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We deepen the study of some Morrey type spaces, denoted byMp,λ(Ω), defined on an unbounded
open subset Ω of R

n. In particular, we construct decompositions for functions belonging to two
different subspaces of Mp,λ(Ω), which allow us to prove a compactness result for an operator
in Sobolev spaces. We also introduce a weighted Morrey type space, settled between the above-
mentioned subspaces.

1. Introduction

Let Ω be an unbounded open subset of R
n, n ≥ 2. For p ∈ [1,+∞[ and λ ∈ [0, n[, we consider

the spaceMp,λ(Ω) of the functions g in Lploc(Ω) such that

∥
∥g
∥
∥
p

Mp,λ(Ω)
= sup

τ∈]0,1]
x∈Ω

τ−λ
∫

Ω∩B(x,τ)

∣
∣g
(

y
)∣
∣
p
dy < +∞, (1.1)

where B(x, τ) is the open ball with center x and radius τ .
This space of Morrey type, defined by Transirico et al. in [1], is a generalization of the

classical Morrey space Lp,λ and strictly contains Lp,λ(Rn) when Ω = R
n. Its introduction is

related to the solvability of certain elliptic problems with discontinuous coefficients in the
case of unbounded domains (see e.g., [1–3]).

In the first part of this work, we deepen the study of two subspaces of Mp,λ(Ω),
denoted by M̃p,λ(Ω) and M

p,λ
o (Ω), that can be seen, respectively, as the closure of L∞(Ω)

and C∞
o (Ω) in Mp,λ(Ω). We start proving some characterization lemmas that allow us to

construct suitable decompositions of functions in M̃p,λ(Ω) and M
p,λ
o (Ω). This is done in the
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spirit of the classical decomposition (L1, L∞), proved in [4] by Calderón and Zygmund for
L1, where a given function in L1 is decomposed, for any t > 0, in the sum of a part ft ∈ L∞

(whose norm can be controlled by ‖ft‖L∞(Ω) < c(n) · t) and a remaining one f − ft ∈ L1.
Analogous decompositions can be found also for different functional spaces (see e.g., [5, 6]
for decompositions (L1, L1,λ), (Lp, Sobolev ), and (Lp, BMO)).

The idea of our decomposition, both for a g in M̃p,λ(Ω) andMp,λ
o (Ω), is the following:

for any h ∈ R+, the function g can be written as the sum of a “good” part gh, which is more
regular, and of a “bad” part g − gh, whose norm can be controlled by means of a continuity
modulus of the function g itself.

Decompositions are useful in different contexts as the proof of interpolation results,
norm inequalities and a priori estimates for solutions of boundary value problems.

For instance, in the study of several elliptic problems with solutions in Sobolev spaces,
it is sometimes necessary to establish regularity results and a priori estimates for a fixed
operator L. These results often rely on the boundedness and possibly on the compactness of
the multiplication operator

u ∈Wk,q(Ω) −→ gu ∈ Lq(Ω), (1.2)

which entails the estimate

∥
∥g u

∥
∥
Lq(Ω) ≤ c ·

∥
∥g
∥
∥
V · ‖u‖Wk,q(Ω), (1.3)

where c ∈ R+ depends on the regularity properties of Ω and on the summability exponents,
and g is a given function in a normed space V satisfying suitable conditions. In some
particular cases, this cannot be done for the operator L itself, but there is the need to introduce
a suitable class of operators Lh, whose coefficients, more regular, approximate the ones of L.
This “deviation” of the coefficients of Lh from the ones of L needs to be done controlling
the norms of the approximating coefficients with the norms of the given ones. Hence, it is
necessary to obtain estimates where the dependence on the coefficients is expressed just in
terms of their norms. Decomposition results play an important role in this approximation
process, providing estimates where the constants involved depend just on the norm of the
given coefficients and on their moduli of continuity and do not depend on the considered
decomposition.

In the framework of Morrey type spaces, in [1], the authors studied, for k = 1, the
operator defined in (1.2), generalizing a well-known result proved by Fefferman in [7] (cf.
also [8]). They established conditions for the boundedness and compactness of this operator.
In [2], the boundedness result and the straightforward estimates have been extended to any
k ∈ N.

In view of the above considerations, the second part of this work is devoted to a further
analysis of the multiplication operator defined in (1.2), for functions g inMp,λ(Ω). By means
of our decomposition results, we are allowed to deduce a compactness result for the operator
given in (1.2). The obtained estimates can be used in the study of elliptic problems to prove
that the considered operators have closed range or are semi-Fredholm.

The deeper examination of the structure of Mp,λ(Ω) and of its subspaces leads us to
the definition of a new functional space, that is a weighted Morrey type space, denoted by
M

p,λ
ρ (Ω).
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In literature, several authors have considered different kinds of weighted spaces of
Morrey type and their applications to the study of elliptic equations, both in the degenerate
case and in the nondegenerate one (see e.g., [9–11]).

In this paper, given a weight ρ in a class of measurable functions G(Ω) (see § 6 for
its definition), we prove that the corresponding weighted space Mp,λ

ρ (Ω) is a space settled

between M
p,λ
o (Ω) and M̃p,λ(Ω). In particular, we provide some conditions on ρ that entail

M
p,λ
o (Ω) =Mp,λ

ρ (Ω).
Taking into account the results of this paper, we are now in position to approach the

study of some classes of elliptic problems with discontinuous coefficients belonging to the
weighted Morrey type spaceMp,λ

ρ (Ω).

2. Notation and Preliminary Results

Let G be a Lebesgue measurable subset of R
n and Σ(G) be the σ-algebra of all Lebesgue

measurable subsets of G. Given F ∈ Σ(G), we denote by |F| its Lebesgue measure and by χF
its characteristic function. For every x ∈ F and every t ∈ R+,we set F(x, t) = F∩B(x, t),where
B(x, t) is the open ball with center x and radius t, and in particular, we put F(x) = F(x, 1).

The class of restrictions to F of functions ζ ∈ C∞
o (R

n)with F∩supp ζ ⊆ F is denoted by
D(F) and, for p ∈ [1,+∞[, Lploc(F) is the class of all functions g : F → R such that ζ g ∈ Lp(F)
for any ζ ∈ D(F).

Let us recall the definition of the classical Morrey space Lp,λ(Rn).
For n ≥ 2, λ ∈ [0, n[ and p ∈ [1,+∞[, Lp,λ(Rn) is the set of the functions g ∈ L

p

loc(R
n)

such that

∥
∥g
∥
∥
Lp,λ(Rn) = sup

τ>0
x∈R

n

τ−λ/p
∥
∥g
∥
∥
Lp(B(x,τ)) < +∞,

(2.1)

equipped with the norm defined by (2.1).
IfΩ is an unbounded open subset of R

n and t is fixed in R+, we can consider the space
Mp,λ(Ω, t), which is larger than Lp,λ(Rn)whenΩ = R

n. More precisely,Mp,λ(Ω, t) is the set of
all functions g in Lploc(Ω) such that

∥
∥g
∥
∥
Mp,λ(Ω,t) = sup

τ∈]0,t]
x∈Ω

τ−λ/p
∥
∥g
∥
∥
Lp(Ω(x,τ)) < +∞,

(2.2)

endowed with the norm defined in (2.2).
We explicitly observe that a diadic decomposition gives for every t1, t2 ∈ R+ the

existence of c1, c2 ∈ R+, depending only on t1, t2, and n, such that

c1
∥
∥g
∥
∥
Mp,λ(Ω,t1)

≤ ∥∥g∥∥Mp,λ(Ω,t2)
≤ c2
∥
∥g
∥
∥
Mp,λ(Ω,t1)

, ∀g ∈Mp,λ(Ω, t1). (2.3)

All the norms being equivalent, from now on, we consider the space

Mp,λ(Ω) =Mp,λ(Ω, 1). (2.4)
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For the reader’s convenience, we briefly recall some properties of functions in Lp,λ(Rn)
andMp,λ(Ω) needed in the sequel.

The first lemma is a particular case of a more general result proved in [12, Proposition
3].

Lemma 2.1. Let (Jh)h∈N
be a sequence of mollifiers in R

n. If g ∈ Lp,λ(Rn) and

lim
y→ 0

∥
∥g
(

x − y) − g(x)∥∥Lp,λ(Rn) = 0, (2.5)

then

lim
h→+∞

∥
∥g − Jh ∗ g

∥
∥
Lp,λ(Rn) = 0. (2.6)

The second results concerns the zero extensions of functions in Mp,λ(Ω) (see also [1,
Remark 2.4]).

Remark 2.2. Let g ∈ Mp,λ(Ω). If we denote by g0 the zero extension of g outside Ω, then
g0 ∈Mp,λ(Rn) and for every τ in ]0, 1]

∥
∥g0
∥
∥
Mp,λ(Rn,τ) ≤ c1

∥
∥g
∥
∥
Mp,λ(Ω,τ), (2.7)

where c1 ∈ R+ is a constant independent of g, Ω and τ .
Furthermore, if diam(Ω) < +∞, then g0 ∈ Lp,λ(Rn) and

∥
∥g0
∥
∥
Lp,λ(Rn) ≤ c2

∥
∥g
∥
∥
Mp,λ(Ω), (2.8)

where c2 ∈ R+ is a constant independent of g and Ω.

For a general survey on Morrey and Morrey type spaces, we refer to [1, 2, 13, 14].

3. The Spaces M̃p,λ(Ω) and M
p,λ
o (Ω)

This section is devoted to the study of two subspaces of Mp,λ(Ω), denoted by M̃p,λ(Ω) and
M

p,λ
o (Ω). Here, we point out the peculiar characteristics of functions belonging to these sets

by means of two characterization lemmas.
Let us put, for h ∈ R+ and g ∈Mp,λ(Ω),

F
[

g
]

(h) = sup
E∈Σ(Ω)

sup
x∈Ω

|E(x)|≤1/h

∥
∥gχE

∥
∥
Mp,λ(Ω).

(3.1)
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Lemma 3.1. Let λ ∈ [0, n[, p ∈ [1,+∞[, and g ∈Mp,λ(Ω). The following properties are equivalent:

g is in the closure of L∞(Ω) in Mp,λ(Ω), (3.2)

lim
h→+∞

F
[

g
]

(h) = 0, (3.3)

lim
h→+∞

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sup
E∈Σ(Ω)

sup
x∈Ω
τ∈]0,1]

τ−λ|E(x,τ)|≤1/h

∥
∥gχE

∥
∥
Mp,λ(Ω)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (3.4)

We denote by M̃p,λ(Ω) the subspace ofMp,λ(Ω)made up of functions verifying one of
the above properties.

Proof of Lemma 3.1. The equivalence between (3.2) and (3.3) is proved in of [1, Lemma 1.3].
Let us show that (3.2) entails (3.4) and vice versa.

Fix g in the closure of L∞(Ω) in Mp,λ(Ω), then for each ε > 0, there exists a function
gε ∈ L∞(Ω) such that

∥
∥g − gε

∥
∥
Mp,λ(Ω) <

ε

2
. (3.5)

Fixed E ∈ Σ(Ω), from (3.5), it easily follows that

∥
∥gχE

∥
∥
Mp,λ(Ω) ≤

∥
∥
(

g − gε
)

χE
∥
∥
Mp,λ(Ω) +

∥
∥gεχE

∥
∥
Mp,λ(Ω) <

ε

2
+
∥
∥gεχE

∥
∥
Mp,λ(Ω). (3.6)

On the other hand

∥
∥gεχE

∥
∥
Mp,λ(Ω) = sup

τ∈]0,1]
x∈Ω

τ−λ/p
∥
∥gεχE

∥
∥
Lp(Ω(x,τ)) ≤

∥
∥gε
∥
∥
L∞(Ω) sup

τ∈]0,1]
x∈Ω

(

τ−λ|E(x, τ)|)1/p.
(3.7)

Therefore, if we set

1
hε

=

(

ε

2
∥
∥gε
∥
∥
L∞(Ω)

)p

, (3.8)

from(3.7), we deduce that, if sup τ∈]0,1], x∈Ω τ
−λ|E(x, τ)| ≤ 1/hε, then

∥
∥gεχE

∥
∥
Mp,λ(Ω) ≤

ε

2
. (3.9)

Putting together (3.6) and (3.9), we get (3.4).
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Conversely, if we take a function g ∈Mp,λ(Ω) satisfying (3.4), for any ε > 0, there exists
hε ∈ R+ such that if E ∈ Σ(Ω)with sup τ∈]0,1], x∈Ω τ

−λ|E(x, τ)| ≤ 1/hε, then ‖gχE‖Mp,λ(Ω) < ε.
For each k ∈ R+,we set

Ek =
{

x ∈ Ω | ∣∣g(x)∣∣ ≥ k}. (3.10)

Observe that

∥
∥g
∥
∥
Mp,λ(Ω) ≥ sup

τ∈]0,1]
x∈Ω

τ−λ/p
∥
∥g
∥
∥
Lp(Ek(x,τ))

≥ k sup
τ∈]0,1]
x∈Ω

(

τ−λ|Ek(x, τ)|
)1/p

. (3.11)

Therefore, if we put

kε =
∥
∥g
∥
∥
Mp,λ(Ω)h

1/p
ε , (3.12)

from (3.11), it follows that

sup
τ∈]0,1]
x∈Ω

τ−λ|Ekε(x, τ)| ≤
1
hε
, (3.13)

and then

∥
∥gχEkε

∥
∥
Mp,λ(Ω) < ε. (3.14)

To end the proof, we define the function gε = g − gχEkε . Indeed, by construction gε ∈ L∞(Ω)
and by (3.14), one gets that ‖g − gε‖Mp,λ(Ω) < ε.

Remark 3.2. It is easily seen (see also [1]) that if g ∈ M̃p,λ(Ω), then

lim
t→ 0

∥
∥g
∥
∥
Mp,λ(Ω,t) = 0. (3.15)

Now, we introduce two classes of applications needed in the sequel.
For h ∈ R+,we denote by ζh a function of class C∞

o (R
n) such that

0 ≤ ζh ≤ 1, ζh|B(0,h) = 1 , supp ζh ⊂ B(0, 2h). (3.16)

To define the second class, we first fix f in D(R+) satisfying

0 ≤ f ≤ 1, f(t) = 1 if t ≤ 1
2
, f(t) = 0 if t ≥ 1, (3.17)
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and α ∈ C∞(Ω) ∩ C0,1(Ω) equivalent to dist (·, ∂Ω) (for more details on the existence of such
an α, see for instance [15]). Hence, for h ∈ R+,we put

ψh : x ∈ Ω −→ (1 − f(h α(x)))f
( |x|
2h

)

. (3.18)

It is easy to prove that ψh belongs to C∞
o (Ω), for any h ∈ R+. Moreover,

0 ≤ ψh ≤ 1, ψh|Ωh
= 1, supp ψh ⊂ Ω2h, (3.19)

where

Ωh =
{

x ∈ Ω | |x| < h, α(x) > 1
h

}

. (3.20)

Lemma 3.3. Let λ ∈ [0, n[, p ∈ [1,+∞[, and g ∈Mp,λ(Ω). The following properties are equivalent:

g is in the closure of C∞
o (Ω) in Mp,λ(Ω), (3.21)

lim
h→+∞

(∥
∥(1 − ζh) g

∥
∥
Mp,λ(Ω) + F

[

g
]

(h)
)

= 0, (3.22)

lim
h→+∞

(∥
∥
(

1 − ψh
)

g
∥
∥
Mp,λ(Ω) + F

[

g
]

(h)
)

= 0, (3.23)

lim
t→ 0

∥
∥g
∥
∥
Mp,λ(Ω, t) + lim

|x|→+∞

(

sup
τ∈]0,1]

τ−λ/p
∥
∥g
∥
∥
Lp(Ω(x,τ))

)

= 0, (3.24)

g ∈ M̃p,λ(Ω), lim
|x|→+∞

(

sup
τ∈]0,1]

τ−λ/p
∥
∥g
∥
∥
Lp(Ω(x,τ))

)

= 0. (3.25)

The subspace of Mp,λ(Ω) of the functions satisfying one of the above properties will
be denoted byMp,λ

o (Ω).

Proof of Lemma 3.3. The equivalence between (3.21) and (3.22) is a consequence of (3.3) and
of [1, Lemmas 2.1 and 2.5]. The one between (3.21) and (3.24) follows from of [1, Remark
2.2]. Always in [1], see Lemma 2.1 and Remark 2.2, it is proved that (3.21) entails (3.25) and
vice versa. Let us show that (3.21) and (3.23) are equivalent too.

Let us firstly assume that g belongs to the closure of C∞
o (Ω) inMp,λ(Ω).

Clearly, this entails that g is in the closure of L∞(Ω) in Mp,λ(Ω), thus by Lemma 3.1,
one has that

lim
h→+∞

F
[

g
]

(h) = 0. (3.26)

It remains to show that

lim
h→+∞

∥
∥
(

1 − ψh
)

g
∥
∥
Mp,λ(Ω) = 0. (3.27)
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To this aim, observe that fixed ε > 0, there exists gε ∈ C∞
o (Ω) such that

∥
∥g − gε

∥
∥
Mp,λ(Ω) < ε. (3.28)

On the other hand, if we consider the sets Ωh defined in (3.20), one has

Ω/Ωh = {x ∈ Ω | |x| ≥ h} ∪
{

x ∈ Ω | α(x) ≤ 1
h

}

. (3.29)

Therefore, since gε has a compact support, there exists hε ∈ R+

(Ω/Ωh) ∩ supp gε = ∅, ∀h ≥ hε. (3.30)

Then, since ψh|Ωh
= 1, one has that supp(1−ψh) ⊂ Ω \Ωh, hence (1−ψh)gε = 0 for all h ≥ hε.

The above considerations together with (3.28) give, for any h ≥ hε,
∥
∥
(

1 − ψh
)

g
∥
∥
Mp,λ(Ω) =

∥
∥
(

1 − ψh
)(

g − gε
)∥
∥
Mp,λ(Ω) ≤

∥
∥g − gε

∥
∥
Mp,λ(Ω) < ε, (3.31)

that is, (3.27).
Conversely, assume that g ∈Mp,λ(Ω) and that (3.23) holds.
First of all, we observe that denoted by go the zero extension of g to R

n, by (2.7) of
Remark 2.2, there exists a positive constant c1, independent of g, ψh and of Ω, such that

∥
∥
(

1 − ψh
)

go
∥
∥
Mp,λ(Rn) ≤ c1

∥
∥
(

1 − ψh
)

g
∥
∥
Mp,λ(Ω). (3.32)

Furthermore, by (3.23), we get that fixed ε > 0, there exists hε such that

∥
∥
(

1 − ψhε
)

g
∥
∥
Mp,λ(Ω) <

ε

2c1
. (3.33)

Therefore,

∥
∥
(

1 − ψhε
)

go
∥
∥
Mp,λ(Rn) <

ε

2
. (3.34)

Set

Φε = ψhεgo, (3.35)

by construction

supp Φε ⊂ supp ψhε ⊂ Ω2hε . (3.36)
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Hence, taking into account (2.8) of Remark 2.2, one has that

Φε ∈ Lp,λ(Rn). (3.37)

On the other hand, (3.23) together with Lemma 3.1 give that g ∈ M̃p,λ(Ω), then from
Remark 3.2, we get

lim
t→ 0

∥
∥g
∥
∥
Mp,λ(Ω,t) = 0. (3.38)

So, using (2.7) of Remark 2.2, we have that Φε ∈Mp,λ(Rn) and

lim
t→ 0

‖Φε‖Mp,λ(Rn, t) = 0. (3.39)

Arguing as in [16, Lemma 1.2], from (3.36)–(3.39), we conclude that

lim
y→ 0

∥
∥Φε

(

x − y) −Φε(x)
∥
∥
Lp,λ(Rn) = 0. (3.40)

We are now in the hypotheses of Lemma 2.1. Hence, denoted by (Jk)k∈N
a sequence of

mollifiers in R
n, we can find a positive integer kε > hε such that

‖Φε − Jkε ∗Φε‖Lp,λ(Rn) <
ε

2
. (3.41)

Set gε = Jkε ∗Φε, one has gε ∈ C∞
o (Ω). Furthermore, using (3.34) and (3.41), we get

∥
∥g − gε

∥
∥
Mp,λ(Ω) ≤

∥
∥go − Jkε ∗Φε

∥
∥
Mp,λ(Rn)

≤ ∥∥go −Φε

∥
∥
Mp,λ(Rn) + ‖Φε − Jkε ∗Φε‖Mp,λ(Rn)

≤ ∥∥go − ψhεgo
∥
∥
Mp,λ(Rn) + ‖Φε − Jkε ∗Φε‖Lp,λ(Rn)

≤ ∥∥(1 − ψhε)go
∥
∥
Mp,λ(Rn) +

ε

2
< ε,

(3.42)

this concludes the proof.

4. Decompositions of Functions in M̃p,λ(Ω) and M
p,λ
o (Ω)

The characterizations of the spaces M̃p,λ(Ω) andMp,λ
o (Ω) naturally lead us to the introduction

of the following moduli of continuity.
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Let g be a function in M̃p,λ(Ω). A modulus of continuity of g in M̃p,λ(Ω) is a map
σ̃p,λ[g] : R+ → R+ such that

F
[

g
]

(h) ≤ σ̃p,λ[g](h),

lim
h→+∞

σ̃p,λ
[

g
]

(h) = 0.
(4.1)

If g belongs toMp,λ
o (Ω), a modulus of continuity of g inMp,λ

o (Ω) is an application σop,λ[g] :
R+ → R+ such that

∥
∥(1 − ζh)g

∥
∥
Mp,λ(Ω) + F

[

g
]

(h) ≤ σop,λ
[

g
]

(h),

lim
h→+∞

σo
p,λ[g
]

(h) = 0.
(4.2)

Let us show now the decomposition results.

Lemma 4.1. Let λ ∈ [0, n[, p ∈ [1,+∞[, and g ∈ M̃p,λ(Ω). For any h ∈ R+, one has

g = g ′
h + g

′′
h, (4.3)

with g ′′
h
∈ L∞(Ω) and

∥
∥g ′

h

∥
∥
Mp,λ(Ω) ≤ σ̃p,λ

[

g
]

(h),
∥
∥g ′′

h

∥
∥
L∞(Ω) ≤ h1/p

∥
∥g
∥
∥
Mp,λ(Ω). (4.4)

Proof. Given g ∈ M̃p,λ(Ω) and h ∈ R+, we introduce the set

Eh =
{

x ∈ Ω | ∣∣g(x)∣∣ ≥ h1/p
∥
∥g
∥
∥
Mp,λ(Ω)

}

. (4.5)

Observe that

|Eh(x)| ≤
∫

Ω(x)∩Eh

∣
∣g
(

y
)∣
∣
p

∥
∥g
∥
∥
p

Mp,λ(Ω)
h
dy

≤ 1
∥
∥g
∥
∥
p

Mp,λ(Ω)
h

∫

Ω(x)

∣
∣g
(

y
)∣
∣
p
dy ≤ 1

∥
∥g
∥
∥
p

Mp,λ(Ω)
h

sup
τ∈]0,1]
x∈Ω

τ−λ
∥
∥g
∥
∥
p

Lp(Ω(x,τ)) =
1
h
.

(4.6)

Set

g ′
h = gχEh =

⎧

⎨

⎩

g if x ∈ Eh,
0 if x ∈ Ω/Eh,

g ′′
h = g − gχEh =

⎧

⎨

⎩

0 if x ∈ Eh,
g if x ∈ Ω/Eh.

(4.7)
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In view of (4.6),

∥
∥g ′

h

∥
∥
Mp,λ(Ω) =

∥
∥gχEh

∥
∥
Mp,λ(Ω) ≤ F

[

g
]

(h) ≤ σ̃p,λ[g](h), (4.8)

this gives the first inequality in (4.4), the second one easily follows from (4.5).

Lemma 4.2. Let λ ∈ [0, n[, p ∈ [1,+∞[ and g ∈Mp,λ
o (Ω). For any h ∈ R+, one has

g = φ′
h + φ

′′
h, (4.9)

with

∥
∥φ′

h

∥
∥
Mp,λ(Ω) ≤ σop,λ

[

g
]

(h),
∣
∣φ′′

h

∣
∣ ≤ ζhh1/p

∥
∥g
∥
∥
Mp,λ(Ω). (4.10)

Proof. To prove this second decomposition result, we exploit again the definition of the set Eh
introduced in (4.5) and inequality (4.6).

In this case, for any h ∈ R+, we define

φ′
h = g(1 − ζh) + ζhgχEh =

⎧

⎨

⎩

g if x ∈ Eh,
g(1 − ζh) if x ∈ Ω/Eh,

φ′′
h = ζh

(

g − gχEh
)

=

⎧

⎨

⎩

0 if x ∈ Eh,
gζh if x ∈ Ω/Eh.

(4.11)

To obtain the first inequality in (4.10), we observe that (4.6) gives

∥
∥φ′

h

∥
∥
Mp,λ(Ω) ≤

∥
∥g(1 − ζh)

∥
∥
Mp,λ(Ω) +

∥
∥ζhgχEh

∥
∥
Mp,λ(Ω)

≤ ∥∥g(1 − ζh)
∥
∥
Mp,λ(Ω) +

∥
∥gχEh

∥
∥
Mp,λ(Ω)

≤ ∥∥g(1 − ζh)
∥
∥
Mp,λ(Ω) + F

[

g
]

(h) ≤ σop,λ
[

g
]

(h).

(4.12)

The second one is a consequence of (4.5).

5. A Compactness Result

In this section, as application, we use the previous results to prove the compactness of a
multiplication operator on Sobolev spaces.

To this aim, let us recall an imbedding theorem proved in [2, Theorem 3.2].
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Let us specify the assumptions:

(h1) Ω is an open subset of R
n having the cone property with cone C, the parameters

k, r, p, q, λ satisfy one of the following conditions:

(h2) k ∈ N, 1 ≤ p ≤ q ≤ r < +∞, 0 ≤ λ < n, γ = 1/q − 1/p + k/n > 0, with r > q when
p = n/k > 1 and λ = 0, and with λ > n(1 − rγ) when rγ < 1,

(h3) k = 1, 1 < p = q < r ≤ n, λ = n − r.
Theorem 5.1. Under hypothesis (h1) and if (h2) or (h3) holds, for any u ∈Wk,p(Ω) and for any g ∈
Mr,λ(Ω), one has gu ∈ Lq(Ω). Moreover, there exists a constant c ∈ R+, depending on n, k, p, q, r, λ,
and C, such that

∥
∥gu
∥
∥
Lq(Ω) ≤ c

∥
∥g
∥
∥
Mr,λ(Ω)‖u‖Wk,p(Ω). (5.1)

Putting together Lemma 4.1 and Theorem 5.1, we easily have the following result.

Corollary 5.2. Under hypothesis (h1) and if (h2) or (h3) holds, for any g ∈ M̃r,λ(Ω) and for any
h ∈ R+, one has

∥
∥gu
∥
∥
Lq(Ω) ≤ c · σ̃r,λ

[

g
]

(h) · ‖u‖Wk,p(Ω) + h
1/r · ∥∥g∥∥Mr,λ(Ω) · ‖u‖Lq(Ω), (5.2)

for each u ∈Wk,p(Ω), where c ∈ R+ is the constant of (5.1).

If g is in Mr,λ
o (Ω), the previous estimate can be improved as showed in the corollary

below.

Corollary 5.3. Under hypothesis (h1) and if (h2) or (h3) holds, for any g ∈ Mr,λ
o (Ω) and for any

h ∈ R+, there exists an open set Ah ⊂⊂ Ω with the cone property, such that

∥
∥gu
∥
∥
Lq(Ω) ≤ c · σor,λ

[

g
]

(h) · ‖u‖Wk,p(Ω) + h
1/r · ∥∥g∥∥Mr,λ(Ω) · ‖u‖Lq(Ah), (5.3)

for each u ∈Wk,p(Ω), where c ∈ R+ is the constant of (5.1).

Proof. Fix g ∈ Mr,λ
o (Ω) and h ∈ R+. In view of Lemma 4.2 and Theorem 5.1, for any u ∈

Wk,p(Ω),we have

∥
∥gu
∥
∥
Lq(Ω) ≤

∥
∥φ′

hu
∥
∥
Lq(Ω) +

∥
∥φ′′

hu
∥
∥
Lq(Ω)

≤ c∥∥φ′
h

∥
∥
Mr,λ(Ω) · ‖u‖Wk,p(Ω) +

∥
∥φ′′

hu
∥
∥
Lq(Ω)

≤ c · σor,λ
[

g
]

(h) · ‖u‖Wk,p(Ω) +
∥
∥φ′′

hu
∥
∥
Lq(Ω).

(5.4)

Using again Lemma 4.2, we obtain

∥
∥φ′′

hu
∥
∥
Lq(Ω) ≤

∥
∥g
∥
∥
Mr,λ(Ω)h

1/r
(∫

Ω
|ζhu|qdx

)1/q

≤ ∥∥g∥∥Mr,λ(Ω)h
1/r

(∫

supp ζh
|u|qdx

)1/q

. (5.5)
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Putting together (5.4) and (5.5), we get (5.3), with Ah obtained as follows: fixed dh ∈
]0,dist(supp ζh, ∂Ω)/2[ and θ ∈ ]0, π/2[, the set Ah is union of the open cones C ⊂⊂ Ω
with opening θ, height dh and such that C ∩ supp ζh /= ∅.

We are now in position to prove the compactness result.

Corollary 5.4. Suppose that condition (h1) is satisfied, that (h2) or (h3) holds, and fix g ∈Mr,λ
o (Ω).

Then, the operator

u ∈Wk,p(Ω) −→ gu ∈ Lq(Ω) (5.6)

is compact.

Proof. Observe that if Ω′ ⊂⊂ Ω is a bounded open set with the cone property, the operator

u ∈Wk,p(Ω) −→ u ∈ Lq(Ω′) (5.7)

is compact.
Indeed, if Ω′ ⊂⊂ Ω is a bounded open set, the operator

u ∈Wk,p(Ω) −→ u|Ω′ ∈Wk,p(Ω′) (5.8)

is linear and bounded. Moreover, since Ω′ has the cone property, the Rellich-Kondrachov
Theorem (see e.g., [17]) applies and gives that the operator

w ∈Wk,p(Ω′) −→ w ∈ Lq(Ω′) (5.9)

is compact.
Let us consider now a sequence (un)n∈N

bounded inWk,p(Ω), and letM ∈ R+ be such
that ‖un‖Wk,p(Ω) ≤ M for all n ∈ N. According to the above considerations, fixed ε > 0, there
exist a subsequence (unm)m∈N

and ν ∈ N such that

‖unm − unl‖Lq(Ω′) ≤ ε, ∀m, l > ν. (5.10)

On the other hand, given g ∈ Mr,λ
o (Ω) and h ∈ R+, in view of Corollary 5.3, there exists a

constant c ∈ R+ and an open set Ah ⊂⊂ Ω with the cone property, independent of un, such
that

∥
∥gun

∥
∥
Lq(Ω) ≤ c · σor,λ

[

g
]

(h) · ‖un‖Wk,p(Ω) + h
1/r · ∥∥g∥∥Mr,λ(Ω) · ‖un‖Lq(Ah). (5.11)

From (5.11) and (5.10) written for ε = (c · σor,λ[g](h))/(h1/r · ‖g‖Mr,λ(Ω)) and Ω′ = Ah, for
m, l > ν, one has

∥
∥gunm − gunl

∥
∥
Lq(Ω) ≤ c · σ

r,λ
o

[

g
]

(h) · (2M + 1). (5.12)
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By (5.12) and (4.2), we conclude that (gunm)m∈N
is a Cauchy sequence in Lq(Ω), which gives

the compactness of the operator defined in (5.6).

6. The Space Mp,λ
ρ (Ω)

In this section, we introduce some weighted spaces of Morrey type settled betweenMp,λ
o (Ω)

and M̃p,λ(Ω). To this aim, given d ∈ R+, we consider the set G(Ω, d) defined in [18] as the
class of measurable weight functions ρ : Ω → R+ such that

sup
x,y∈Ω
|x−y|<d

ρ(x)
ρ
(

y
) < +∞.

(6.1)

It is easy to show that ρ ∈ G(Ω, d) if and only if there exists γ ∈ R+, independent on x and y,
such that

γ−1ρ
(

y
) ≤ ρ(x) ≤ γρ(y), ∀y ∈ Ω, ∀x ∈ Ω

(

y, d
)

. (6.2)

Furthermore,

ρ, ρ−1 ∈ L∞
loc

(

Ω
)

. (6.3)

We put

G(Ω) =
⋃

d>0

G(Ω, d). (6.4)

For p ∈ [1,+∞[, s ∈ R, and ρ ∈ G(Ω), we denote by Lps(Ω) the Banach space made up of
measurable functions g : Ω → R such that ρsg ∈ Lp(Ω) equipped with the norm

∥
∥g
∥
∥
L
p
s (Ω) =

∥
∥ρsg

∥
∥
Lp(Ω). (6.5)

It can be proved that the space C∞
o (Ω) is dense in Lps(Ω) (see e.g., [18, 19]).

From now on, we consider ρ ∈ G(Ω) ∩ L∞(Ω), and we denote by d the positive real
number such that ρ ∈ G(Ω, d).
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Lemma 6.1. Let λ ∈ [0, n[, p ∈ [1,+∞[ and g ∈Mp,λ(Ω). The following properties are equivalent:

g is in the closure of L∞
−1/p(Ω) in Mp,λ(Ω), (6.6)

lim
h→+∞

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sup
E∈Σ(Ω)

sup
x∈Ω

τ∈]0,d]
τ−λρ(x)|E(x,τ)|≤1/h

∥
∥gχE

∥
∥
Mp,λ(Ω)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0, (6.7)

lim
h→+∞

⎛

⎜
⎜
⎜
⎜
⎝

sup
E∈Σ(Ω)

sup
x∈Ω

ρ(x)|E(x,d)|≤1/h

∥
∥gχE

∥
∥
Mp,λ(Ω)

⎞

⎟
⎟
⎟
⎟
⎠

= 0. (6.8)

We denote byMp,λ
ρ (Ω) the set of functions satisfying one of the above properties.

Proof of Lemma 6.1. We start proving the equivalence between (6.6) and (6.7). This proof is in
the spirit of the one of Lemma 3.1. For the reader’s convenience, we write down just few lines
pointing out the main differences.

If (6.6) holds, fixed ε > 0, there exists a function gε ∈ L∞
−1/p(Ω) such that

∥
∥g − gε

∥
∥
Mp,λ(Ω) <

ε

2
. (6.9)

From (6.9), we get that for any E ∈ Σ(Ω),

∥
∥gχE

∥
∥
Mp,λ(Ω) <

ε

2
+
∥
∥gεχE

∥
∥
Mp,λ(Ω). (6.10)

Furthermore, in view of the equivalence of the spacesMp,λ(Ω, d) andMp,λ(Ω) given by (2.3)
and taking into account (6.2),

∥
∥gεχE

∥
∥
Mp,λ(Ω) ≤ c1

∥
∥gεχE

∥
∥
Mp,λ(Ω,d) = c1 sup

τ∈]0,d]
x∈Ω

τ−λ/p
∥
∥gεχE

∥
∥
Lp(Ω(x,τ))

≤ c1γ1/p
∥
∥gε
∥
∥
L∞
−1/p(Ω) sup

τ∈]0,d]
x∈Ω

(

τ−λρ(x)|E(x, τ)|)1/p, (6.11)

where c1 ∈ R+ depends only on n and d. Hence, set

1
hε

=

⎛

⎝
ε

2 c1γ1/p
∥
∥gε
∥
∥
L∞
−1/p(Ω)

⎞

⎠

p

, (6.12)
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from (6.11) we deduce that if sup τ∈]0,d], x∈Ω τ
−λρ(x)|E(x, τ)| ≤ 1/hε, then

∥
∥gεχE

∥
∥
Mp,λ(Ω) ≤

ε

2
. (6.13)

Putting together (6.10) and (6.13), we obtain (6.7).
Now, assume that g is a function inMp,λ(Ω) and that (6.7) holds. Then, for any ε > 0,

there exists hε ∈ R+ such that if E ∈ Σ(Ω)with sup τ∈]0,d], x∈Ω τ
−λρ(x)|E(x, τ)| ≤ 1/hε, then

∥
∥gχE

∥
∥
Mp,λ(Ω) < ε. (6.14)

For each k ∈ R+,we define the set

Gk =
{

x ∈ Ω | ρ−1/p(x)∣∣g(x)∣∣ ≥ k
}

. (6.15)

Using again (2.3), there exists c2 ∈ R+ depending on the same parameters as c1 such that

∥
∥g
∥
∥
Mp,λ(Ω) ≥ c2

∥
∥g
∥
∥
Mp,λ(Ω,d) ≥ c2 sup

τ∈]0,d]
x∈Ω

τ−λ/p
∥
∥g
∥
∥
Lp(Gk(x,τ))

≥ c2γ−1/pk sup
τ∈]0,d]
x∈Ω

(

τ−λρ(x)|Gk(x, τ)|
)1/p

.

(6.16)

Therefore, if we put

kε =
γ1/ph

1/p
ε

∥
∥g
∥
∥
Mp,λ(Ω)

c2
, (6.17)

from (6.16), we obtain

sup
τ∈]0,d]
x∈Ω

τ−λρ(x)|Gkε(x, τ)| ≤
1
hε
, (6.18)

and then

∥
∥gχGkε

∥
∥
Mp,λ(Ω) < ε. (6.19)

We conclude setting gε = g − gχGkε
. Indeed, by (6.15), gε ∈ L∞

−1/p(Ω) and (6.19) gives that
‖g − gε‖Mp,λ(Ω) < ε.

Arguing similarly, we prove also that (6.6) entails (6.8) and vice versa. Indeed, if g ∈
Mp,λ(Ω) and (6.6) holds, we can obtain as before (6.10) and (6.11).
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On the other hand, there exists a constant c3 = c3(n) such that

sup
τ∈]0,d]
x∈Ω

(

τ−λ · ρ(x) · |E(x, τ)|
)1/p ≤ ∥∥ρ∥∥λ/npL∞(Ω) sup

τ∈]0,d]
x∈Ω

τ−λ/p · ρ(n−λ)/np(x) · |E(x, τ)|λ/np

· |E(x, τ)|(n−λ)/np

≤ c3 ·
∥
∥ρ
∥
∥
λ/np

L∞(Ω) sup
τ∈]0,d]
x∈Ω

(

ρ(x) · |E(x, τ)|)(n−λ)/np.

(6.20)

Putting together (6.11) and (6.20), we obtain

∥
∥gεχE

∥
∥
Mp,λ(Ω) ≤ c4γ1/p

∥
∥gε
∥
∥
L∞
−1/p(Ω)

∥
∥ρ
∥
∥
λ/np

L∞(Ω) sup
τ∈]0,d]
x∈Ω

(

ρ(x)|E(x, τ)|)(n−λ)/np,
(6.21)

where c4 = c1 · c3. Now, set

1
hε

=

⎛

⎜
⎝

ε

2c4γ1/p
∥
∥gε
∥
∥
L∞
−1/p(Ω)

∥
∥ρ
∥
∥
λ/np

L∞(Ω)

⎞

⎟
⎠

np/(n−λ)

, (6.22)

from (6.21), we deduce that if sup τ∈]0,d], x∈Ω ρ(x)|E(x, τ)| ≤ 1/hε, then

∥
∥gεχE

∥
∥
Mp,λ(Ω) ≤

ε

2
. (6.23)

From (6.10) and (6.23), we obtain (6.8).
Conversely, assume that (6.8) holds. We consider again the sets Gk introduced in

(6.15). From (6.16), we get

∥
∥g
∥
∥
Mp,λ(Ω) ≥ c2

∥
∥g
∥
∥
Mp,λ(Ω,d) ≥ c2d−λ/pγ−1/pk sup

x∈Ω

(

ρ(x)|Gk(x, d)|
)1/p

. (6.24)

Therefore, if we put

kε =
dλ/pγ1/ph

1/p
ε

∥
∥g
∥
∥
Mp,λ(Ω)

c2
, (6.25)

from (6.24), we obtain

sup
x∈Ω

ρ(x)|Gkε(x, d)| ≤
1
hε
, (6.26)
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and then, (6.8) being verified,

∥
∥gχGkε

∥
∥
Mp,λ(Ω) < ε. (6.27)

We conclude the proof setting gε = g − gχGkε
. Indeed, clearly gε ∈ L∞

−1/p(Ω) and (6.27) gives
‖g − gε‖Mp,λ(Ω) < ε.

Arguing in the spirit of Section 4, we want to obtain a decomposition result also for
functions inMp,λ

ρ (Ω). To this aim, we put for h ∈ R+ and g ∈Mp,λ(Ω)

D
[

g
]

(h) = sup
E∈Σ(Ω)

sup
x∈Ω

ρ(x)|E(x,d)|≤1/h

∥
∥gχE

∥
∥
Mp,λ(Ω) (6.28)

In view of the previous lemma, we can define a modulus of continuity of a function g in
M

p,λ
ρ (Ω) as a map σρ

p,λ[g] : R+ → R+ such that

D
[

g
]

(h) ≤ σp,λρ
[

g
]

(h),

lim
h→+∞

σ
p,λ
ρ

[

g
]

(h) = 0.
(6.29)

Lemma 6.2. Let λ ∈ [0, n[, p ∈ [1,+∞[ and g ∈Mp,λ
ρ (Ω). For any h ∈ R+, one has

g = ϕ′
h + ϕ

′′
h, (6.30)

with ϕ′′
h
∈ L∞

−1/p(Ω) and

∥
∥ϕ′

h

∥
∥
Mp,λ(Ω) ≤ σρp,λ

[

g
]

(h),
∥
∥ϕ′′

h

∥
∥
L∞
−1/p(Ω) ≤ cγ1/ph1/p

∥
∥g
∥
∥
Mp,λ(Ω), (6.31)

where c is a positive constant only depending on n, d, p, and λ and where γ is that of (6.2).

Proof. Fix g ∈Mp,λ
ρ (Ω), for any h ∈ R+, we set

ϕ′
h = gχGh =

⎧

⎨

⎩

g if x ∈ Gh,

0 if x ∈ Ω/Gh,
ϕ′′
h = g − g χGh =

⎧

⎨

⎩

0 if x ∈ Gh,

g if x ∈ Ω/Gh,
(6.32)

where

Gh =
{

x ∈ Ω | ρ−1/p(x)∣∣g(x)∣∣ ≥ dλ/pγ1/ph1/p∥∥g∥∥Mp,λ(Ω,d)

}

. (6.33)

The thesis followed by (6.2) and (2.3) arguing as in the proof of Lemma 4.1.

Let us show the following inclusion.



Abstract and Applied Analysis 19

Lemma 6.3. Let λ ∈ [0, n[ and p ∈ [1,+∞[. Then, L∞
−α(Ω) ∩Mp,λ(Ω) ⊂Mp,λ

ρ (Ω), for all α ∈ R+.

Proof. For α ≥ 1/p, clearly L∞
−α(Ω) ⊂ L∞

−1/p(Ω) and then (6.6) holds. On the other hand, for

α < 1/p, we can show that if g ∈ L∞
−α(Ω) ∩Mp,λ(Ω), then (6.7) holds. Indeed, observe that by

(2.3), there exists a constant c1 = c1(n, d) such that for any E ∈ Σ(Ω)

∥
∥gχE

∥
∥
Mp,λ(Ω) ≤ c1

∥
∥gχE

∥
∥
Mp,λ(Ω,d) = c1 sup

τ∈]0,d]
x∈Ω

τ−λ/p
∥
∥gχE

∥
∥
Lp(Ω(x,τ))

≤ c1γα
∥
∥g
∥
∥
L∞
−α(Ω) sup

τ∈]0,d]
x∈Ω

τ−λ/pρα(x)|E(x, τ)|1/p.
(6.34)

Moreover, there exists a constant c2 = c2(n) such that

sup
τ∈]0,d]
x∈Ω

τ−λ/pρα(x)|E(x, τ)|1/p = sup
τ∈]0,d]
x∈Ω

(

τ−λ ρ(x)|E(x, τ)|
)α(

τ−λ|E(x, τ)|
)1/p−α

≤ c2d(n−λ)(1/p−α) sup
τ∈]0,d]
x∈Ω

(

τ−λρ(x)|E(x, τ)|
)α
.

(6.35)

Hence, fixed ε > 0 and set

1
hε

=

(

ε

c1 · c2γα
∥
∥g
∥
∥
L∞
−α(Ω)d

(n−λ)(1/p−α)

)1/α

, (6.36)

we deduce that, if supτ∈]0,d],x∈Ωτ
−λρ(x)|E(x, τ)| ≤ 1/hε, then ‖gχE‖Mp,λ(Ω) ≤ ε .

Now, we can prove a further characterization ofMp,λ
ρ (Ω).

Lemma 6.4. Let λ ∈ [0, n[, p ∈ [1,+∞[. Then, Mp,λ
ρ (Ω) is the closure of

⋃

α∈R+
L∞
−α(Ω) ∩

Mp,λ(Ω) inMp,λ(Ω).

Proof. Clearly, if g ∈ M
p,λ
ρ (Ω) by (6.6), one has also that g is in the closure of

⋃

α∈R+
L∞
−α(Ω) ∩

Mp,λ(Ω) inMp,λ(Ω).
Conversely, let us prove that if g belongs to the closure of

⋃

α∈R+
L∞
−α(Ω) ∩Mp,λ(Ω) in

Mp,λ(Ω), then (6.8) holds. Indeed, given ε > 0, there exists a function gε ∈ L∞
−α(Ω) ∩Mp,λ(Ω),

for an α ∈ R+, such that

∥
∥g − gε

∥
∥
Mp,λ(Ω) <

ε

2
. (6.37)

Hence, given E ∈ Σ(Ω)

∥
∥gχE

∥
∥
Mp,λ(Ω) ≤

∥
∥
(

g − gε
)

χE
∥
∥
Mp,λ(Ω) +

∥
∥gεχE

∥
∥
Mp,λ(Ω) <

ε

2
+
∥
∥gεχE

∥
∥
Mp,λ(Ω). (6.38)
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Now, observe that since gε ∈ L∞
−α(Ω) ∩ Mp,λ(Ω) by Lemma 6.3, we get gε ∈ M

p,λ
ρ (Ω), and

therefore, using (6.8) of Lemma 6.1, we obtain that if supx∈Ωρ(x)|E(x, d)| ≤ 1/h, then

∥
∥gεχE

∥
∥
Mp,λ(Ω) ≤

ε

2
. (6.39)

This, together with (6.38), ends the proof.

A straightforward consequence of the definitions (3.21) of Lemma 3.3, (6.6) of
Lemma 6.1, and (3.2) of Lemma 3.1 is given by the following result.

Lemma 6.5. Let λ ∈ [0, n[ and p ∈ [1,+∞[. Then,Mp,λ
o (Ω) ⊂Mp,λ

ρ (Ω) ⊂ M̃p,λ(Ω).

Let us show that if ρ vanishes at infinity, the first inclusion stated in the lemma above
becomes an identity.

Lemma 6.6. Let λ ∈ [0, n[ and p ∈ [1,+∞[. If ρ is such that

lim
|x|→+∞

ρ(x) = 0, (6.40)

thenMp,λ
o (Ω) =Mp,λ

ρ (Ω).

Proof. We show the inclusion Mp,λ
ρ (Ω) ⊂ M

p,λ
o (Ω), the converse being stated in Lemma 6.5.

In view of Lemma 6.4, it is enough to verify that if (6.40) holds, then L∞
−α(Ω) ∩ Mp,λ(Ω) ⊂

M
p,λ
o (Ω), for any α ∈ R+.

To this aim, given α ∈ R+, we fix g ∈ L∞
−α(Ω) ∩Mp,λ(Ω), and we prove that (3.25) is

satisfied. Observe that by Lemmas 6.3 and 6.5 g ∈ M̃p,λ(Ω). Moreover, for any x ∈ Ω and if
1 ≤ d there exists a constant c = c(n) such that

sup
τ∈]0,1]

τ−λ/p
∥
∥g
∥
∥
Lp(Ω(x,τ)) ≤ γα

∥
∥g
∥
∥
L∞
−α(Ω) sup

τ∈]0,1]
τ−λ/pρα(x)|Ω(x, τ)|1/p

≤ cγα∥∥g∥∥L∞
−α(Ω) sup

τ∈]0,1]
τ (n−λ)/pρα(x) = cγα

∥
∥g
∥
∥
L∞
−α(Ω)ρ

α(x).
(6.41)

On the other hand, if d < 1, clearly one has

sup
τ∈]0,1]

τ−λ/p
∥
∥g
∥
∥
Lp(Ω(x,τ)) = max

{

sup
τ∈]0,d]

τ−λ/p
∥
∥g
∥
∥
Lp(Ω(x,τ)), sup

τ∈]d,1]
τ−λ/p

∥
∥g
∥
∥
Lp(Ω(x,τ))

}

. (6.42)

We can treat the first term on the right-hand side of this last equality as done in (6.41)
obtaining

sup
τ∈]0,d]

τ−λ/p
∥
∥g
∥
∥
Lp(Ω(x,τ)) ≤ d(n−λ)/pcγα

∥
∥g
∥
∥
L∞
−α(Ω)ρ

α(x), (6.43)

the constant c = c(n) being the one of (6.41).
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Concerning the second one, observe that for any x ∈ Ω and τ ∈ ]d, 1], we have the
inclusion Ω(x, τ) ⊂ Q(x, τ), where Q(x, τ) denotes an n-dimensional cube of center x and
edge 2τ . Now, there exists a positive integer k such that we can decompose the cube Q(x, 1)
in k cubes of edge less than d/2 and center xi, with xi ∈ Ω for i = 1, . . . , k. Therefore,
Q(x, 1) ⊂ ⋃ki=1 B(xi, d/2). Hence, for any x ∈ Ω and τ ∈ ]d, 1], we have, arguing as before
with opportune modifications,

τ−λ/p
∥
∥g
∥
∥
Lp(Ω(x,τ)) ≤ d−λ/p k∑

i=1

∥
∥g
∥
∥
Lp(Ω(xi,d/2))

≤ kd(n−λ)/pcγα
∥
∥g
∥
∥
L∞
−α(Ω)ρ

α(x), (6.44)

the constant c = c(n) being the same of (6.41).
The thesis follows then from (6.41), (6.42), (6.43), and (6.44) passing to the limit as

|x| → +∞, as a consequence of hypothesis (6.40).

From the latter result, we easily obtain the following lemma.

Lemma 6.7. Let λ ∈ [0, n[ and p ∈ [1,+∞[. If ρ, σ ∈ G(Ω) ∩ L∞(Ω) and

lim
|x|→+∞

ρ(x) = lim
|x|→+∞

σ(x) = 0, (6.45)

thenMp,λ
ρ (Ω) =Mp,λ

σ (Ω).
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