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In 1993, Peloso introduced a kind of operators on the Bergman space A2(B) of the unit ball that
generalizes the classical Hankel operator. In this paper, we estimate the essential norm of the
generalized Hankel operators on the Bergman space Ap(B) (p > 1) of the unit ball and give an
equivalent form of the essential norm.

1. Introduction

Let B be the open unit ball inCn,m the Lebesguemeasure onCn normalized so thatm(B) = 1,
H(B) denotes the class of all holomorphic functions on B. The Bergman space A2(B) is the
Banach space of all holomorphic functions f on B such that

∫
B
|f(z)|2dm(z) < ∞. It is easy to

show that A2(B) is a closed subspace of L2(B, dm).
There is an orthogonal projection of L2(B, dm) onto A2(B), denoted by P and

Pf(z) =
∫

B

K(z,w)f(w)dm(w), (1.1)

where K(z,w) = 1/(1 − 〈z,w〉)n+1 is the Bergman kernel on B.
For a function f ∈ H(B), define the Hankel operator Hf : A2(B) → A2(B)⊥ with

symbol f by

Hfg = (I − P)
(
fg
)
=
∫

B

(
f(z) − f(w)

)
K(z,w)g(w)dm(w), (1.2)

where I is the identity operator.
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Since the Hankel operatorHf is connected with the Toeplitz operator, the commutator,
the Bloch space, and the Besov space, it has been extensively studied. Important papers in this
context are [1, 2] for the case n = 1 and [3–5] for the case n > 1. It is known thatHf is bounded
on A2(B) if and only if f ∈ β(B) andHf is compactA2(B) if and only if f ∈ β0(B), where

β(B) =

{

f ∈ H(B) : sup
z∈B

(
1 − |z|2

)∣∣Rf(z)
∣∣ < ∞

}

,

β0(B) =
{
f ∈ H(B) :

(
1 − |z|2

)∣∣Rf(z)
∣∣ −→ 0, as |z| −→ 1

}
.

(1.3)

Rf is the radial derivative of f defined by

Rf(z) =
n∑

j=1

zj
∂f(z)
∂zj

. (1.4)

β(B) is called the Bloch space, and β0(B) is called the little Bloch space.
For n = 1, f ∈ H(D) (D is the open unit disc), Hf is in the Schatten class Sp (1 < p <

∞) if and only if f ∈ Bp(D); Hf ∈ Sp (0 < p ≤ 1) if and only if f is a constant, where

Bp(D) =
{
f ∈ H(D) : f ′(z)

(
1 − |z|2

)
∈ Lp(dλ)

}
, p > 1, (1.5)

and dλ(z) = (1 − |z|2)−2dm(z) is the invariant volume measure on D, Bp(D) is called the
Besov space on D. This theorem expresses that there is a cutoff of Hf at p = 1.

For n > 1, f ∈ H(B), Hf ∈ Sp (2n < p < ∞) if and only if f ∈ Bp(B), Hf ∈ Sp (0 < p ≤
2n) if and only if f is a constant, where

Bp(B) =
{
f ∈ H(B) :

(
1 − |z|2

)
Rf(z) ∈ Lp(dλ)

}
, p > n, (1.6)

and dλ(z) = (1 − |z|2)−(n+1)dm(z) is the invariant volume measure on B. Bp(B) is called the
Besov space on B. Then, the cutoff phenomenon of Hf appears at p = 2n. If c(n) denotes the
value of “cutoff,” then

c(n) =

⎧
⎨

⎩

1, n = 1,

2n, n > 1.
(1.7)

Obviously, c(n) depends on the dimension n of the unit ball.
In 1993, Peloso [3] replaced f(z) − f(w) with

Δjf(w, z) = f(w) −
∑

|α|<j

Dαf(z)
α!

(w − z)α (1.8)
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to define a kind of generalized Hankel operator:

Hf,jg(z) =
∫

B

−Δjf(w, z)K(z,w)g(w)dm(w),

H ′
f,jg(z) =

∫

B

Δjf(z,w)K(z,w)g(w)dm(w).

(1.9)

Here, (Dαf)(z) = (∂|α|f(z))/(∂zα1
1 · · ·∂zαn

n ). Clearly, if j = 1,Hf,1 andH ′
f,1 are just the classical

Hankel operator Hf . He proved that Hf,j has the same boundedness and compactness
properties asHf , but the Schatten class property of Hf,j is different from that of Hf . If n ≥ 2,
f ∈ H(B), Hf,j ∈ Sp((2n/j) < p < ∞) if and only if f ∈ Bp(B); if 0 < p ≤ (2n/j), Hf,j ∈ Sp if
and only if f is a polynomial of degree at most j − 1. So the value of “cutoff” of Hf,j is 2n/j;
this means that the cutoff constant c(n) depends not only on the dimension but also on the
degree of the polynomial

∑

|α|<j

Dαf(z)
α!

(w − z)α , (1.10)

and we are able to lower the cutoff constant by increasing j.
The cutoff phenomenon expressed that the generalized Hankel operator Hf,j defined

by Peloso and the classical Hankel operator Hf are different.
In the present paper, we will consider the generalized Hankel operators Hf,j defined

by Peloso on the Bergman space Ap(B) which is the Banach space of all holomorphic
functions f on B such that

∫
B |f(z)|pdm(z) < ∞, for p > 1.

For f(z) ∈ H(B), j is a positive integer, and we define the generalized Hankel
operators Hf,j and H ′

f,j
of order j with symbol f by

Hf,jg(z) =
∫

B

−Δjf(w, z)K(z,w)g(w)dm(w),

H ′
f,jg(z) =

∫

B

Δjf(z,w)K(z,w)g(w)dm(w),

(1.11)

where g ∈ Ap(B),

Δjf(w, z) = f(w) −
∑

|α|<j

Dαf(z)
α!

(w − z)α,

Δjf(z,w) = f(w) −
∑

|α|<j

Dαf(w)
α!

(z −w)α.

(1.12)

Luo and Ji-Huai [6] studied the boundedness, compactness, and the Schatten class
property of the generalized Hankel operatorHf,j on the Bergman spaceAp(B) (p > 1), which
extended the known results.
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We will study the essential norm of this kind of generalized Hankel operatorsHf,j and
H ′

f,j
. We recall that the essential norm of a bounded linear operator T is the distance from T

to the compact operators; that is,

‖T‖ess = inf
{‖T −K‖ : K is a compact operator

}
. (1.13)

The essential norm of a bounded linear operator T is connected with the compactness
of the operator T and the spectrum of the operator T .

We know that ‖T‖ess = 0 if and only if T is compact, so that estimates on ‖T‖ess lead to
conditions for T to be compact. Thus, we will obtain a different proof of the compactness of
the generalized Hankel operatorsHf,j andH ′

f,j
.

Throughout the paper, C denotes a positive constant, whose value may change from
one occurrence to the next one.

2. Preliminaries

For any fixed point a ∈ B − {0}, z ∈ B, define the Möbius transformation ϕa by

ϕa(z) =
a − Pa(z) − saQa(z)

1 − 〈z, a〉 , (2.1)

where sa =
√
1 − |a|2 and Pa is the orthogonal projection from Cn onto the one-dimensional

subspace [a] generated by a, Qa is the orthogonal projection from Cn onto Cn![a]. It is clear
that

Pa(z) =
〈z, a〉
|a|2

a, z ∈ Cn,

Qa(z) = z − 〈z, a〉
|a|2

a, z ∈ B.

(2.2)

Lemma 2.1. For every a ∈ B, ϕa has the following properties:

(1) ϕa(0) = a and ϕa(a) = 0,

(2) ϕa ◦ ϕa(z) = z, z ∈ B,

(3) 1/(1 − 〈ϕa(z), a〉) = (1 − 〈z, a〉)/(1 − |a|2), z ∈ B.

Proof. The proofs can be found in [7].

Lemma 2.2. For s > −1, t real, define

It(z) =
∫

B

(
1 − |w|2

)s

|1 − 〈z,w〉|n+1+s+t
dm(w), z ∈ B. (2.3)
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Then,

(1) t < 0, It(z) is bounded in B,

(2) t = 0, It(z) ∼ log(1/(1 − |z|2)) as |z| → 1−,

(3) t > 0, It(z) ∼ (1 − |z|2)−t as |z| → 1−.

Here, the notation a(z) ∼ b(z)means that the ratio a(z)/b(z) has a positive finite limit
as |z| → 1−.

Proof. This is in [7, Theorem 1.12].

Lemma 2.3. Let kξ(z) = K(z, ξ)/‖Kξ‖Lp(dm), where Kξ(z) = K(z, ξ) = 1/(1 − 〈z, ξ〉)n+1, then
kξ(z) has the following properties:

(1) ‖kξ‖Lp(dm) = 1,

(2) kξ(z) → 0 at every point z ∈ B as |ξ| → 1−.

Proof. It is obvious.

Lemma 2.4. Let Kξ(z) = K(z, ξ). Then, for any positive integer j,

(1) Hf,jKξ = −Δjf(ξ, ·)Kξ,

(2) H ′
f,j
Kξ = Δjf(·, ξ)Kξ.

Proof. The proof is obtained by the definition of Hf,j and H ′
f,j and the reproducing property

of K(z, ξ), through the direct computation to get them.

Lemma 2.5. Let j be any positive integer, f ∈ H(B), and 0 < q < ∞, then there is a constant C
independent of f , such that

(1) (1 − |z|2)j |Rjf(z)| ≤ C{∫B |Δjf(ϕz(w), z)|qdm(w)}1/q,
(2) (1 − |z|2)j |Rjf(z)| ≤ C{∫B |Δjf(z, ϕz(w))|qdm(w)}1/q,

where Rjf is the jth order radial derivative of f ,

Rjf(z) =
∞∑

k=1

kjfk(z), (2.4)

and f(z) =
∑∞

k=0 fk(z) is the homogeneous expansion.

Proof. This is in [3, Proposition 3.2].

Lemma 2.6. Let j be any positive integer, f ∈ H(B), and 0 < ρ < 1, p > 1, then

(1)
∫
B
|Δjf(w, z)|p((1 − |w|2)−ρ/|1 − 〈z,w〉|n+1)dm(w) ≤ C(1 − |z|2)−ρ(supz∈B(1 −

|z|2)j |Rjf(z)|)
p
,

(2)
∫
B |Δjf(z,w)|p((1 − |w|2)−ρ/|1 − 〈z,w〉|n+1)dm(w) ≤ C(1 − |z|2)−ρ(supz∈B(1 –

|z|2)j |Rjf(z)|)
p
.
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Proof. (1)Write F(w, z) for Δjf(w, z). Using the change of variablesw = ϕz(ξ), we obtain

∫

B

|F(w, z)|p
(
1 − |w|2

)−ρ

|1 − 〈z,w〉|n+1
dm(w)

=
∫

B

∣∣F
(
ϕz(ξ), z

)∣∣p

(
1 − ∣∣ϕz(ξ)

∣
∣2
)−ρ

∣∣1 − 〈z, ϕz(ξ)
〉∣∣n+1

(
1 − |z|2

)n+1

|1 − 〈ξ, z〉|2(n+1)
dm(ξ)

=
(
1 − |z|2

)−ρ ∫

B

∣∣F
(
ϕz(ξ), z

)∣∣p

(
1 − |ξ|2

)−ρ

|1 − 〈ξ, z〉|n+1−2ρ
dm(ξ).

(∗)

Let

1 < q′ < min

(
1
ρ
,

n + 1
n + 1 − ρ

)
(2.5)

and set q = q′/(q′ − 1). Then, applying Hölder’s inequality to (∗), we obtain

∫

B

|F(w, z)|p
(
1 − |w|2

)−ρ

|1 − 〈z,w〉|n+1
dm(w)

≤
(
1 − |z|2

)−ρ(∫

B

∣
∣F
(
ϕz(ξ), z

)∣∣pqdm(ξ)
)1/q

⎛

⎜
⎝

∫

B

(
1 − |ξ|2

)−ρq′

|1 − 〈ξ, z〉|(n+1−2ρ)q′
dm(ξ)

⎞

⎟
⎠

1/q′

.

(2.6)

Because of our choice of q′, it follows that −ρq′ > −1 and (n + 1 − 2ρ)q′ < n + 1 − ρq′. Now,
Lemma 2.2 implies that

∫

B

(
1 − |ξ|2

)−ρq′

|1 − 〈ξ, z〉|(n+1−2ρ)q′
dm(ξ) (2.7)

is bounded by a constant. Therefore, applying [3, Theorem 3.4], we get

∫

B

∣∣Δjf(w, z)
∣∣p

(
1 − |w|2

)−ρ

|1 − 〈z,w〉|n+1
dm(w) ≤ C

(
1 − |z|2

)−ρ
(

sup
z∈B

(
1 − |z|2

)j∣∣∣Rjf(z)
∣∣∣

)p

. (2.8)

(2) The proof of (2) is similar to that of (1).
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3. The Main Result and Its Proof

Theorem 3.1. Let f ∈ H(B), j any positive integer, p > 1, and the generalized Hankel operators
Hf,j , H ′

f,j defined onAp(B) by

Hf,jg(z) =
∫

B

−Δjf(w, z)K(z,w)g(w)dm(w),

H ′
f,jg(z) =

∫

B

Δjf(z,w)K(z,w)g(w)dm(w).

(3.1)

Suppose thatHf,j andH ′
f,j are bounded on Ap(B), then the following quantities are equivalent:

(1) ‖Hf,j‖ess and ‖H ′
f,j‖ess,

(2) lim|z|→ 1−(1 − |z|2)j |Rjf(z)|,
(3) lim|z|→ 1−(1 − |z|2)|Rf(z)|.

Particularly, Hf,j and H ′
f,j

are compact on Ap(B) if and only if lim|z|→ 1−(1 −
|z|2)|Rf(z)| = 0.

Proof. First, we will prove that ‖Hf,j‖ess ≥ C lim|z|→ 1−(1 − |z|2)j |Rjf(z)|. By the definition of
kξ(z) of Lemmas 2.3 and 2.4, we have

∥∥Hf,jkξ
∥∥p
Lp(dm) =

∫

B

∣∣Hf,jkξ(z)
∣∣pdm(z)

=
∫

B

∣∣∣
∣∣
Hf,j

K(z, ξ)
∥∥Kξ

∥∥
Lp(dm)

∣∣∣
∣∣

p

dm(z)

=
1

∥∥Kξ

∥∥p
Lp(dm)

∫

B

∣
∣Hf,jK(z, ξ)

∣
∣pdm(z)

=
1

∥∥Kξ

∥∥p
Lp(dm)

∫

B

∣∣Δjf(ξ, z)
∣∣p|K(z, ξ)|pdm(z)

=
1

∥∥Kξ

∥∥p
Lp(dm)

· I,

(3.2)

here I =
∫
B
|Δjf(ξ, z)|p|K(z, ξ)|pdm(z).

Use the change of variables z = ϕξ(τ) in the integral I, and recall that

dm(z) =

(
1 − |ξ|2

|1 − 〈τ, ξ〉|2
)n+1

dm(τ). (3.3)
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Thus

I =
∫

B

∣∣Δjf
(
ξ, ϕξ(τ)

)∣∣p

∣∣1 − 〈ϕξ(τ), ξ
〉∣∣p(n+1)

·
(

1 − |ξ|2
|1 − 〈τ, ξ〉|2

)n+1

dm(τ)

=
1

(
1 − |ξ|2

)(n+1)(p−1)

∫

B

∣∣Δjf
(
ξ, ϕξ(τ)

)∣∣p

|1 − 〈τ, ξ〉|(2−p)(n+1)
dm(τ)

≥ 1
(
1 − |ξ|2

)(n+1)(p−1)

(∫

B

∣∣Δjf
(
ξ, ϕξ(τ)

)∣∣dm(τ)
)p

×
(∫

B

1

|1 − 〈τ, ξ〉|(2−p)(n+1)/(1−p)
dm(τ)

)1−p

≥ C
(
1 − |ξ|2

)(n+1)(p−1)

(∫

B

∣∣Δjf
(
ξ, ϕξ(τ)

)∣∣dm(τ)
)p

≥ C
(
1 − |ξ|2

)(n+1)(p−1)

[(
1 − |ξ|2

)j∣∣
∣Rjf(ξ)

∣∣
∣
]p
.

(3.4)

Here, we have used (3) of Lemma 2.1, Hölder’s inequality for the indexes p and p/(p−1), (1)
of Lemma 2.2, and (2) of Lemma 2.5.

Therefore,

∥∥Hf,jkξ
∥∥p
Lp(dm) ≥

1
∥
∥Kξ

∥
∥p
Lp(dm)

C
(
1 − |ξ|2

)(n+1)(p−1)

[(
1 − |ξ|2

)j∣∣∣Rjf(ξ)
∣
∣∣
]p

≥ C
(
1 − |ξ|2

)(n+1)(p−1) 1
(
1 − |ξ|2

)(n+1)(p−1)

[(
1 − |ξ|2

)j∣∣
∣Rjf(ξ)

∣∣
∣
]p

= C

[(
1 − |ξ|2

)j∣∣∣Rjf(ξ)
∣∣∣
]p
.

(3.5)

So ‖Hf,jkξ‖Lp(dm) ≥ C(1 − |ξ|2)j |Rjf(ξ)|.
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For any compact operator T , by (2) of Lemma 2.3, we have ‖Tkξ‖Lp(dm) → 0 as |ξ| →
1−. Then,

∥∥Hf,j − T
∥∥ ≥ lim

|ξ|→ 1−

∥∥(Hf,j − T
)
kξ
∥∥
Lp(dm)

≥ lim
|ξ|→ 1−

(∥∥Hf,jkξ
∥∥
Lp(dm) −

∥∥Tkξ
∥∥
Lp(dm)

)

= lim
|ξ|→ 1−

∥∥Hf,jkξ
∥∥
Lp(dm)

≥ C lim
|ξ|→ 1−

(
1 − |ξ|2

)j∣∣∣Rjf(ξ)
∣
∣∣.

(3.6)

Thus, ‖Hf,j‖ess ≥ C lim|z|→ 1−(1 − |z|2)j |Rjf(z)|.
Now, we will prove that ‖Hf,j‖ess ≤ C lim|z|→ 1−(1 − |z|2)j |Rjf(z)|.
Write F(z,w) for −Δjf(z,w). For 0 < ρ < 1 and g ∈ Ap(B), let B(0, ρ) and B(0; ρ, 1)

denote the ball |z| ≤ ρ and the ring ρ < |z| < 1, respectively, then we have

Hf,jg(z) = χB(0,ρ)(z)
∫

B

F(w, z)K(z,w)g(w)dm(w)

+ χB(0;ρ,1)(z)
∫

B

F(w, z)K(z,w)g(w)dm(w)

= T1g(z) + T2g(z).

(3.7)

Here,

T1g(z) = χB(0,ρ)(z)
∫

B

F(w, z)K(z,w)g(w)dm(w),

T2g(z) = χB(0;ρ,1)(z)
∫

B

F(w, z)K(z,w)g(w)dm(w).
(3.8)

We first show that T1 is compact. Let {gl} be a sequence weakly converging to 0 and
p′ = p/(p − 1), by Hölder’s inequality, then we have

∣∣T1gl(z)
∣∣p =

∣∣∣
∣χB(0,ρ)(z)

∫

B

F(w, z)K(z,w)gl(w)dm(w)
∣∣∣
∣

p

≤ χB(0,ρ)(z)

(∫

B

|F(w, z)|
∣∣gl(w)

∣∣

|1 − 〈z,w〉|n+1
dm(w)

)p

≤ χB(0,ρ)(z)

⎛

⎜
⎝

∫

B

|F(w, z)|p′
(
1 − |w|2

)−1/p

|1 − 〈z,w〉|n+1
dm(w)

⎞

⎟
⎠

p/p′

×
∫

B

∣∣gl(w)
∣∣p
(
1 − |w|2

)1/p′

|1 − 〈z,w〉|n+1
dm(w).

(3.9)
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By Lemma 2.6, we get

∣
∣T1gl(z)

∣
∣p ≤ CχB(0,ρ)(z)

(

sup
z∈B

(
1 − |z|2

)j∣∣∣Rjf(z)
∣∣∣

)p

×
(
1 − |z|2

)−1/p′ ∫

B

∣∣gl(w)
∣∣p
(
1 − |w|2

)1/p′

|1 − 〈z,w〉|n+1
dm(w).

(3.10)

Thus,

∥∥T1gl
∥∥p
Lp(dm) =

∫

B

∣∣T1gl(z)
∣∣pdm(z)

≤ C

∫

|z|<ρ

(

sup
z∈B

(
1 − |z|2

)j∣∣∣Rjf(z)
∣∣∣

)p(
1 − |z|2

)−1/p′

×
∫

B

∣∣gl(w)
∣∣p
(
1 − |w|2

)1/p′

|1 − 〈z,w〉|n+1
dm(w)dm(z)

≤ C
(
1 − ∣∣ρ∣∣2

)−1/p′
(

sup
z∈B

(
1 − |z|2

)j∣∣∣Rjf(z)
∣
∣∣

)p

×
∫ ∫

B

∣
∣gl(w)

∣
∣p
(
1 − |w|2

)1/p′

|1 − 〈z,w〉|n+1
dm(w)dm(z)

= C
(
1 − ∣∣ρ∣∣2

)−1/p′
(

sup
z∈B

(
1 − |z|2

)j∣∣∣Rjf(z)
∣∣∣

)p

·
∫

B

∣∣gl(w)
∣∣p
(
1 − |w|2

)1/p′ ∫

B

1

|1 − 〈z,w〉|n+1
dm(z)dm(w)

≤ C
(
1 − ∣∣ρ∣∣2

)−1/p′
(

sup
z∈B

(
1 − |z|2

)j∣∣∣Rjf(z)
∣∣∣

)p

×
∫

B

∣
∣gl(w)

∣
∣p
(
1 − |w|2

)1/p′
log
(
1 − |w|2

)
dm(w)

−→ 0, as l −→ ∞.

(3.11)

So, T1 is compact.
For g ∈ Ap and p′ = p/(p − 1), by Hölder’s inequality,

∣
∣T2g(z)

∣
∣p =

∣∣
∣∣χB(0;ρ,1)(z)

∫

B

F(w, z)K(z,w)g(w)dm(w)
∣∣
∣∣

p

≤
(∫

B

χB(0;ρ,1)(z)|F(w, z)|
∣∣g(w)

∣∣

|1 − 〈z,w〉|n+1
dm(w)

)p
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≤

⎛

⎜
⎝

∫

B

χB(0;ρ,1)(z)
|F(w, z)|p′

(
1 − |w|2

)−1/p

|1 − 〈z,w〉|n+1
dm(w)

⎞

⎟
⎠

p/p′

×
∫

B

∣∣g(w)
∣∣p
(
1 − |w|2

)1/p′

|1 − 〈z,w〉|n+1
dm(w).

(3.12)

So

∥∥T2g
∥∥p
Lp(dm) =

∫

B

∣∣T2g(z)
∣∣pdm(z) ≤

∫

B

⎛

⎜
⎝

∫

B

χB(0;ρ,1)(z)
|F(w, z)|p′

(
1 − |w|2

)−1/p

|1 − 〈z,w〉|n+1
dm(w)

⎞

⎟
⎠

p/p′

·
∫

B

∣
∣g(w)

∣
∣p
(
1 − |w|2

)1/p′

|1 − 〈z,w〉|n+1
dm(w)dm(z).

(3.13)

Change the variablesw = ϕz(ξ), let

1 < q′ < min

(
p,

n + 1
n + 1 − 1/p

)
, (3.14)

and set q = q′/(q′ − 1), by Lemmas 2.1 and 2.2, then we obtain

∫

B

χB(0;ρ,1)(z)
|F(w, z)|p′(1 − |w|2)−1/p

|1 − 〈z,w〉|n+1
dm(w)

=
∫

B

χB(0;ρ,1)(z)

∣
∣F
(
ϕz(ξ), z

)∣∣p′
(
1 − ∣∣ϕz(ξ)

∣
∣2
)−1/p

∣∣1 − 〈z, ϕz(ξ)
〉∣∣n+1

(
1 − |z|2

)n+1

|1 − 〈ξ, z〉|2(n+1)
dm(ξ)

=
∫

B

χB(0;ρ,1)(z)
(
1 − |z|2

)−1/p∣
∣F
(
ϕz(ξ), z

)∣∣p′
(
1 − |ξ|2

)−1/p

|1 − 〈ξ, z〉|n+1−2/p
dm(ξ)

≤
(
1 − |z|2

)−1/p(∫

B

χB(0;ρ,1)(z)
∣∣F
(
ϕz(ξ), z

)∣∣p′qdm(ξ)
)1/q

×

⎛

⎜
⎝

∫

B

(
1 − |ξ|2

)−q′/p

|1 − 〈ξ, z〉|(n+1−2/p)q′
dm(ξ)

⎞

⎟
⎠

1/q′

≤ C
(
1 − |z|2

)−1/p(∫

B

χB(0;ρ,1)(z)
∣∣F
(
ϕz(ξ), z

)∣∣p′qdm(ξ)
)1/q

.

(3.15)
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By the same argument of [3, Theorem 3.4], we know that

(∫

B

χB(0;ρ,1)(z)
∣∣F
(
ϕz(ξ), z

)∣∣p′qdm(ξ)
)1/q

≤ C

(

sup
ρ<|z|<1

(
1 − |z|2

)j∣∣∣Rjf(z)
∣∣∣

)p′

. (3.16)

Applying Fubini’s theorem and Lemma 2.2, we have

∥∥T2g
∥∥p
Lp(dm) ≤ C

(

sup
ρ<|z|<1

(
1 − |z|2

)j∣∣
∣Rjf(z)

∣∣
∣

)p

×
∫

B

(
1 − |z|2

)−1/p′ ∫

B

∣∣g(w)
∣∣p
(
1 − |w|2

)1/p′

|1 − 〈z,w〉|n+1
dm(w)dm(z)

≤ C

(

sup
ρ<|z|<1

(
1 − |z|2

)j∣∣
∣Rjf(z)

∣∣
∣

)p
∥∥g
∥∥p
Lp(dm).

(3.17)

So

‖T2‖ ≤ C sup
ρ<|z|<1

(
1 − |z|2

)j∣∣∣Rjf(z)
∣
∣∣. (3.18)

Thus, by the definition of the essential norm, we have

∥∥Hf,j

∥∥
ess ≤ ‖T1 + T2‖ess ≤ ‖T2‖ ≤ C sup

ρ<|z|<1

(
1 − |z|2

)j∣∣
∣Rjf(z)

∣∣
∣. (3.19)

As ρ → 1, we have

∥
∥Hf,j

∥
∥
ess ≤ C lim

|z|→ 1−

(
1 − |z|2

)j∣∣∣Rjf(z)
∣∣∣. (3.20)

Similarly, we get the equality of ‖H ′
f,j
‖
ess

and lim|z|→ 1−(1 − |z|2)j |Rjf(z)|.
By [7, Theorems 3.4 and 3.5], we obtain the equality of lim|z|→ 1−(1 − |z|2)j |Rjf(z)| and

lim|z|→ 1−(1 − |z|2)|Rf(z)|.
We complete the proof of Theorem 3.1.
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