1xnxn−1 − xn+1 − 1,

(3.2)

xn+5 = xn+3xn+2 − 1 = (xn+1xn − 1)(xnxn−1 − 1) − 1

= xn+1(xn)2xn−1 − xn+1xn − xnxn−1

= xn(xn+1xnxn−1 − xn+1 − xn−1).

(3.3)

Using (3.3) and then (3.2), we get

xn+5 − xn = xn(xn+1xnxn−1 − xn+1 − xn−1) − xn

= xn(xn+1xnxn−1 − xn+1 − xn−1 − 1)

= xn[(xn+1xnxn−1 − xn+1 − 1) − xn−1]

= xn(xn+4 − xn−1),

(3.4)

which is equality (3.1).

Theorem 3.4. Consider the difference equation (1.1) with initial conditions x−2, x−1, x0 ∈ (−1, 0).
Then, this solution converges to a period-five solution.

Proof. Consider five subsequences {x5n}∞n=0, {x5n+1}∞n=0, {x5n+2}∞n=0, {x5n+3}∞n=0, and {x5n+4}∞n=0.
By Lemma 3.3, we know that our solution satisfies (3.1) for all n ≥ −1. Thus, we have

xn+10 − xn+5 = xn+5(xn+9 − xn+4)

= xn+5xn+4(xn+8 − xn+3)

= xn+5xn+4xn+3(xn+7 − xn+2)

= xn+5xn+4xn+3xn+2(xn+6 − xn+1)

= xn+5xn+4xn+3xn+2xn+1(xn+5 − xn).

(3.5)
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Therefore,

|xn+10 − xn+5| = |xn+5||xn+4||xn+3||xn+2||xn+1||xn+5 − xn|, (3.6)

and, since the values of the sequence are in the interval (−1, 0), we have,

|xn+10 − xn+5| ≤ |xn+5 − xn|. (3.7)

Without loss of generality, we will consider the subsequence {x5n}∞n=0. Let

an = x5(n+1) − x5n, n ∈ N0. (3.8)

By inequality (3.7), we have

|a0| ≥ |a1| ≥ |a2| ≥ · · · . (3.9)

Since the sequence {|an|}∞n=0 is positive, nonincreasing, and bounded below by 0, it must
converge to, say, A. We will prove that A = 0. Assume to the contrary that A/= 0. Observe
that from (3.6)we have

∣∣x5(n+1) − x5n
∣∣ =

(
5n∏
k=1

|xk|
)
|x5 − x0|. (3.10)

Since the sequence {|an|}∞n=0 converges to a nonzero value, it follows that
∏∞

k=1|xk| converges
to a nonzero value. Hence, limk→∞|xk| = 1. Therefore, xk is close to −1 for k large. Suppose
k is large. Then, xk+3 = xk+1xk − 1 is close to 0, which contradicts the fact that |xk+3| → 1 as
k → ∞. Hence, A = 0, as desired.

Remark 3.5. As it has been already mentioned, there are solutions that have initial values
outside the interval (−1, 0) and enter the interval. Such solutions also converge to a period
five solution by the previous theorem.

Corollary 3.6. Assume that a solution of (1.1) has initial conditions x−2 = 0,x−1, x0 ∈ (−1, 0). Then,
x1 = −1, all future terms are in the interval (−1, 0), and thus this solution converges to a periodic
solution with period five.

Proof. Clearly x1 = x−1x−2 − 1 = −1. Since 0 < −x0 < 1 and 0 < −x−1 < 1, we have 0 < x0x−1 < 1,
and so −1 < x2 < 0. Furthermore, we have x3 = x1x0 − 1 = −x0 − 1 ∈ (−1, 0). Similarly,
x4 = x2x1 − 1 = −x2 − 1 ∈ (−1, 0). The rest of the proof is the same as in Theorem 3.1, and so is
omitted.

4. Stability and Convergence of Solutions of (1.1)

In this section, we determine the stability nature of the two equilibria of (1.1) and leave open
for the reader the possibility of convergence of solutions to the negative equilibrium.
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Lemma 4.1. The positive equilibrium of (1.1), x1, is unstable.

Proof. The characteristic equation of the equilibrium x1 is the following:

λ3 − x1λ − x1 = 0. (4.1)

Let P1(x) = x3 − x1x − x1. Since P1(1) = 1 − 2x1 = −√5 < 0 and limx→+∞P1(x) = +∞, it follows
that there is a λ0 > 1 such that P1(λ0) = 0, from which the result follows for the equilibrium
x1.

Remark 4.2. Consider the characteristic equation of the negative equilibrium of (1.1), x2,

λ3 − x2λ − x2 = 0 (4.2)

and the function P2(x) = x3 − x2x − x2. Observe the following:

(i) P2(x2) = 0.

(ii) P ′
2(x) = 3x2 − x2 > 0 for all x ∈ R.

Hence, we have one negative eigenvalue, λ1 = x2 ∈ (−1, 0) and a complex conjugate pair of
eigenvalues, λ2 and λ2, such that

λ1|λ2|2 = x2. (4.3)

It follows that |λ2| = |λ2| = 1, and so x2 is a nonhyperbolic equilibrium where the roots of the
characteristic equation have absolute values less than or equal to one.

Open problem 4.3. Determine the stability nature of the negative equilibrium of (1.1), x2.

5. More on Invariant Intervals

In this section, we discuss invariant intervals regarding the subsequences {x5n}∞n=0, {x5n+1}∞n=0,
{x5n+2}∞n=0, {x5n+3}∞n=0, and {x5n+4}∞n=0 of a solution {xn}∞n=−2 of (1.1).

Theorem 5.1. Assume that a solution of (1.1) has initial conditions x−2 = 0,x−1 ∈ (0, 1) and x0 ∈
(−1, 0). Then, x5n+2, x5n+6 ∈ (−2,−1), x5n+3, x5n+5 ∈ (−1, 0), and x5n+4 ∈ (0, 1) for n ∈ N0 and also
x1 = −1.

Proof. Since x−2 = 0, we have x1 = x−1x−2 − 1 = −1. Now, we prove the above statement for
n = 0. From 0 < x−1 < 1 and −1 < x0 < 0, we have −1 < x0x−1 < 0. From this and since
x2 = x0x−1 − 1, we get x2 ∈ (−2,−1).

Furthermore, we have that

x3 = x1x0 − 1 = −x0 − 1 ∈ (−1, 0),
x4 = x2x1 − 1 = −x2 − 1 ∈ (0, 1).

(5.1)
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Since 0 < −x3 < 1 and 1 < −x2 < 2, it follows that x5 = x3x2 − 1 ∈ (−1, 1). Now, we verify that
x5 must be in a more restrictive interval (−1, 0). We prove this by contradiction. Assume that
x5 ∈ [0, 1). Since 0 ≤ x5 = x3x2 − 1 < 1 with x3 = x1x0 − 1 = −x0 − 1 and x2 = x0x−1 − 1, we must
have that

0 ≤ (−x0 − 1)(x0x−1 − 1) − 1 < 1 ⇐⇒ 0 ≤ x0(1 − x−1 − x0x−1) < 1, (5.2)

which is equivalent to

0 ≤ x0(−x2 − x−1) < 1. (5.3)

On the other hand, since 1 < −x2 < 2 and −1 < −x−1 < 0, we have 0 < −x2 − x−1 < 2. However,
since x0 < 0, it follows that x0(−x2 − x−1) < 0, which is a contradiction. Hence, x5 ∈ (−1, 0), as
claimed.

Next, since 0 < x4 < 1 and 0 < −x3 < 1, we have −1 < x4x3 < 0, and so, −2 < x6 < −1,
finishing the proof for the case n = 0.

Now assume that x5n+2, x5n+6 ∈ (−2,−1), x5n+3, x5n+5 ∈ (−1, 0), and x5n+4 ∈ (0, 1) for
0 ≤ n ≤ k.

Since x5k+4 ∈ (0, 1) and x5k+5 ∈ (−1, 0), we have

x5(k+1)+2 = x5k+5x5k+4 − 1 ∈ (−2,−1). (5.4)

Since x5k+6 ∈ (−2,−1) and x5k+5 ∈ (−1, 0), we have

x5(k+1)+3 = x5k+6x5k+5 − 1 ∈ (−1, 1). (5.5)

Assume that x5(k+1)+3 ∈ [0, 1). Then, we have

0 ≤ x5(k+1)+3 = x5k+6x5k+5 − 1 = (x5k+4x5k+3 − 1)(x5k+3x5k+2 − 1) − 1 < 1 (5.6)

which is equivalent to

0 ≤ x5k+3(x5k+4x5k+3x5k+2 − x5k+4 − x5k+2) < 1. (5.7)

Now note that x5k+4x5k+3x5k+2 > 0 and −x5k+4 − x5k+2 > 0 since −1 < −x5k+4 < 0 and 1 <
−x5k+2 < 2. Hence, x5k+4x5k+3x5k+2 − x5k+4 − x5k+2 > 0 which along with x5k+3 < 0 implies that
x5k+3(x5k+4x5k+3x5k+2 − x5k+4 − x5k+2) < 0, which is a contradiction. Hence,

x5(k+1)+3 ∈ (−1, 0). (5.8)

Since −2 < x5(k+1)+2, x5k+6 < −1, we have

x5(k+1)+4 = x5(k+1)+2x5k+6 − 1 ∈ (0, 3). (5.9)

Assume that x5(k+1)+4 ∈ [1, 3).
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Since by Lemma 3.3

x5(k+1)+4 − x5k+4 = x5k+4
(
x5(k+1)+3 − x5k+3

)
(5.10)

and 0 < x5k+4 < 1 ≤ x5(k+1)+4, we have x5(k+1)+4−x5k+4 > 0. Therefore, x5k+4(x5(k+1)+3−x5k+3) > 0.
From this and since x5k+4 > 0, we have that x5(k+1)+3 − x5k+3 > 0. We then have

x5(k+1)+3 − x5k+3 = x5k+3
(
x5(k+1)+2 − x5k+2

)
> 0. (5.11)

Since x5k+3 < 0, we have x5(k+1)+2 − x5k+2 < 0. Furthermore we have

x5(k+1)+2 − x5k+2 = x5k+2
(
x5(k+1)+1 − x5k+1

)
< 0. (5.12)

Since x5k+2 < 0, we have x5(k+1)+1 − x5k+1 > 0.
By Lemma 3.3, for each 1 ≤ n ≤ k, we have

x5(n+1)+1 − x5n+1 = x5n+1x5nx5n−1x5n−2x5n−3
(
x5n+1 − x5(n−1)+1

)
. (5.13)

By the inductive hypothesis, we have that x5n+1x5nx5n−1x5n−2x5n−3 > 0 so that the sign of the
difference is the same as the sign of x5(k+1)+1 − x5k+1, that is,

x5(n+1)+1 − x5n+1 > 0, 0 ≤ n ≤ k. (5.14)

On the other hand, x6 − x1 = x6 + 1 < 0, which is a contradiction. Hence,

x5(k+1)+4 ∈ (0, 1). (5.15)

Since −2 < x5(k+1)+2 < −1 and x5(k+1)+3 ∈ (−1, 0), we have

x5(k+1)+5 = x5(k+1)+3x5(k+1)+2 − 1 ∈ (−1, 1). (5.16)

Assume that x5(k+1)+5 ∈ [0, 1). Then, we have

0 ≤ (x5k+6x5k+5 − 1)(x5k+5x5k+4 − 1) − 1 < 1 (5.17)

which is equivalent to

0 ≤ x5k+5(x5k+6x5k+5x5k+4 − x5k+6 − x5k+4) < 1. (5.18)

On the other hand, since x5k+6x5k+5x5k+4 > 0 and since from 1 < −x5k+6 < 2 and −1 < −x5k+4 < 0
we obtain −x5k+6 − x5k+4 > 0, it follows that

x5k+6x5k+5x5k+4 − x5k+6 − x5k+4 > 0. (5.19)
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This fact along with x5k+5 < 0 implies

x5k+5(x5k+6x5k+5x5k+4 − x5k+6 − x5k+4) < 0 (5.20)

which is a contradiction. Hence,

x5(k+1)+5 ∈ (−1, 0). (5.21)

Finally, since 0 < x5(k+1)+4 < 1 and −1 < x5(k+1)+3 < 0, we obtain

x5(k+1)+6 = x5(k+1)+4x5(k+1)+3 − 1 ∈ (−2,−1). (5.22)

From (5.4)–(5.22) and by the method of induction, the proof follows.

Theorem 5.2. Any solution of (1.1) with initial values satisfying the following conditions x−2 =
0,x−1 ∈ (0, 1), and x0 ∈ (−1, 0) converges to a period-five solution.

Proof. By Theorem 5.1, we have that x−2 = 0, x−1 ∈ (0, 1), x0 ∈ (−1, 0), x1 = −1, x5n+2, x5n+6 ∈
(−2,−1), x5n+3, x5n+5 ∈ (−1, 0), and x5n+4 ∈ (0, 1) for n ∈ N0.

We prove by induction that all the subsequences {x5n+3}∞n=−1, {x5n+4}∞n=−1, {x5n+5}∞n=−1,
{x5n+6}∞n=−1, and {x5n+7}∞n=−1 are monotone.

Assume n = −1. Then, by Lemma 3.3 and above comments, we have

x3 − x−2 = x3 < 0,

x4 − x−1 = x−1(x3 − x−2) = x−1x3 < 0,

x5 − x0 = x0(x4 − x−1) > 0,

x6 − x1 = x1(x5 − x0) < 0,

x7 − x2 = x2(x6 − x1) > 0.

(5.23)

Assume that we have proved

−1 < x5n+3 < x5(n−1)+3 < 0 = x−2,

0 < x5n+4 < x5(n−1)+4 < 1,

0 > x5n+5 > x5(n−1)+5 > −1,
−2 < x5n+6 < x5(n−1)+6 < −1,
−1 > x5n+7 > x5(n−1)+7 > −2,

(5.24)

for 0 ≤ n ≤ k.
Since

x5(k+1)+j − x5k+j = x5k+jx5k+j−1x5k+j−2x5k+j−3x5k+j−4
(
x5k+j − x5(k−1)+j

)
, (5.25)
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for each k ∈ N0 and j = 3, 4, 5, 6, 7, and since by Theorem 5.1, we obtain

x5k+jx5k+j−1x5k+j−2x5k+j−3x5k+j−4 > 0, (5.26)

k ∈ N0, j = 3, 4, 5, 6, 7, we have that the differences x5(k+1)+j − x5k+j , k ∈ N0 have the same sign
for each j ∈ {3, 4, 5, 6, 7}. From this and by Theorem 5.1, the claim follows.

Since all the subsequences {x5n+3}∞n=−1, {x5n+4}∞n=−1, {x5n+5}∞n=−1, {x5n+6}∞n=−1 and
{x5n+7}∞n=−1 are monotone and bounded, they are convergent, and consequently the solution
{xn}∞n=−2 converges to a period-five solution, as claimed.

6. Unbounded Solutions of (1.1)

In this section, we find sets of initial conditions of (1.1) for which unbounded solutions exist.
First, observe that when the initial values x−2, x−1, x0 > x1 or x−2, x−1, x0 < −1, then

existence of unbounded solutions appears. Specifically, the following two theoremswill show
existence of unbounded solutions relative to the set of these initial conditions.

Theorem 6.1. If x−2, x−1, x0 > x1 = (1 +
√
5)/2, then the following statements hold true:

(a) x−1 < x1 < x3 < · · · and x0 < x2 < x4 < · · · ;
(b) the solution tends to +∞.

Proof. (a) Since x−1 > (1 +
√
5)/2, we have 1/x−1 < 2/(1 +

√
5) = (

√
5 − 1)/2. Thus,

1 +
1
x−1

< 1 +
√
5 − 1
2

=
1 +

√
5

2
< x−2. (6.1)

Therefore, x−2 > 1+1/x−1. Thus, x−1x−2 > x−1+1. Rewriting, x−1x−2−1 > x−1. Hence, x1 > x−1.
One can follow the same steps to prove that x2 > x0, and the rest of the proof goes by a simple
inductive argument.

(b) Suppose, on the contrary, that one of these subsequences given in part (a) is
bounded. Then, by the relationship

xn−2 =
1 + xn+1

xn−1
, n ∈ N0, (6.2)

it would follow that both subsequences {x2n}∞n=0 and {x2n−1}∞n=0 converge. Hence the whole
solution either converges to a period-two solution or to an equilibrium. However, (1.1) does
not have any nontrivial period-two solution. Thus, it must converge to an equilibrium. But,
this is not possible because the largest equilibrium point is smaller than x−1 and x0. This is a
contradiction. Hence, the proof is complete.

Theorem 6.2. Assume that a, b > 0 and ab > 1. Then, each solution with the initial conditions
x−2 = a, x−1 = b, and x0 > (1 + a)/(ab − 1) tends to plus infinity.



14 Abstract and Applied Analysis

Proof. We have x1 = ab − 1 > 0, x2 = x0x−1 − 1 > (b + 1)/(ab − 1) > 0, and

x3 = x1x0 − 1 > (ab − 1)
1 + a

ab − 1
− 1 = a = x−2 > 0. (6.3)

By Lemma 3.3, we have

xn − xn−5 = (x3 − x−2)
n−5∏
j=−1

xj , n ≥ 4. (6.4)

Using (6.4) and the fact x3 − x−2 > 0, by induction it easily follows that

x5k+j > x5(k−1)+j > 0, k ∈ N0, j = 3, 4, 5, 6, 7, (6.5)

that is, the subsequences {x5k+3}∞k=−1, {x5k+4}∞k=−1, {x5k+5}∞k=−1, {x5k+6}∞k=−1 and {x5k+7}∞k=−1 are
increasing.

We also have

x5k+3 − x5(k−1)+3 = (x3 − x−2)
k∏
j=1

(
x5(j−1)+3x5(j−1)+2x5(j−1)+1x5(j−1)x5(j−1)−1

)

≥ (x3 − x−2)(x3x2x1x0x−1)k

≥ (x3 − x−2)
(
ab(a + 1)(b + 1)

ab − 1

)k

.

(6.6)

Note that

q :=
ab(a + 1)(b + 1)

ab − 1
> 1. (6.7)

Using this fact and (6.6)we obtain

x5k+3 > x5(k−1)+3 + (x3 − x−2)qk =⇒ x5k+3 > x−2 + (x3 − x−2)
k∑
j=0

qj , (6.8)

from which it follows that x5k+3 → ∞ as k → ∞.
From (6.4), the monotonicity of those five subsequences, and (6.8), we get

x5k+3+i − x5(k−1)+3+i = x5(k−1)+3+i · · ·x5(k−1)+3+1
(
x5k+3 − x5(k−1)+3

)

> xi−2 · · ·x−1
(
x5k+3 − x5(k−1)+3

)

> xi−2 · · ·x−1(x3 − x−2)qk,

(6.9)
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for i = 1, 2, 3, 4, from which it follows that x5k+3+i → ∞ as k → ∞ for each i ∈ {1, 2, 3, 4},
finishing the proof of the theorem.

Remark 6.3. Note that the last theorem shows that if initial values are moved to the right with
respect to the initial values of a positive solution of period five then such solutions go to plus
infinity.

7. Case x−2, x−1, x0 ∈ (1, x1)

Here, we consider the case x−2, x−1, x0 ∈ (1, x1). The next theorem shows that there is a large
class of eventually nondecreasing solutions of (1.1) converging to x1. For some results of this
type, see, for example, [1, 6, 7, 10, 13, 15, 18–22] and the related references therein.

Theorem 7.1. Assume x−2, x−1, x0 ∈ (1, x1) and x−2, x−1 ≤ x0 ≤ x−1x−2 − 1. Then, every solution
with such initial values is eventually nondecreasing and converges to x1.

Proof. Multiplying the assumption x−2 ≤ x0, by x−1 we obtain x−1x−2 ≤ x−1x0. From this and
since 1 < x−2, x−1, x0 < x1, we obtain 0 < x−1x−2 − 1 ≤ x−1x0 − 1 < x2

1 − 1 = x1, that is,
0 < x1 ≤ x2 < x1. Hence, 1 < x−2, x−1 ≤ x0 ≤ x1 ≤ x2 < x1. Now assume

1 < x−2, x−1 ≤ x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn < x1, (7.1)

for some n ≥ 2. Multiplying the inequality xn−3 ≤ xn−1 by xn−2 and using (7.1), it follows that

xn−3xn−2 − 1 ≤ xn−1xn−2 − 1 < x2
1 − 1 = x1, (7.2)

that is, xn ≤ xn+1 < x1. Hence, by induction we have proved that the sequence {xn}∞n=−1 is
nondecreasing and bounded above by x1, from which the result easily follows.

Theorem 7.2. Assume x−2, x−1, x0 ∈ (1, x1), x0 ≤ max{x−1, x−2}, x−1x−2 − 1 ≤ min{x−2, x−1, x0},
and x0x−1 − 1 ≤ x0. Then, for every solution with such initial values there is an N ≥ 2, such that

x2 ≥ x3 ≥ · · · ≥ xN ≥ 0 > xN+1. (7.3)

Proof. According to the assumptions we have

0 = 1 · 1 − 1 < x1 = x−1x−2 − 1 ≤ x−1 < x1, (7.4)

0 = 1 · 1 − 1 < x2 = x0x−1 − 1 ≤ x0 < x1. (7.5)

If x0 ≤ x−2, then by multiplying by x−1, we obtain

x2 = x0x−1 − 1 ≤ x−1x−2 − 1 = x1. (7.6)
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If x0 ≤ x−1, then since x1 = x−1x−2 − 1 ≤ x−2, we obtain

x3 = x1x0 − 1 ≤ x−1x−2 − 1 = x1. (7.7)

Multiplying the inequality x1 ≤ x−1 (see (7.4)) by x0, we obtain

x3 ≤ x2, (7.8)

which, together with inequality (7.6), implies again x3 ≤ x1.
Note that now we cannot guarantee the positivity of x3. Similarly, from the inequality

x2 ≤ x0 (see (7.5)), we obtain

x4 ≤ x3, (7.9)

and from the inequality x3 ≤ x1, we obtain

x5 ≤ x4. (7.10)

Now assume that

0 < xn ≤ xn−1 ≤ · · ·x3 ≤ x2 < x1 (7.11)

and xn+1 > 0. Then, by multiplying the inequality xn−1 ≤ xn−3 by xn−2 and subtracting 1, we
obtain xn+1 ≤ xn. Hence, we proved by induction that (7.11) holds as far as xn is positive.

If xn > 0 for all n ≥ 2, the sequence {xn}∞n=−2 is convergent and its limit is nonnegative.
However, this is not possible since the only nonnegative equilibrium of (1.1) is x1. From this,
the result follows.
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