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Copyright q 2010 S.-M. Jung and J. Brzdȩk. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We investigate the approximate solutions y : [−τ,∞) → R of the delay differential equation
y′(t) = λy(t − τ)(t ∈ [0,∞)) with an initial condition, where λ > 0 and τ > 0 are real constants.
We show that they can be “approximated” by solutions of the equation that are constant on the
interval [−τ, 0] and, therefore, have quite simple forms. Our results correspond to the notion of
stability introduced by Ulam and Hyers.

1. Introduction

While investigating real world phenomena we very often use equations. In general, it is well
known that those equations are satisfied, however, with some error. Sometimes that error is
neglected and it is believed that this will have only a minor influence on the final outcome.
Since it is not always the case, it seems to be of interest to know when we can neglect the
error, why, and to what extent.

One of the tools for systematic treatment of the problem described above seems to
be the notion of Hyers-Ulam stability and some ideas inspired by it. That notion has not
actually been made very precise so far, and we still seek a better understanding of it (see, e.g.,
[1, 2]). But, roughly speaking, we might say that it is connected with the investigation of the
following question: when is a function satisfying an equation with some “small” (in some sense)
error “close” to a solution of that equation?

The study of the stability problem for functional equations starts from the famous talk
of Ulam and the partial solution of Hyers to Ulam’s problem (see [3, 4]). Thereafter, Hyers
and Ulam (see, e.g., [4–8]), but also several other authors (see, e.g., [9–12]), attempted to
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study the stability problem for various functional equations. In particular, we shouldmention
here the well-known paper [13] of Th.M. Rassias, in which he actually rediscovered the
result of Aoki [9] (cf. [14]), and which has significantly influenced research of numerous
mathematicians (see [15–21] and the references therein).

Assume that X and Y are normed spaces and that I is an open subset of X. Let F be a
class of differentiable functions mapping I into Y . If for any real ε ≥ 0 and any function y ∈ F
satisfying the differential inequality

sup
t∈I

∥
∥
∥
∥
∥

n∑

i=0

ai(t)y(i)(t) + h(t)

∥
∥
∥
∥
∥
≤ ε, (1.1)

there exists a solution y0 : I → Y of the differential equation

n∑

i=0

ai(t)y(i)(t) + h(t) = 0 (1.2)

such that

sup
t∈I

∥
∥y(t) − y0(t)

∥
∥ ≤ K(ε), (1.3)

(where K(ε) depends on ε only), then we say that the above differential equation is Hyers-
Ulam stable in the class of function F. We may use this terminology for other differential
equations. For more detailed definitions of the Hyers-Ulam stability and some discussions
and critiques of that subject, refer to [1, 2, 4, 13, 15, 16, 18–21].

Obloza seems to be the first author who has investigated the Hyers-Ulam stability of
linear differential equations (see [22, 23]) in the sense described above. Here, let us recall a
result of Alsina and Ger (see [24]):

If a differentiable function f : I → R is a solution of the differential inequality |y′(t)−y(t)| ≤
ε, where I is an open subinterval of R, then there exists a solution f0 : I → R of the differential
equation y′(t) = y(t) such that |f(t) − f0(t)| ≤ 3ε for any t ∈ I.

An analogous result for the Banach space valued functions has been proved by
Takahasi et al. [25]. For some further examples of investigations of such kind of stability
of differential equations see also [26–35].

In what follows, λ > 0 and τ > 0 stand for fixed real constants, unless clearly stated
otherwise. Moreover, F denotes the family of all continuous functions mapping the real
interval [−τ,∞) into R which are continuously differentiable in [0,∞).

In this paper, motivated by the above-mentioned outcomes on Hyers-Ulam stability,
we prove that a somewhat similar type of stability is valid for the delay differential equation

y′(t) = λy(t − τ) (1.4)

in the class of functions Fwith an initial condition. More precisely, for given real numbers ε1,
ε2 and continuous functions ξ1, ξ2 : [−τ, 0] → R with ε1 < ε2 and ξ1(t) < ξ2(t) for t ∈ [−τ, 0],
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we describe a behavior of solutions of the following problem (the delay differential inequality
with an initial condition)

ε1 ≤ y′(t) − λy(t − τ) ≤ ε2, t ≥ 0, (1.5)

ξ1(t) ≤ y(t) − y(0) ≤ ξ2(t), −τ ≤ t ≤ 0, (1.6)

and compare them with solutions of the delay equation (1.4) that are constant on the interval
[−τ, 0] (and therefore have quite simple forms). Functions satisfying those two inequalities
may be considered to be approximate solutions of (1.4).

2. An Auxiliary Theorem

Let us recall a description of a class of solutions of (1.4).

Remark 2.1. It is known that if λ/= 0 and τ > 0 are real constants, then the general solution
y : [−τ,∞) → R of the delay differential equation (1.4), which is constant on the interval
[−τ, 0], is given by

y(t) = α
[t/τ]∑

n=−1

λn+1(t − nτ)n+1

(n + 1)!
, t ∈ [−τ,∞), (2.1)

where α is an arbitrary real number and [t/τ] denotes the greatest integer that is less than or
equal to t/τ .

The following theorem will be very useful in the sequel.

Theorem 2.2. Let z, φ ∈ F. Assume that

z′(t) − λz(t − τ) ≤ φ′(t) − λφ(t − τ), t ≥ 0, (2.2)

z(t) − z(0) ≤ φ(t) − φ(0), t ∈ [−τ, 0]. (2.3)

There exist unique solutions ẑ, φ̂ ∈ F of (1.4) satisfying the initial conditions

φ̂(t) = φ(0), t ∈ [−τ, 0), (2.4)

ẑ(t) = z(0), t ∈ [−τ, 0), (2.5)

such that

z(t) − ẑ(t) ≤ φ(t) − φ̂(t), t ≥ 0. (2.6)



4 Abstract and Applied Analysis

Proof. Write y := z − φ, y0 := z(0) − φ(0) and

ŷ(t) = y0
[t/τ]∑

n=−1

λn+1(t − nτ)n+1

(n + 1)!
, t ∈ [−τ,∞). (2.7)

Clearly,

ŷ(t) = y0, t ∈ [−τ, 0), (2.8)

and by (2.2),

y′(t) ≤ λy(t − τ), t ≥ 0. (2.9)

By the induction on [t/τ]we prove that, for each t ≥ 0,

y(t) ≤ ŷ(t). (2.10)

Let [t/τ] = 0 (i.e., 0 ≤ t < τ). It follows from (2.3) and (2.9) that y′(t) ≤ λy0. If we
integrate each term from 0 to t, then we get

y(t) − y0 ≤ λy0t, (2.11)

which together with the definition of ŷ gives (2.10) (for t ∈ [0, τ)).
Now, take a nonnegative integerm and assume that inequality (2.10) is true for [t/τ] =

m, that is,

y(t) ≤ y0
m∑

n=−1

λn+1(t − nτ)n+1

(n + 1)!
, mτ ≤ t < mτ + τ. (2.12)

We are to show that this is also the case for [t/τ] = m + 1 (i.e., formτ + τ ≤ t < mτ + 2τ).
Due to (2.9), we have

∫ t

mτ+τ
y′(u)du ≤ λ

∫ t

mτ+τ
y(u − τ)du, (2.13)

and hence

y(t) ≤ λ
∫ t−τ

mτ

y(v)dv + y(mτ + τ) (2.14)

for allmτ + τ ≤ t < mτ + 2τ .
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Substitute t − τ for t in (2.12) (with mτ + τ ≤ t < mτ + 2τ) and integrate each term of
the resulting inequalities frommτ + τ to t. Then, we have

∫ t−τ

mτ

y(v)dv ≤ y0
m+1∑

n=0

λn(t − nτ)n+1

(n + 1)!
− y0

m+1∑

n=0

λn(mτ − nτ + τ)n+1

(n + 1)!
(2.15)

for anymτ + τ ≤ t < mτ + 2τ . Moreover, since y is continuous in [0,∞),

lim
t→mτ+τ

y(t) = y(mτ + τ) (2.16)

and consequently (2.12) yields

y(mτ + τ) ≤ y0
m∑

n=−1

λn+1(mτ − nτ + τ)n+1

(n + 1)!
. (2.17)

Thus, from (2.15) and (2.17), we obtain

λ

∫ t−τ

mτ

y(v)dv + y(mτ + τ) ≤ y0
m+1∑

n=−1

λn+1(t − nτ)n+1

(n + 1)!
(2.18)

for any mτ + τ ≤ t < mτ + 2τ . Hence, by (2.14) and the definition of ŷ, (2.10) holds true for
[t/τ] = m + 1 (i.e.,mτ + τ ≤ t < mτ + 2τ), as well.

Thus we have proved that (2.10) is valid for all t ≥ 0. Define

φ̂(t) = φ(0)
[t/τ]∑

n=−1

λn+1(t − nτ)n+1

(n + 1)!
, t ≥ −τ,

ẑ(t) = z(0)
[t/τ]∑

n=−1

λn+1(t − nτ)n+1

(n + 1)!
, t ≥ −τ.

(2.19)

Clearly, (2.4) and (2.5) are valid. Moreover, ŷ = ẑ − φ̂ and hence, (2.6) follows from (2.10).
The uniqueness of φ̂ and ẑ follows from Remark 2.1.

3. The Main Stability Results

Now, we present some corollaries that are immediate consequences of Theorem 2.2. They
contain stability results for (1.4).

Corollary 3.1. Let y, ψ1, ψ2 ∈ F. Assume that ψ1(0) = ψ2(0) = 0,

ψ ′
1(t) − λψ1(t − τ) ≤ y′(t) − λy(t − τ) ≤ ψ ′

2(t) − λψ2(t − τ), t ≥ 0, (3.1)

ψ1(t) ≤ y(t) − y(0) ≤ ψ2(t), t ∈ [−τ, 0]. (3.2)
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Then there is a unique solution ŷ ∈ F of (1.4) such that ŷ(t) = y(0) for t ∈ [−τ, 0) and

ψ1(t) ≤ y(t) − ŷ(t) ≤ ψ2(t), t ≥ 0. (3.3)

Proof. Observe that (3.2) implies

ψ1(t) − ψ1(0) ≤ y(t) − y(0) ≤ ψ2(t) − ψ2(0), t ∈ [−τ, 0]. (3.4)

Hence, it is enough to use Theorem 2.2, first with z = ψ1, φ = y, and next with z = y, φ = ψ2,
where

ψ̂i(t) = ψi(0)
[t/τ]∑

n=−1

λn+1(t − nτ)n+1

(n + 1)!
= 0, t ∈ [−τ,∞), (3.5)

for i = 1, 2.

Remark 3.2. Observe that, for λ > 0, the inequality in the proof of Corollary 3.1 implies that
the estimation (3.3) is actually valid for all t ≥ −τ .

It is interesting whether analogues of Corollary 3.1 and our further results can be
obtained also for λ < 0.

The next corollary is a particular case of Corollary 3.1 and corresponds to the classical
Hyers-Ulam stability results.

Corollary 3.3. Let y, ψ2 ∈ F. Suppose that ψ2(0) = 0,

∣
∣y′(t) − λy(t − τ)

∣
∣ ≤ ψ ′

2(t) − λψ2(t − τ), t ≥ 0,
∣
∣y(t) − y(0)

∣
∣ ≤ ψ2(t), t ∈ [−τ, 0].

(3.6)

Then there exists a unique solution ŷ ∈ F of (1.4) satisfying the initial condition:

ŷ(t) = y(0), t ∈ [−τ, 0), (3.7)

and such that

∣
∣y(t) − ŷ(t)

∣
∣ ≤ ψ2(t), t ≥ 0. (3.8)

Proof. Clearly we have

−ψ2(t) + ψ2(0) ≤ y(t) − y(0) ≤ ψ2(t) − ψ2(0), t ∈ [−τ, 0]. (3.9)

Hence from Theorem 2.2 with ψ1 := −ψ2, analogously as in the proof of Corollary 3.1, we get
the statement.
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Note that the functions ψ1, ψ2 in Theorem 2.2 and Corollary 3.1 can be constant only
if ψi(t) ≡ 0, i = 1, 2. Therefore the case of problem (1.5), (1.6) is a bit more complicated. It is
described by the following theorem (in particular, note that (1.6) implies (3.10)).

Theorem 3.4. Let ε1, ε2 be real numbers with ε1 ≤ ε2 and ξ1, ξ2 ∈ F be solutions of (1.4). Suppose
that y ∈ F satisfy inequality (1.5) and

ξ1(t) − ξ1(0) ≤ y(t) − y(0) ≤ ξ2(t) − ξ2(0), t ∈ [−τ, 0]. (3.10)

Then there exists unique solutions ŷ, ξ̂1, ξ̂2 ∈ F of (1.4) such that

ŷ(t) = y(0), ξ̂i(t) = ξi(0) −
εi
λ
, t ∈ [−τ, 0), i = 1, 2,

ξ1(t) − ξ̂1(t) −
ε1
λ

≤ y(t) − ŷ(t) ≤ ξ2(t) − ξ̂2(t) −
ε2
λ
, t ≥ 0.

(3.11)

Proof. Let

ψi := ξi −
εi
λ
, i = 1, 2. (3.12)

Then

ψ ′
i(t) − λψi(t − τ) = εi, i = 1, 2. (3.13)

Moreover (3.10) yields

ψ1(t) − ψ1(0) ≤ y(t) − y(0) ≤ ψ2(t) − ψ2(0), t ∈ [−τ, 0]. (3.14)

Consequently, by Theorem 2.2, there exists unique solutions ψ̂1, ψ̂2, ŷ ∈ F of (1.4) such that
ψ̂i(t) = ψi(0) and ŷ(t) = y(0) for t ∈ [−τ, 0), i = 1, 2, and

ψ1(t) − ψ̂1(t) ≤ y(t) − ŷ(t) ≤ ψ2(t) − ψ̂2(t), t ≥ 0. (3.15)

This and Remark 2.1 yield the statement.

A particular case of Theorem 3.4 is the subsequent corollary.

Corollary 3.5. Let ε ≥ 0 be a real constant, y, ξ ∈ F, and ξ be a solution of (1.4). Suppose that
|y′(t) − λy(t − τ)| ≤ ε for t ≥ 0 and there is a real number u0 with |y(t) − u0| ≤ ξ(t) for t ∈ [−τ, 0].
Then there are unique solutions ξ̂0, ŷ ∈ F of (1.4) such that (3.7) holds,

ξ̂0(t) = ξ(0) −
ε

λ
, t ∈ [−τ, 0), (3.16)
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and, for each t ≥ 0,

∣
∣y(t) − ŷ(t)

∣
∣ ≤ ξ(t) − ξ̂0(t) −

ε

λ
= ξ(t) − ξ(0) −

(

ξ(0) − ε

λ

)[t/τ]∑

n=0

λn+1(t − nτ)n+1

(n + 1)!
. (3.17)

Proof. It is enough to use Theorem 3.4, with ε1 := −ε and ε2 := ε, and Remark 2.1.

4. Some Immediate Consequences

Clearly, if ξ(0) = 0, then (3.17) has the following simpler form:

∣
∣y(t) − ŷ(t)

∣
∣ ≤ ξ(t) + ε

λ

[t/τ]∑

n=0

λn+1(t − nτ)n+1

(n + 1)!
. (4.1)

If ξ(t) ≡ 0 (i.e., y(t) = u0 for t ∈ [−τ, 0]) and λ = τ = 1, then the inequality (3.17) takes the
following form:

∣
∣
∣
∣
∣
y(t) − y0

[t]∑

n=−1

(t − n)n+1

(n + 1)!

∣
∣
∣
∣
∣
≤ ε

[t]∑

n=0

(t − n)n+1

(n + 1)!
, t ≥ 0. (4.2)

From Theorem 3.4 we can derive an estimation of solutions of the equation

y′(t) = λ
(

y(t − τ) + d(t − τ)
)

, t ∈ [0,∞), (4.3)

where d ∈ F is fixed. Namely we have the following result.

Corollary 4.1. Let ξ1, ξ2 ∈ F be solutions of (1.4) and y ∈ F be a solution of (4.3) satisfying
condition (3.10). Let ε1 := inft∈[0,∞)d

′(t) and ε2 := supt∈[0,∞)d
′(t). Then, for each t ≥ 0,

ξ1(t) − ξ1(0) +
(

y(0) + d(0) +
ε1
λ

− ξ1(0)
)[t/τ]∑

n=0

λn+1(t − nτ)n+1

(n + 1)!

≤ y(t) + d(t) ≤ ξ2(t) − ξ2(0) +
(

y(0) + d(0) +
ε2
λ

− ξ2(0)
)[t/τ]∑

n=0

λn+1(t − nτ)n+1

(n + 1)!
.

(4.4)

Proof. Assume that ε1 > −∞. Write φ := y+d and z := ξ1 − (ε1/λ). Then φ′(t)−λφ(t−τ) = φ′(t)
for t ≥ 0. Consequently (2.2) holds true. Further, (3.10) implies (2.3). Now, it is enough to use
Theorem 2.2.

If ε2 <∞, we use Theorem 2.2 with z := y + d and φ := ξ2 − (ε2/λ).
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We end the paper with some estimation of solutions of a more general equation

y′(t) = λy(t − τ) + b
(

Ty(t)
)

, t ∈ [−τ,∞), (4.5)

where Z is a nonempty set, I = [−τ,∞), and T is an operator that maps the family of function
R
I into the family of function ZI , and b : Z → R.

Corollary 4.2. Let ξ1, ξ2 ∈ F be solutions of (1.4) and y ∈ F be a solution of (4.5) satisfying
condition (3.10). Let ε1 = inft∈Rb(t) and ε2 = supt∈R

b(t). Then, for each t ≥ 0,

ξ1(t) − ξ1(0) +
(

y(0) +
ε1
λ

− ξ1(0)
)[t/τ]∑

n=0

λn+1(t − nτ)n+1

(n + 1)!

≤ y(t) ≤ ξ2(t) − ξ2(0) +
(

y(0) +
ε2
λ

− ξ2(0)
)[t/τ]∑

n=0

λn+1(t − nτ)n+1

(n + 1)!
.

(4.6)

Proof. Note that ε1 ≤ y′(t) − λy(t − τ) = b(Ty(t)) ≤ ε2 for t ≥ 0. So it is enough to use
Theorem 2.2 analogously as in the proof of Corollary 4.1, first with φ = y and z := ξ1 − (ε1/λ),
and next with z := y and φ := ξ2 − (ε2/λ).
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