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The complex zeros of the orthogonal Laguerre polynomials L
(a)
n (x) for a < −n, ultraspherical

polynomials P (λ)
n (x) for λ < −n, Jacobi polynomials P (a,β)

n (x) for a < −n, β < −n, a + β < −2(n + 1),
orthonormal Al-Salam-Carlitz II polynomials P

(a)
n (x; q) for a < 0, 0 < q < 1, and q-Laguerre

polynomials L(a)
n (x; q) for a < −n, 0 < q < 1 are studied. Several inequalities regarding the real and

imaginary properties of these zeros are given, which help locating their position. Moreover, a few
limit relations regarding the asymptotic behavior of these zeros are proved. The method used is a
functional analytic one. The obtained results complement and improve previously known results.

1. Introduction

Orthogonal polynomials appear naturally in various problems of physics and mathematics
and are considered as one of the basic tools in confronting problems of mathematical
physics. Also, orthogonal polynomials have many important applications in problems of
numerical analysis, such as interpolation or optimization. For a survey on applications and
computational aspects of orthogonal polynomials, see [1] and the references therein.

Some of the most important properties of orthogonal polynomials, Pn(x), are the
following.

(P1) The orthogonal polynomials Pn(x) are orthogonal with respect to a weight function
�(x) > 0 on an interval of orthogonality [a, b] ⊆ R and all their zeros are real and
simple and lie inside (a, b).

(P2) Some classes of orthogonal polynomials Pn(x) (including some of the classes
studied in the present paper) satisfy an ordinary differential equation of the form

σ(x)P ′′
n(x) + τ(x)P ′

n(x) + λnPn(x) = 0, (1.1)
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where σ(x) is a polynomial of degree at most two, τ(x) is a polynomial of degree
exactly one, and λn is a constant.

(P3) The orthogonal polynomials Pn(x) satisfy a three-term recurrence relation of the
form

α̃nPn+1(x) + ˜βnPn(x) + c̃nPn−1(x) = xPn(x), n = 0, 1, 2, . . . ,

P−1(x) = 0, P0(x) = 1,
(1.2)

where α̃n−1γ̃n > 0.
An analog to the theory of classical orthogonal polynomials has recently been devel-

oped for q-polynomials, 0 < q < 1, which also appear in various areas of mathematics and
physics. The q-polynomials satisfy also a recurrence relation of the form (1.2), but now the
sequences ãn, ˜βn and c̃n aswell as the polynomials Pn(x) depend on the parameter q, 0 < q < 1.
On the other hand the q-polynomials do not satisfy a differential equation, but a q-difference
equation which is considered as the q-analog of (1.1). For more information on classical or
q-polynomials one may consult [2–6] and the references therein. Also, q-polynomials arise
in the context of indeterminate moment problems. In this case, there are some classes of
orthogonal polynomials for which the corresponding measure of orthogonality is not unique.
This may give rise to various types of q-polynomials, other than the ones studied in the
present paper. For more information see [4, 7–9] and the references therein.

Due to their importance, orthogonal polynomials have drawn the attention of many
researchers and there is a renewed interest for them and their properties during the last 20–
30 years. Many of the results regarding orthogonal polynomials, concern the properties of
their zeros, such as their monotonicity, concavity, or convexity. This interest in the zeros of
the orthogonal polynomials stimulates due to the physical interpretation of their zeros, such
as their electrostatic interpretation and their appearance in various physical problems; see [4]
and the references therein.

There are several ways to deal with problems involving the properties of the zeros of
Pn(x). Among them are methods

(M1) of real analysis utilizing the formulae of Pn(x) and their properties,

(M2) which utilize the differential equation (1.1) when x ∈ R,

(M3) which utilize the recurrence relation (1.2) when α̃n, ˜βn, and γ̃n are real sequences,

(M4) of functional analysis which transform the problem of the zeros of Pn(x) to the
equivalent problem of the eigenvalues of a specific linear operator by using (1.2),
regardless of the type (complex or real) of the sequences α̃n, ˜βn, and γ̃n.

In most cases, the orthogonal polynomials depend on at least one parameter which
appears in the formulae of σ(x) and/or τ(x) in (1.1), or in the formulae of α̃n and/or ˜βn
and/or γ̃n in (1.2), or in the formula of the weight function �(x) and which influence the
behavior of the zeros of Pn(x). In order �(x) to be positive, or α̃n−1γ̃n > 0 or even more α̃n, ˜βn,
and γ̃n to be real, the involved parameters should satisfy specific assumptions (usually simple
inequalities). Otherwise, the first property (P1) of the Pn(x)may not hold and since Pn(x) are
defined recursively by (1.2), if α̃n, ˜βn, and γ̃n are complex sequences, the polynomials Pn(x)
will no longer be real polynomials. In this case, their zeros will no longer be exclusively
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real and there is a need to locate their position. Moreover, the usual methods (M1)–(M3)
mentioned before for the study of the zeros of Pn(x) may not apply at all, when Pn(x) are
complex, or they may need serious modifications. Instead, the (M4) method can be used
directly.

Such a functional analytic methodwas introduced in [10] andwas successfully used in
a series of papers by the authors of [10] and their collaborators, including paper [11], where
results were given regarding the real part of the complex zeros of a class of polynomials
including the generalized Bessel polynomials. The most recent application of this method
was in [12, 13], where convexity results and differential inequalities were deduced for the
largest and lowest zeros and functions involving these zeros of several q-polynomials. This
method is also used in the present paper and it is briefly presented in Section 3. Themain idea
is to transform the problem of the zeros of Pn(x) satisfying (1.2) to the equivalent problem
of the eigenvalues of a specific tridiagonal operator T . Then, by utilizing the properties of T ,
several properties of the zeros of Pn(x) can be proved.

The aim of the present paper is to provide regions (in C) of the location of the complex
zeros of the following:

(i) Laguerre orthogonal polynomials L(a)
n (x) for a < −n,

(ii) ultraspherical orthogonal polynomials P (λ)
n (x) for λ < −n,

(iii) Jacobi orthogonal polynomials P (a,β)
n (x) for a < −n, β < −n, a + β < −2(n + 1),

(iv) orthonormal Al-Salam-Carlitz II polynomials P (a)
n (x; q) for a < 0, 0 < q < 1,

(v) q-Laguerre orthonormal polynomials L(a)
n (x; q) for a < −n, 0 < q < 1.

These regions are given in the form of inequalities regarding the real and imaginary
properties of the zeros of the polynomials under consideration. Moreover, a few limit
relations regarding the asymptotic behavior of these zeros are given. All these results are
stated in Section 2 and proved in Section 4. The reason for choosing the above mentioned
five classes of orthogonal polynomials, apart from pure mathematical curiosity, is the fact
that their zeros and especially the zeros of the Jacobi and Laguerre polynomials admit a
very interesting electrostatic interpretation (see, e.g., [14–16], [6, page 140] and the references
therein).

To the best of the author’s knowledge there are very few results concerning the
location of the complex zeros of the classical or q-polynomials or their limit relations.
More precisely, in the thesis [17] and the paper [18], the behavior of the complex zeros
of the Laguerre, q-Laguerre, and Jacobi polynomials is primarily studied. Among others,
an inequality regarding the real part of the zeros of the Laguerre polynomials and limit
relations regarding the zeros of the Laguerre, q-Laguerre and Jacobi polynomials are proved
using their explicit formulae and their recurrence relations. Also in [19], the zeros of the
hypergeometric polynomial F(−n, b; 2b; z), for b > −1/2 are studied. These results are then
applied in order to obtain information for the zeros of the Ultraspherical (for λ < −n) and
Jacobi (for β = −(1/2)(a + 1) − n, a > −2 and for a = −2β − 2n − 1, β > −1) polynomials.
Finally in [20], the zeros of the Ultraspherical polynomials are further investigated. More
precisely, the authors give a description of the trajectories of the zeros as λ decreases from
−1/2 to 1 − n. Several useful figures created using Mathematica illustrate these trajectories
when n = 8. In the end, the authors conclude that “as λ descends below −7, all 8 zeros of
Pλ
8 (x) are on the imaginary axis tending symmetrically to the origin as λ → −∞”.
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The results of the present paper (specifically Theorems 2.1 and 2.4) complement and
improve the results of [17, 19, 20].

2. Main Results

In this section, several theorems are stated regarding the complex zeros of the orthogonal
Laguerre, Ultraspherical and Jacobi, as well as the orthonormal Al-Salam-Carlitz II and q-
Laguerre polynomials. In each case, a region of the complex plane is given where these zeros
lie, as well as a few limit relations regarding their asymptotic behavior. The proofs of these
theorems are given in Section 4.

Theorem 2.1. The zeros xnk(a) = Re[xnk(a)]+i Im[xnk(a)] of the Laguerre orthogonal polynomials
L
(a)
n (x) for a < −n satisfy the following relations:

a + 1 ≤ Re[xnk(a)] ≤ 2n + a − 1, (2.1)

|Im[xnk(a)]| ≤ 2
√

−n(a + 1). (2.2)

Moreover,

lim
a→−∞

xnk(a)
a

= 1. (2.3)

Remark 2.2. It is obvious from (2.1) that if a < 1 − 2n, then Re[xnk(a)] ≤ 0.

Remark 2.3. In [17, pages 112–131], using the explicit formula for the Laguerre polynomials
and their recurrence relation, the inequality (2.1) was obtained, among other interesting
relations. Moreover it was proved that

lim
a→−∞

∣

∣

∣

∣

xnk(a)
a

∣

∣

∣

∣

= 1. (2.4)

Notice that relation (2.3) is stronger than (2.4).

Theorem 2.4. The zeros xnk(λ) of the Ultraspherical orthogonal polynomials P (λ)
n (x) for λ < −n are

purely imaginary. Moreover

|xnk(λ)| ≤
√

−2λn
(n + λ)(λ + n − 1)

, (2.5)

lim
λ→−∞

xnk(λ) = 0. (2.6)

Remark 2.5. In [19], as a consequence of a more general result regarding the zeros of the
hypergeometric function F(−n, b; 2b; z), it was proved that all zeros of the Ultraspherical
polynomials are purely imaginary for λ < 1− n, which is slightly stronger than the inequality
λ < −n. In [20], the zeros of the Ultraspherical polynomials are further investigated. More
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precisely, the authors give a description of the trajectories of the zeros as λ decreases from
−1/2 to 1 − n. Several useful figures created using Mathematica illustrate these trajectories
when n = 8. In the end the authors conclude that “as λ descends below −7, all 8 zeros of
Pλ
8 (x) are on the imaginary axis tending symmetrically to the origin as λ → −∞”, which is in

accordance with the more general result (2.6).

Theorem 2.6. The zeros xnk(a, β) = Re[xnk(a, β)] + i Im[xnk(a, β)] of the Jacobi orthogonal
polynomials P (a,β)

n (x) for a < −n, β < −n, a + β < −2(n + 1) satisfy the following relations:

β2 − a2

(

2n + a + β
)(

2n + a + β − 2
) ≤ Re

[

xnk

(

a, β
)] ≤ β − a

a + β + 2
, for β > a,

β − a

a + β + 2
≤ Re

[

xnk

(

a, β
)] ≤ β2 − a2

(

2n + a + β
)(

2n + a + β − 2
) , for β < a,

(2.7)

∣

∣Im
[

xnk

(

a, β
)]∣

∣ ≤ 2

√

√

√

√

√

−4(a + 1)
(

β + 1
)(

a + β + 1
)

n
[

(

2n + a + β
)2 − 1

]

(

2n + a + β
)2

. (2.8)

Moreover,

lim
a→−∞

xnk

(

a, β
)

= −1, lim
β→−∞

xnk

(

a, β
)

= 1, (2.9)

lim
a→−∞

xnk

(

a, β
)

a
= 0 = lim

β→−∞
xnk

(

a, β
)

β
. (2.10)

Remark 2.7. It is obvious from (2.7) that the sign of Re[xnk(a, β)] depends on the sign of β−a,
that is, Re[xnk(a, β)] > 0 if β < a and Re[xnk(a, β)] < 0 if β > a.

Remark 2.8. It is well known, see, for example, [4, page 99], that the Laguerre polynomials
are a limiting case of the Jacobi polynomials, by first putting the Jacobi weight function on
[0, a] and then letting a → ∞. Thus, it is obvious that Theorem 2.1 cannot be obtained from
Theorem 2.6, since that would require taking the limit for a → ∞, which cannot hold since
a < −n < 0.

Remark 2.9. It is well known, see, for example, [4, page 94] or [5, page 40], that the
Ultraspherical polynomials are Jacobi polynomials for a = β = λ − (1/2). By applying
Theorem 2.6 for a = β = λ − (1/2) one obtains that “the zeros xnk(λ) of the Ultraspherical
orthogonal polynomials P (λ)

n (x) for λ < −n − (1/2) are purely imaginary and

|xnk(λ)| ≤ 2

√

−2λn
(n + λ)(λ + n − 1)

∣

∣

∣

∣

λ + 1/2
2λ + 2n − 1

∣

∣

∣

∣

, lim
λ→−∞

xnk(λ) = 0.” (2.11)

This result, however, is slightly worse than Theorem 2.4 and this is the reason that the
Ultraspherical polynomials are treated in their own and not as a specific case of the Jacobi
polynomials.
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Theorem 2.10. The zeros xnk(a; q) = Re[xnk(a; q)] + i Im[xnk(a; q)] of the orthonormal Al-Salam-
Carlitz II polynomials P (a)

n (x; q) for a < 0, 0 < q < 1 satisfy the following relations:

a + 1
qn−1

≤ Re
[

xnk

(

a; q
)] ≤ a + 1, for a ≤ −1,

a + 1 ≤ Re
[

xnk

(

a; q
)] ≤ a + 1

qn−1
, for − 1 < a < 0,

(2.12)

∣

∣Im
[

xnk

(

a; q
)]∣

∣ ≤ 2

√

(−a)(1 − qn
)

q2n−1
. (2.13)

Moreover,

lim
a→−∞

xnk

(

a; q
)

a2
= 0. (2.14)

Remark 2.11. It is obvious from (2.12) that if −1 < a < 0, then Re[xnk(a; q)] ≥ 0, whereas if
a ≤ −1, then Re[xnk(a; q)] ≤ 0.

Theorem 2.12. The zeros xnk(a; q) = Re[xnk(a; q)]+ i Im[xnk(a; q)] of the q-Laguerre orthonormal
polynomials L(a)

n (x; q) for a < −n, 0 < q < 1 satisfy the following relations:

1 − qa+1

q2n+a−1
≤ Re

[

xnk

(

a; q
)] ≤ 1 + q

q2n+a−1
− qn+a + qn

qa+1
, (2.15)

∣

∣Im
[

xnk

(

a; q
)]∣

∣ ≤ 2

√

√

√

(

1 − qn
)(

qa+1 − 1
)

q4n+2a−1
. (2.16)

3. The Method

A sequence {Pn(x)}∞n=0 of orthogonal polynomials satisfies a three-term recurrence relation of
the following form:

α̃nPn+1(x) + ˜βnPn(x) + c̃nPn−1(x) = xPn(x), n = 0, 1, 2, . . . ,

P−1(x) = 0, P0(x) = 1.
(3.1)

However, after specific transformations, relation (3.1) can take the following form:

αnQn+1(x) + αn−1Qn−1(x) + βnQn(x) = xQn(x), n = 1, 2, . . . ,

Q0(x) = 0, Q1(x) = 1.
(3.2)

The same holds for q-polynomials. The only difference is that now the sequences ãn, ˜βn, c̃n, αn

and βn as well as the polynomials Pn(x) andQn(x) depend also on the parameter q, 0 < q < 1.
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The method used in this paper for the study of the zeros of the polynomials Pn(x) is
a functional-analytic one, based on the equivalent transformation of the problem of the zeros
of Pn(x) to the problem of the eigenvalues of a specific linear operator. More precisely, let
{ek}nk=1 be an orthonormal base in a finite dimensional Hilbert space Hn with inner product
denoted as usual by (·, ·) and let V be the truncated shift operator:

Vek = ek+1, k = 1, . . . , n − 1, V en = 0. (3.3)

The adjoint of V is the shift operator V ∗ defined by

V ∗ek = ek−1, k = 2, . . . , n, V ∗e1 = 0. (3.4)

Let also A and B be the diagonal operators:

Aek = αkek, Bek = βkek, k = 1, . . . , n. (3.5)

It is known (see, e.g., [10]) that the zeros of the polynomials Qn+1(x) defined by (3.2)
are the eigenvalues of the operator T = AV ∗ + VA + B, that is,

Tfk = xnkfk,
∥

∥fk
∥

∥ = 1 (3.6)

and vice versa. In the case where the polynomials Qn+1(x) depend on a parameter, the
eigenvalues xnk and the corresponding eigenvectors fk depend also on the same parameter.

For technical reasons one may choose, instead, the orthonormal base {Ek}n−1k=0 ofHn. In
this case the operators V , V ∗, A, and B are defined as follows:

VEk = Ek+1, k = 0, . . . , n − 2, VEn−1 = 0,

V ∗Ek = Ek−1, k = 1, . . . , n − 1, V ∗E0 = 0,

AEk = αkEk, BEk = βkEk, k = 0, . . . , n − 1,

(3.7)

and the zeros of the polynomials Qn(x) are the eigenvalues of the operator T . In the rest of
the paper it will be obvious from the text which base (and as a consequence which definition
of the above mentioned operators) is used.

It worths mentioning at this point that.

(i) If the sequences αn and βn are real, then the operator T = AV ∗ + VA + B is a self-
adjoint operator and thus its eigenvalues are all real. Moreover, it follows easily
from (3.6) that

xnk =
(

Tfk, fk
)

. (3.8)

From (3.8), several useful information and inequalities regarding xnk can be
deduced.
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(ii) If αn is purely imaginary and βn real, then T ∗ = VA∗ + A∗V ∗ + B and thus T is
obviously not a self-adjoint operator. However, by setting S = (1/i)(AV ∗ + VA), T
takes the form T = iS + B, where both S and B are self-adjoint operators. Then it
follows easily from (3.6) that

xnk =
(

Bfk, fk
)

+ i
(

Sfk, fk
)

. (3.9)

Since S and B are both self-adjoint operators, the inner products (Bfk, fk) and
(Sfk, fk) are both real. From (3.9), several useful information and inequalities
regarding xnk can be deduced, like those mentioned in Theorems 2.1–2.12. The
proofs of these theorems rely on relation (3.9) and inequalities depending on the
formulae of αn and βn.

4. Proofs

Proof of Theorem 2.1. The Laguerre polynomials L(a)
n (x) satisfy the recurrence relation (3.1) for

α̃n = −(n + 1), ˜βn = a + 2n + 1, c̃n = −(a + n). (4.1)

However, by setting first La
n(x) = R

(a)
n+1(x) and then R

(a)
n (x) = (−1)n+1

√

UnQ
(a)
n (x), where

U0 = 0,U1 = 1, and Un = ((n + a − 1)/(n − 1))Un−1, for n ≥ 2, one obtains as in [21] a relation
for Q(a)

n (x) of the form (3.2)with

αn =
√

n(n + a), βn = 2n + a − 1. (4.2)

For a < −n, the sequence αn is purely imaginary and can be rewritten as αn = i
√

n(−n − a).
It is obvious from what already mentioned that the zeros xnk(a) of L

(a)
n (x) are the same with

the zeros of Q(a)
n+1(x) and, as a consequence, are the same as the eigenvalues of the operator

T = AV ∗ + VA + B, where

Aek = i
√

k(−k − a)ek, Bek = (2k + a − 1)ek, k = 1, . . . , n. (4.3)

Due to (3.9), it is obvious that

Re[xnk(a)] =
(

Bfk, fk
)

, Im[xnk(a)] =
(

Sfk, fk
)

. (4.4)

Since

(

Bfk, fk
)

=
n
∑

l=1

βl
∣

∣

(

fk, el
)∣

∣

2
,

a + 1 ≤ βl ≤ 2n + a − 1,

(4.5)
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it follows that

(a + 1)
∥

∥fk
∥

∥

2 ≤ (

Bfk, fk
) ≤ (2n + a − 1)

∥

∥fk
∥

∥

2 =⇒ a + 1 ≤ Re[xnk(a)] ≤ 2n + a − 1. (4.6)

Regarding the imaginary part of xnk(a), it follows using the Schwarz inequality that

|Im[xnk(a)]| ≤ ‖S‖ ≤ 2‖A‖ = 2 sup
k

√

−k(a + k) ≤ 2
√

−n(a + 1). (4.7)

From (2.1) and (2.2) it follows that (since a < 0)

1 +
2n − 1

a
≤ Re[xnk(a)]

a
≤ 1 +

1
a

2

√−n(a + 1)
a

≤ Im[xnk(a)]
a

≤ −2
√−n(a + 1)

a

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=⇒ lim
a→−∞

xnk(a)
a

= 1. (4.8)

Proof of Theorem 2.4. The Ultraspherical polynomials P
(λ)
n (x) satisfy the recurrence relation

(3.1) for

α̃n =
n + 1

2(n + λ)
, ˜βn = 0, c̃n =

n + 2λ − 1
2(n + λ)

. (4.9)

However, by setting first Pλ
n (x) = R

(λ)
n+1(x) and then R

(λ)
n (x) =

√

nUn/(n + λ − 1)Q(λ)
n (x),

where U0 = 0, U1 = λ, and Un = ((n + 2λ − 2)/n)Un−1, for n ≥ 2, one obtains as in [22]
a relation for Q(λ)

n (x) of the form (3.2)with

αn =
1
2

√

n(n + 2λ − 1)
(n + λ)(n + λ − 1)

, βn = 0. (4.10)

For λ < −n, the sequence αn is purely imaginary and can be rewritten as αn =
i(1/2)

√

(−n)(2λ + n − 1)/(n + λ)(n + λ − 1). As before the zeros xnk(λ) of P
(λ)
n (x) are the same

with the eigenvalues of the operator T = AV ∗ + VA + B, where

Aek = i

√

(−k)(2λ + k − 1)
(k + λ)(k + λ − 1)

ek, Bek = 0, k = 1, . . . , n. (4.11)

Due to (3.9), it is obvious that the zeros xnk(λ) of P
(λ)
n (x) are purely imaginary and that

xnk(λ) = i
(

Sfk, fk
)

. (4.12)



10 Abstract and Applied Analysis

As before, it follows using the Schwarz inequality that

|xnk(λ)| ≤ ‖S‖ ≤ 2‖A‖ = 2 sup
k

1
2

√

(−k)(2λ + k − 1)
(k + λ)(k + λ − 1)

≤
√

−2λn
(n + λ)(λ + n − 1)

. (4.13)

Relation (2.6) follows immediately from (2.5).

Proof of Theorem 2.6. The Jacobi polynomials P (a,β)
n (x) satisfy the recurrence relation (3.1) for

α̃n =
2(n + 1)

(

n + a + β + 1
)

(

2n + a + β + 1
)(

2n + a + β + 2
) ,

˜βn =
β2 − a2

(

2n + a + β + 2
)(

2n + a + β
) ,

c̃n =
2(n + a)

(

n + β
)

(

2n + a + β + 1
)(

2n + a + β
) .

(4.14)

However, by setting P
(a,β)
n (x) = UnQ

(a,β)
n (x), where U−1 = 0, U0 = 1, and

Un+1 =

√

√

√

√

(n + a + 1)
(

n + β + 1
)(

2n + a + β + 1
)

(n + 1)
(

n + a + β + 1
)(

2n + a + β + 3
)Un, for n ≥ 1, (4.15)

one obtains as in [23] a relation for Q(a,β)
n (x) of the form (3.1) but now with

α̃n =

√

√

√

√

4(n + 1)(n + a + 1)
(

n + β + 1
)(

n + a + β + 1
)

(

2n + a + β + 2
)2(2n + a + β + 1

)(

2n + a + β + 3
)

= an,

˜βn =
β2 − a2

(

2n + a + β + 2
)(

2n + a + β
) = βn, c̃n = an−1.

(4.16)

For a < −n, β < −n, a+β < −2(n+1) the sequence αn is purely imaginary and can be rewritten
as

αn = i

√

√

√

√− 4(n + 1)(n + a + 1)
(

n + β + 1
)(

n + a + β + 1
)

(

2n + a + β + 2
)2(2n + a + β + 1

)(

2n + a + β + 3
)

. (4.17)
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It is obvious from what already mentioned that the zeros xnk(a, β) of P
(a,β)
n (x) are the same

with the eigenvalues of the operator T = AV ∗ + VA + B, where

AEk = i

√

√

√

√− 4(k + 1)(k + a + 1)
(

k + β + 1
)(

k + a + β + 1
)

(

2k + a + β + 2
)2(2k + a + β + 1

)(

2k + a + β + 3
)

Ek, k = 0, . . . , n − 1,

BEk =

(

β2 − a2)

(

2k + a + β + 2
)(

2k + a + β
)Ek, k = 0, . . . , n − 1.

(4.18)

Due to (3.9), it is obvious that

Re[xnk(a)] =
(

Bfk, fk
)

, Im[xnk(a)] =
(

Sfk, fk
)

. (4.19)

Since

(

Bfk, fk
)

=
n−1
∑

l=0

βl
∣

∣

(

fk, El

)∣

∣

2
,

β2 − a2

(

2n + a + β
)(

2n + a + β − 2
) ≤ βl ≤

β − a

a + β + 2
, for β > a,

β − a

a + β + 2
≤ βl ≤

β2 − a2

(

2n + a + β
)(

2n + a + β − 2
) , for β < a,

(4.20)

relation (2.7) follows as in the proof of Theorem 2.1.
Regarding the imaginary part of xnk(a, β), it follows using the Schwarz inequality that

∣

∣Im
[

xnk

(

a, β
)]∣

∣ ≤ ‖S‖ ≤ 2‖A‖

=⇒ ∣

∣Im
[

xnk

(

a, β
)]∣

∣ ≤ 2 sup
k

√

√

√

√− 4(k + 1)(k + a + 1)
(

k + β + 1
)(

k + a + β + 1
)

(

2k + a + β + 2
)2(2k + a + β + 1

)(

2k + a + β + 3
)

=⇒ ∣

∣Im
[

xnk

(

a, β
)]∣

∣ ≤ 2

√

√

√

√

√

−4(a + 1)
(

β + 1
)(

a + β + 1
)

n
[

(

2n + a + β
)2 − 1

]

(

2n + a + β
)2

.

(4.21)

Relation (2.9) follows immediately from relations (2.7) and (2.8). Relation (2.10) follows as in
the proof of Theorem 2.1.

Proof of Theorem 2.10. The Al-Salam Carlitz II orthonormal polynomials P (a)
n (x; q) satisfy the

recurrence relation (3.1) for

α̃n =

√

√

√a
(

1 − qn+1
)

q2n+1
, ˜βn =

a + 1
qn

, c̃n = ãn−1, (4.22)
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where 0 < q < 1. For a < 0, the sequence α̃n is purely imaginary and can be rewritten as α̃n =

i
√

((−a)(1 − qn+1))/q2n+1. It is obvious from what already mentioned that the zeros xnk(a; q)
of Pn(x; q) are the same with the eigenvalues of the operator T = AV ∗ + VA + B, where

AEk = i

√

√

√

√

(−a)(1 − qk+1
)

q2k+1
Ek, BEk =

a + 1
qk

Ek, k = 0, . . . , n − 1. (4.23)

Due to (3.9), it is obvious that

Re
[

xnk

(

a; q
)]

=
(

Bfk, fk
)

, Im
[

xnk

(

a; q
)]

=
(

Sfk, fk
)

. (4.24)

Since

(

Bfk, fk
)

=
n−1
∑

l=0

βl
∣

∣

(

fk, el
)∣

∣

2
,

a + 1
qn−1

≤ βl ≤ a + 1, for a ≤ −1,

a + 1 ≤ βl ≤ a + 1
qn−1

, for − 1 < a < 0,

(4.25)

relation (2.12) follows as in the proof of Theorem 2.1.
Regarding the imaginary part of xnk(a; q), it follows using the Schwarz inequality that

∣

∣Im
[

xnk

(

a; q
)]∣

∣ ≤ ‖S‖ ≤ 2‖A‖ = 2 sup
k

√

√

√

√

(−a)(1 − qk+1
)

q2k+1
≤ 2

√

(−a)(1 − qn
)

q2n−1
. (4.26)

Relation (2.14) follows as in the proof of Theorem 2.1.

Proof of Theorem 2.12. The q-Laguerre orthonormal polynomials L
(a)
n (x; q) satisfy the recur-

rence relation (3.1) for

α̃n =

√

√

√

(

1 − qn+1
)(

1 − qn+a+1
)

q4n+2a+3
, ˜βn =

1 − qn+1 + q − qn+a+1

q2n+a+1
, c̃n = ãn−1, (4.27)

where 0 < q < 1. For a < −n, the sequence α̃n is purely imaginary and can be rewritten as

α̃n = i
√

((1 − qn+1)(qn+a+1 − 1))/q4n+2a+3. It is obvious from what already mentioned that the
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zeros xnk(a; q) of L
(a)
n (x; q) are the samewith the eigenvalues of the operator T = AV ∗+VA+B,

where

AEk = i

√

√

√

√

(

1 − qk+1
)(

qk+a+1 − 1
)

q4k+2a+3
Ek,

BEk =
1 − qk+1 + q − qk+a+1

q2k+a+1
Ek, k = 0, . . . , n − 1.

(4.28)

Due to (3.9), it is obvious that

Re
[

xnk

(

a; q
)]

=
(

Bfk, fk
)

, Im
[

xnk

(

a; q
)]

=
(

Sfk, fk
)

. (4.29)

Since

(

Bfk, fk
)

=
n−1
∑

l=0

βl
∣

∣

(

fk, el
)∣

∣

2
,

1 − qa+1

q2n+a−1
≤ βl ≤

1 + q

q2n+a−1
− qn+a + qn

qa+1
,

(4.30)

relation (2.15) follows as in the proof of Theorem 2.1.
Regarding the imaginary part of xnk(a; q), it follows using the Schwarz inequality that

∣

∣Im
[

xnk

(

a; q
)]∣

∣ ≤ ‖S‖ ≤ 2‖A‖ = 2sup
k

√

√

√

√

(

1 − qk+1
)(

qk+a+1 − 1
)

q4k+2a+3

=⇒ ∣

∣Im
[

xnk

(

a; q
)]∣

∣ ≤ 2

√

√

√

(

1 − qn
)(

qa+1 − 1
)

q4n+2a−1
.

(4.31)
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