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Let P = (Pt)t>0 be a C0-contraction semigroup on a real Banach space B. A P-exit law is a B-valued
function t ∈]0,∞[→ ϕt ∈ B satisfying the functional equation: Ptϕs = ϕt+s, s, t > 0. Let β be a
Bochner subordinator and let P

β be the subordinated semigroup of P (in the Bochner sense) by
means of β. Under some regularity assumption, it is proved in this paper that each P

β-exit law is
subordinated to a unique P-exit law.

1. Introduction

Let P := (Pt)t≥0 be a C0-contraction semigroup on a real Banach space B with generator
(A,D(A)). A P- exit law is a B-valued function t ∈ ]0,∞[→ ϕt ∈ B satisfying the functional
equation:

Ptϕs = ϕt+s, s, t > 0. (1.1)

Exit laws are introduced by Dynkin (cf. [1]). They play an important role in the framework
of potential theory without Green function. Indeed, they allow in this case, an integral
representation of potentials and explicit energy formulas. Moreover, this notion was
investigated in many papers (cf. [2–13]).In particular, the following theorem is proved in
our paper [10].

Theorem 1.1. If a P-exit law ϕ is Bochner integrable at 0 (shortly zero-integrable), this is equivalent
to,

∫1

0
‖ϕt‖dt <∞ , (1.2)



2 Abstract and Applied Analysis

then ϕ is of the form

ϕt = qPtVq
(
ϕ
) −APtVq(ϕ), t, q > 0, (1.3)

where Vq(ϕ) :=
∫∞
0 e−qsϕsds.

The present paper is devoted to investigate the subordinated abstract case where we
study the zero-integrable solution of the exit equation (1.1) after Bochner subordination.

More precisely, let β = (βt)t>0 be a Bochner subordinator, that is, a vaguely continuous
convolution semigroup of subprobability measures on [0,+∞[ and let P

β := (Pβt )t>0 be the
subordinated C0-semigroup of P in the sense of Bochner by means of β, that is,

P
β
t f :=

∫∞

0
Psfβt(ds), f ∈ B, t > 0. (1.4)

It can be seen that, for each exit law ϕ = (ϕt)t>0 for P, the function ϕβ defined by

ϕ
β
t :=

∫∞

0
ϕsβt(ds), t > 0, (1.5)

is an exit law for P
β. The function ϕβ is said to be subordinated to ϕ by means of β.

Conversely, it is natural to ask if any P
β-exit law is subordinated to some P-exit law.

In general, we do not have a positive answer (see Example 5.3 below or [2, page 1922]).
However, this problem was solved (cf. [2, 4–6]) for B = L2(m) and positive P

β-exit laws ψ,
and under some regularity assumptions on P, β, and ψ. Basing on our paper[10, Theorem 1],
we consider in this paper the zero-integrable P

β-exit laws in the abstract case. Namely, we
prove the following.

Theorem 1.2. Let ψ := (ψt)t>0 be a zero-integrable P
β-exit law satisfying the following conditions:

There exist a constant q > 0 such that:

(
PtVq

(
ψ
))

t>0 ⊂ D
(
Aβ

)
, (1.6)

∫1

0

∥∥∥AβPsVq
(
ψ
)∥∥∥βt(ds) <∞, t > 0, (1.7)

where Vq(ψ) :=
∫∞
0 e−qsψsds and (Aβ,D(Aβ)) is the associated generator to P

β. Then, ψ is
subordinated to a unique P-exit law ϕ := (ϕt)t>0. Moreover, ϕ is explicitly given by

ϕt := qPtVq
(
ψ
) −AβPtVq

(
ψ
)
. (1.8)

The conditions in Theorem 1.2 are fulfilled for the closed P
β-exit laws ψ. This is always

the case for the zero-integrable P
β-exit laws in the bounded case.
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As application, we consider the holomorphic case and we prove the following result:

Theorem 1.3. We suppose that P is aC0-contraction holomorphic semigroup on B and β be a Bochner
subordinator satisfying

∫1

0

1
s
βt(ds) <∞, t > 0. (1.9)

Then each zero-integrable P
β-exit law ψ is subordinated to a unique P-exit law ϕ. Moreover, ϕ is given

by

ϕt =
(
q + a

)
PtVq

(
ψ
) − bAPtVq(ψ) +

∫∞

0

(
PsVq

(
ψ
) − Ps+tVq(ψ))ν(ds), t > 0, (1.10)

where a, b, and ν are the parameters of β.

The condition (1.9) is fulfilled for the fractional power subordinator and the Dirac
subordinator.

2. C0-Contraction Semigroup

For the following notions and properties about C0-contraction semigroups, we will refer
essentially to [14, 15] (cf. also [16, 17]).

Let (B, ‖ · ‖) be a real Banach space and let I be the identity operator on B. For a linear
operator T : B → B, we denote also by ‖T‖ := sup‖f‖≤1‖Tf‖ the norm of T . If ‖T‖ < ∞, T is
said to be bounded.

We consider [0,∞[ endowed with its Borel field A and a measure μ on ([0,∞[,A).
We say that a property holds μ.a.e. if the set for which this property fails is μ-negligible. A
B-valued function X : ]0,∞[→ B is said simple if there exists a disjoint sequence {Ai ∈ A :
μ(Ai) < ∞}1≤i≤n and X1, . . . , Xn ∈ B such that X(t) =

∑n
i=1Xi 1Ai(t) for all t > 0. A B-valued

function X :]0,∞[→ B is also denoted by X := (Xt)t>0.
In this paper, we consider the integral in Bochner sense for functions X : ]a, b[⊂

]0,∞[→ Bwhich are μ-strongly measurable (i.e., there exists a sequence of simple functions
Xn : ]a, b[→ B satisfying limn→∞‖Xn −X‖ = 0, μ.a.e.). For such functions X, it is known that
X is μ-Bochner integrable if and only if

∫b
a ‖X(s)‖ μ(ds) < ∞ (cf. [15, page 133]). For such

functions X, it is also known that for each bounded linear operator T : B → B, we have

T

(∫b

a

X(s)μ(ds)

)
=
∫b

a

TX(s)μ(ds). (2.1)

In the sequel of this work, μ is omitted whenever it is the Lebesgue measure.

2.1. C0-Contraction Semigroups

A C0-contraction semigroup on B is a family of linear operators P := (Pt)t≥0 on B satisfying
P0 = I, Ps+t = PsPt for all s, t ≥ 0, ‖Pt‖ ≤ 1 for all t ≥ 0 and limt→ 0‖Ptf − f‖ = 0 for all f ∈ B.
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Let P be a C0-contraction semigroup on B. The associated generator A of P is defined
by

Af := lim
t→ 0

Ptf − f
t

(2.2)

on its domain D(A) := {f ∈ B : the limit in (2.2) exists in B}. It is known that

(1) A : D(A) → B is a closed linear operator;

(2) D(A) is dense in the Banach space B;

(3) the resolvent Rq := (qI −A)−1 of A exists for each q > 0.

The proof of the following useful classical properties can be found in [14, pages 4 and
108] and in [15, pages 233–240].

Lemma 2.1. Let P be a C0-contraction semigroup on B with generator (A,D(A)) and resolvent
R := (Rq)q>0.

(1) For f ∈ B and 0 ≤ a < b < ∞, the function t → Ptf is strongly measurable and the
Bochner integral

∫b
a Prfdr is well defined.

(2) For each t ≥ 0 and f ∈ D(A), we have Ptf ∈ D(A),

APtf = PtAf =
d

dt
Ptf, (2.3)

Ptf − f =
∫ t

0
A
(
Prf

)
dr. (2.4)

(3) For each t, q > 0, we have Rq =
∫∞
0 e−qsPsds, PtRq = RqPt, Rq(B) ⊂ D(A) and

lim
q→∞

qRqu = u, u ∈ B . (2.5)

Example 2.2. Let B = Cb([0,∞[) be the Banach space of bounded uniformly continuous real-
valued functions on [0,∞[ and let

Ptf(x) := f(x + t), t ≥ 0, x ≥ 0, f ∈ Cb([0,∞[). (2.6)

Then P := (Pt)t≥0 is C0-contraction semigroup with generator Af = f ′ where D(A) := {f ∈
Cb([0,∞[) : f ′ exist, f ′ ∈ Cb([0,∞[)}.
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3. Exit Equation

3.1. Exit Laws

Definition 3.1. Let P be a C0-contraction semigroup on B. A P- exit law is a B-valued function
t ∈]0,∞[→ ut ∈ Bwhich verifies the so-called exit equation:

Ptus = ut+s, s, t > 0. (3.1)

We point here that a P-exit law t → ut may be also denoted by u := (ut)t>0.

Proposition 3.2. Let P be a C0-contraction semigroup on B with generator (A,D(A)).

(1) For each P-exit law ϕ := (ϕt)t>0, the function s → ϕs is strongly measurable on ]0,∞[.

(2) For each h ∈ B, the B-valued function t → Pth is a P-exit law. It is called a closed exit law.

(3) Let h ∈ B such that (Pth)t>0 ⊂ D(A), then t → APth is a P-exit law. It is said to be
differentiable.

Proof.
The function s → Psh is strongly measurable for each h ∈ B; then for each b > 0, the

function s → ϕs+b = Ps ϕb is strongly measurable on [b,∞[. Since b > 0 is arbitrary, then u is
strongly measurable on ]0,∞[.

It is immediate from the semigroup property.
It is a consequence of the semigroup property and (2.3).

3.2. Integrable Exit Laws

Let P be a C0-contraction semigroup on B with generator (A,D(A)). In the sequel, we
consider P-exit laws t → ϕt which are Bochner integrable at 0 (shortly zero-integrable). This
is equivalent to

∫1

0
‖ϕs‖ ds <∞. (3.2)

Theorem 3.3. Let ϕ be a zero-integrable P-exit law. Then ϕ is of the form

ϕt = qPtVq
(
ϕ
) −APtVq(ϕ), t > 0, (3.3)

where q > 0 and Vq(ϕ) :=
∫∞
0 e−qsϕsds.
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Proof. Let q > 0 be fixed. Since (3.2) holds if and only if s → eωsϕs is zero-integrable for all
ω ∈ R, then using (3.1) and (3.2), we have

∫∞

0
e−qs‖ϕs‖ ds =

∫1

0
e−qs‖ϕs‖ds +

∫∞

1
e−qs‖ϕs‖ds

=
∫1

0
e−qs‖ϕs‖ds +

∫∞

1
e−qs‖Ps−1ϕ1‖ds

≤
∫1

0
e−qs‖ϕs‖ds + ‖ϕ1‖

∫∞

1
e−qsds <∞.

(3.4)

This implies that s → e−qsϕs is Bochner integrable on ]0,∞[. Hence, Vq(ϕ) is well defined
and lies in B. Moreover, by (3.1), (2.1), and (2.3), we get

PtVq
(
ϕ
)
=
∫∞

0
e−qsϕs+t ds =

∫∞

0
e−qsPsϕt ds = Rq

(
ϕt
)
, t > 0. (3.5)

Using (3.5) and (3.3) holds since

qPtVq
(
ϕ
) −APtVq(ϕ) = qRq

(
ϕt
) −ARq

(
ϕt
)
=
(
qI −A)Rq

(
ϕt
)
= ϕt. (3.6)

Corollary 3.4. Suppose that the generator A of P is bounded and let ϕ be a P-exit law. Then ϕ is
zero-integrable if and only if ϕ is closed.

Proof. If ϕt = Ptf for some f ∈ B, then t → ϕt is zero-integrable by Lemma 2.1. Conversely,
let ϕ be a P-exit law satisfying (3.2). Theorem 3.3 may be applied: ϕ is of the form

ϕt = qPtVq
(
ϕ
) −APtVq(ϕ), t > 0, (3.7)

where Vq(ϕ) :=
∫∞
0 e−qsϕsds for some q > 0.Moreover, sinceA is bounded thenD(A) = B (cf.

[16, Corollary 1.5] and therefore by (2.3), we get

ϕt = qPtVq
(
ϕ
) −APtVq(ϕ) = qPtVq

(
ϕ
) − PtAVq(ϕ) = Pt

(
qVq

(
ϕ
) −AVq(ϕ)). (3.8)

Hence, ϕ is a closed exit law.

Remark 3.5. Results similar to Theorem 3.3 are proved in our paper [10]. Indeed, the proof
given in [10] depends fundamentally on the properties of the rescaled C0-semigroup;
however, in this paper, it is based on the resolvent properties of C0-contraction semigroup.

For closed exit laws, the condition (3.2) is satisfied. However, this not the case, for
differentiable exit laws. Indeed, consider again Example 2.2 and let u(x) = x sin(1/x). Then
u ∈ B and

∫1
0 ‖APtu‖dt = ∞.
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We consider Example 2.2 and we define

ϕat (x) :=
1

(x + t)a
, a > 0, t > 0, x ≥ 0. (3.9)

It is proved in [10] that ϕa := (ϕat )t>0 is a P-exit law neither closed nor differentiable and∫1
0 ‖ϕs‖ds <∞ if and only if a ∈ ]0, 1[.

4. Subordination of C0-Contraction Semigroup

4.1. Bochner Subordinator

We consider R endowed with its Borel σ-field. We denote by εt the Dirac measure at point
t. Moreover, for each bounded measure μ on [0,∞[, L denotes its Laplace transform, that is,
L(μ)(r) :=

∫∞
0 exp(−rs)μ(ds) for r > 0.

For the following classical notions, we refer the reader to [17–19].
A Bochner subordinator β := (βt)t>0 is a vaguely continuous convolution semigroup of

subprobability measures on [0,+∞[.
Let β be a Bochner subordinator. The associated Bernstein function f is defined by the

Laplace transform

L(
βt
)
(r) = exp

(−tf(r)), r, t > 0. (4.1)

In fact, (4.1) establishes a one-to-one correspondence between convolution semigroups
β := (βt)t≥0 and Bernstein functions f (cf. [18, Theorem 9.8]). In fact, f admits the
representation

f(r) = a + br +
∫∞

0

(
1 − exp(−rs))ν(ds), r > 0, (4.2)

where a, b ≥ 0 and ν is a measure on ]0,∞[ verifying
∫∞
0 (s/(s+ 1))ν(ds) <∞. They are called

parameters of β or of f .

Example 4.1. The fractional power subordinator ηα := (ηαt )t≥0 of index α ∈]0, 1[ is defined by its
Laplace transform L(ηαt )(r) = exp(−trα) for all r, t > 0.

The Γ-subordinator γ := (γt)t≥0 is defined by

γt(ds) := 1]0,∞[(s)
(

1
Γ(t)

)
st−1 exp(−s)ds, t ≥ 0. (4.3)

The Poisson subordinator τ := (τt)t≥0 of jump c > 0 is defined by

τt := exp(−ct)
∞∑
n=0

(ct)n

n!
εn, t ≥ 0. (4.4)

The Dirac subordinator ε := (εt)t≥0.
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4.2. Bochner Subordination

Let P be a C0-contraction semigroup on B and let β be a Bochner subordinator. For every t > 0
and for every u ∈ B, we may define

P
β
t u :=

∫∞

0
Psuβt(ds). (4.5)

Then P
β := (Pβt )t>0 is aC0-contraction semigroup on B (see, e.g., [17, Theorem 4.3.1]). It is said

to be subordinated to P in the sense of Bochner by means of β. In what follows, we index by
“β” all entities associated to P

β. In particular,Aβ is the associated generator and Rβ := (Rβ
q)q>0

its associated resolvent.
LetAβ be the generator of P

β. The following two remarks will be used throughout this
paper: D(A) is a subset of D(Aβ) (cf. [17, page 299]) and

Aβu = −au + bAu +
∫∞

0
(Ptu − u)ν(dt), u ∈ D(A), (4.6)

where a, b, and ν are given in (4.2).

Lemma 4.2. There exist some constants K1, K2 > 0 such that

∫∞

0
‖Psu − u‖ν(ds) ≤ K1‖u‖ +K2‖Au‖, u ∈ D(A). (4.7)

Proof. Let u ∈ D(A). Using the semigroup property and (4.6), we have

∫∞

0
‖Psu − u‖ν(ds) ≤

∫1

0
‖Psu − u‖ν(ds) +

∫∞

1
‖Psu − u‖ν(ds)

≤
∫1

0

∥∥∥∥
∫ s

0
PrAudr

∥∥∥∥ν(ds) + 2‖u‖
∫∞

1
ν(ds)

≤
(∫1

0
sν(ds)

)
‖Au‖ + 2‖u‖

(∫∞

1
ν(ds)

)
.

(4.8)

Hence, (4.7) holds for K1 := 2
∫∞
1 ν(ds) and K2 :=

∫1
0 sν(ds).

Proposition 4.3. Let P be a C0-contraction semigroup on B, β a Bochner subordinator, and P
β be the

subordinated to P by means of β. Then

PtA
βh = AβPth, t > 0, h ∈ D

(
Aβ

)
. (4.9)

In particular, we have Pt(D(Aβ)) ⊂ D(Aβ) for all t > 0.
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Proof.

Step 1. First we suppose that h ∈ D(A). From Lemma 4.2,

∫∞

0
‖Psh − h‖ν(ds) <∞. (4.10)

So by using (2.1), we get

Pt

∫∞

0
(Psh − h)ν(ds) =

∫∞

0
(PsPth − Pth)ν(ds), t > 0. (4.11)

Combining (2.3), (4.6), and (4.11), we have

PtA
βh = −aPth + bPtAh + Pt

∫∞

0
(Psh − h)ν(ds)

= −aPth + bAPth +
∫∞

0
(PsPth − Pth)ν(ds)

= AβPth.

(4.12)

Step 2. Now, we suppose that h ∈ D(Aβ). Let R := (Rq)q>0 be the associated resolvent to P

and let q, t > 0. Since Rq(B) ⊂ D(A), then from Step 1 and Lemma 2.1, we have

PtA
βRqh = AβPtRqh = AβRqPth. (4.13)

Hence, by the contraction property and (4.13), we get

‖PtAβh −AβPth‖ ≤ ‖PtAβh − qPtAβRqh‖ + ‖qAβRqPth −AβPth‖

≤ ‖Aβh −AβqRqh‖ + ‖AβqRqPth −AβPth‖.
(4.14)

Finally, since Aβ is closed then by (2.5) and by letting q ↑ ∞, (4.9) holds.

5. Subordinated Exit Law

Let P be a C0-contraction semigroup with generator (A,D(A)), let β be a Bochner
subordinator, and let P

β be the subordinated to P by means of β with generator (Aβ,D(Aβ)).

Definition 5.1. Let ϕ be a P-exit law and define(1.5). If the family of Bochner integrals (1.5) is
well defined, it easy to verify that ϕβ := (ϕβt )t>0 is a P

β-exit lawwhich is said to be subordinated
to ϕ in the Bochner sense by means of β. Notice that if ϕs = Psu for some u ∈ B, then (1.5) is just
(4.5).
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Remark 5.2.

(1) Subordination problem: conversely, let ψ be a P
β-exit law, does there exist a P-exit law

ϕ such that ψ is subordinated to ϕ?

In this paper, we study this problem of P
β-exit laws which are Bochner integrable

at 0.

(2) The condition of zero-integrability is not necessary. Indeed, if we take βt = εt, then
P
β = P and the subordination problem is solved for each P

β-exit law ψ since ψβ = ψ.

Example 5.3. Let B = L1(λ1)where λ1 is the Lebesgue measure on R and let P := (Pt)t>0 be the
left uniform translation on B, that is, Ptu := εt ∗ u for t ≥ 0 and u ∈ B. It can be seen that each
P-exit law ϕ is closed, that is, of the form ϕt = Ptu for some fixed u ∈ B.

On the other hand, let η1/2 := (η1/2t )t>0 be the fractional powers subordinator of
index 1/2. From [18, page 71], η1/2t is absolutely continuous with density Gt(s) =
(1/

√
4π)ts−3/2 exp(−t2/4s) for all t, s > 0. The extension of Gt by 0 on R is denoted by Gt.

So, Pη
1/2

t u = Gt ∗ u for all t > 0 and u ∈ B. In particular,

P
η1/2

t Gs(x) = Gt ∗Gs(x) = Gs+t(x), s, t > 0, x ∈ R, (5.1)

by the convolution semigroup property of η1/2. Therefore, the family G := (Gt)t>0 is a P
η1/2 -

exit law. Moreover, G is zero-integrable (By using the change of variables y = t−2s, we have
‖Gt‖ = ‖G1‖ for all t > 0). But there exists no u ∈ B such that Gt = Gt ∗ u for each t > 0.

Hence, not every zero-integrable P
η1/2 -exit law is subordinated to a P-exit law, because

each P-exit law is closed, while this is not the case for all zero-integrable P
η1/2 -exit law.

Remark 5.4. Example 5.3 proves that we need to add some condition in order to solve
the subordination problem. Next, we will suppose that ψ := (ψt)t>0 satisfies the following
conditions.

(H): There exists a constant q > 0 such as(1.6) and (1.7) where Vq(ψ) :=
∫∞
0 e−qsψsds.

Theorem 5.5. Let P be aC0-contraction semigroup on B and let β be a Bochner subordinator. Suppose
that ψ is a zero-integrable P

β-exit law satisfying (H). Then ψ is subordinated to a unique P-exit law
ϕ := (ϕt)t>0. Moreover, ϕ is explicitly given by

ϕt := qPtVq
(
ψ
) −AβPtVq

(
ψ
)
, t > 0, (5.2)

where q and Vq are given by (H).

Proof. Since (PtVq(ψ))t>0 ⊂ D(Aβ), then the family ϕ := (ϕt)t>0 defined by (5.2) is well defined
and lies in B. Moreover, by (5.2) and (4.9), we get

Psϕt = Ps
(
qPtVq

(
ψ
) −AβPtVq

(
ψ
))

= qPs+tVq
(
ψ
) −AβPs+tVq

(
ψ
)
= ϕs+t, (5.3)
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which implies that ϕ := (ϕt)t>0 is a P-exit law. Now using (1.6) and (4.9), we have

∫∞

1
‖AβPsVq

(
ψ
)‖βt(ds) =

∫∞

1
‖AβPs−1P1Vq

(
ψ
)‖βt(ds)

=
∫∞

1
‖Ps−1AβP1Vq

(
ψ
)‖βt(ds)

≤
∫∞

1
‖AβP1Vq

(
ψ
)‖βt(ds)

≤ βt([1,∞[)‖AβP1Vq
(
ψ
)‖ <∞,

(5.4)

and by (1.7), we conclude that

∫∞

0
‖AβPsVq

(
ψ
)‖βt(ds) <∞, t > 0. (5.5)

Therefore, from (5.5), we have

∫∞

0
‖ϕs‖βt(ds) =

∫∞

0
‖qPsVq

(
ψ
) −AβPsVq

(
ψ
)‖βt(ds)

≤ q
∫∞

0
‖PsVq

(
ψ
)‖βt(ds) +

∫∞

0
‖AβPsVq

(
ψ
)‖βt(ds)

≤ q βt([0,∞[)‖Vq
(
ψ
)‖ +

∫∞

0
‖AβPsVq

(
ψ
)‖βt(ds) <∞.

(5.6)

Hence, the subordinated ϕβ :=(ϕβt )t>0 defined by (1.5) is well defined.
On the other hand, for all s, t > 0, we have

Psϕ
β
t

(1.5)
= Ps

∫∞

0
ϕrβt(dr)

(2.1)
=

∫∞

0
Psϕrβt(dr)

(3.1)
=

∫∞

0
ϕr+tβt(dr) =

∫∞

0
Prϕsβt(dr)

= Pβt ϕs
(8)
= P

β
t

(
PsVq

(
ψ
) −AβPsVq

(
ψ
))

(2.3)
= PsP

β
t Vq

(
ψ
) −AβPsP

β
t Vq

(
ψ
) (18)

= Ps
(
P
β
t Vq

(
ψ
) −AβP

β
t Vq

(
ψ
))

= Psψt

(5.7)

by using Theorem 3.3 since ψ is Bochner integrable at 0. Therefore,

ψt = P
β

t/2ψt/2 =
∫∞

0
Psψt/2βt/2(ds) =

∫∞

0
Psϕ

β

t/2βt/2(ds) = P
β

t/2ϕ
β

t/2 = ϕ
β
t , (5.8)

which implies that ψ = ϕβ.
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Finally, let us prove the uniqueness: Let φ := (φt)t>0 be a P-exit law such that ψ = φβ.
Since for all s, t > 0, we have

Psφ
β
t = Ps

∫∞

0
φrβt(dr)

(2.1)
=

∫∞

0
Psφrβt(dr)

(3.1)
=

∫∞

0
φr+tβt(dr)

=
∫∞

0
Prφsβt(dr)

(4.4)
= P

β
t φs,

(5.9)

then for all t > 0,

PtVq
(
ψ
)
=
∫∞

0
e−sqPtφ

β
sds =

∫∞

0
e−sqPβs φtds = R

β
q

(
φt
)
. (5.10)

Therefore, from (5.2), we have

ϕt = qR
β
q

(
φt
) −AβR

β
q

(
φt
)
=
(
qI −Aβ

)
R
β
q

(
φt
)
= φt, t > 0. (5.11)

Remark 5.6. In addition, if Pt(Vq(ψ))t>0 ⊂ D(A), then from (4.6), ϕ is of the form

ϕt =
(
q + a

)
PtVq

(
ψ
) − bAPtVq(ψ) +

∫∞

0

(
PsVq

(
ψ
) − Ps+tVq(ψ))ν(ds), (5.12)

where a, b, and ν are the parameters associated to β.
In particular, this is the case of each ψ satisfying (H) whenever the parameter b of β is

not zero or A is bounded. Indeed, from [17, Theorem 5.3.8], we have D(A) = D(Aβ).
If ψ satisfies (H) for some q > 0, then it satisfies (H) for all ε > 0. Indeed, by

Theorem 5.5, ψ is subordinated to some P-exit law ϕ. Moreover, exactly as (5.10), we have

PtVε
(
ψ
)
=
∫∞

0
e−sεPtψsds =

∫∞

0
e−sεPβs ϕtds = Rε

(
ϕt
)
, t, ε > 0. (5.13)

So, PtVε(ψ) ∈ D(Aβ) and

AβPtVε
(
ψ
)
= AβRβ

ε

(
ϕt
)
=
(
εI −Aβ

)
Rβ
ε

(
ϕt
) − εRβ

ε

(
ϕt
)

= ϕt − εPtVε
(
ψ
)
.

(5.14)
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Therefore, from the proof of Theorem 5.5, we have

∫1

0
‖AβPsVq

(
ψ
)‖βt(ds) =

∫1

0
‖ϕs − εPsVε

(
ψ
)‖βt(ds)

≤
∫1

0

(‖ϕs‖ + ‖εPsVε
(
ψ
)‖)βt(ds)

≤
∫1

0
‖ϕs‖βt(ds) + ε‖Vε

(
ψ
)‖

∫1

0
βt(ds).

(5.15)

Hence, (1.6) and (1.7) hold for each ε > 0.
The conditions of Theorem 5.5 are fulfilled for the natural example of P

β-exit law.
Indeed, we have the following result.

Corollary 5.7. Each closed P
β-exit law ψ, that is, ψt = P

β
t u for some u ∈ B, is subordinated to unique

exit law P-exit law ϕ := (ϕt)t>0. Moreover, ϕ is explicitly given by ϕt = Ptu for all t > 0.

Proof. Let ψ be a closed P
β-exit law. It is easy to see that ψ is zero-integrable. Moreover, for all

q > 0, we have

Vq
(
ψ
)
:=

∫∞

0
e−qsψsds =

∫∞

0
e−qsPβs u ds = Rβ

q(u),

PtVq(u) =
∫∞

0
e−qsPβs Ptuds = Rβ

q(Ptu), t > 0,

(5.16)

which implies that Vq(ψ) ∈ D(Aβ) and (PtVq(ψ))t>0 ⊂ D(Aβ). Moreover,

∫1

0
‖AβPsVq

(
ψ
)‖βt(ds) =

∫1

0
‖PsAβVq

(
ψ
)‖βt(ds)

≤
∫1

0
‖AβVq

(
ψ
)‖βt(ds) ≤ ‖AβVq

(
ψ
)‖.

(5.17)

So, ψ satisfies (H) and by Theorem 5.5, we get

ϕt =
(
qI −Aβ

)
PtVq

(
ψ
)
=
(
qI −Aβ

)
Rβ(Ptu)) = Ptu, t > 0. (5.18)

Corollary 5.8. Suppose thatA is bounded or f is bounded, then Theorem 5.5 may be applied for each
zero-integrable P

β-exit law.

Proof. According to [17, Theorem 4.3.8, page 303], Aβ is bounded if and only if A is bounded
or f is bounded. So the proof is an immediate consequence of Corollaries 3.4 and 5.7.



14 Abstract and Applied Analysis

6. Application to Holomorphic Case

Definition 6.1. Let P be a C0-contraction semigroup on B. P is said to be holomorphic if there
exists a holomorphic extension z → Pz to S := {z ∈ C

∗ : | arg z| < θ}; 0 < θ < π/2.

Remark 6.2 (Construction by Bochner subordination). Let F be the Banach algebra of complex
Borel measures on [0,∞[, with convolution as multiplication, and normed by the total
variation ‖ · ‖F . A Bochner subordinator β = (βt)t>0 is said to be of type Carasso-Kato if:

The associated parameters a = b = 0 and the mapping t → βt is continuously
differentiable from ]0,∞[ to F such that ‖(∂/∂t)βt‖F ≤ c/t as t → 0 and for some constant
c > 0.

It is proved in [19] that for each C0-contraction semigroup Q and each subordinator β
of type Carasso-Kato, the subordinated P := Q

β is a C0-contraction holomorphic semigroup.
Note that the fractional power subordinator, Γ-subordinator, and Poisson subordinator

are of type Carasso-Kato.

The proof of the following useful classical properties can be found in [14, pages 4 and
108] and in [15, pages 233–240].

Lemma 6.3. Let P be a C0-contraction holomorphic semigroup on B with generator (A,D(A)). Then
there exists a constant t > 0 such that

‖APth‖ ≤ C‖h‖
t

as t −→ 0. (6.1)

Note that the condition (1.6) from (H) is fulfilled for allC0-contraction holomorphic semigroup
P. Indeed, using the above Lemma, the range of Pt is contained in D(A), hence also in D(Aβ).

Proposition 6.4. Let β be a Bochner subordinator such as (1.9) Then,

∫1

0
‖AβPsh‖βt(ds) <∞, t > 0, h ∈ B. (6.2)

Proof. Let t > 0 and h ∈ B. Since Pth ∈ D(A), then from (4.6), we have

AβPth = −aPth + bAPth +
∫∞

0
(PsPth − Pth)ν(ds), (6.3)

where a, b, and ν are given in (4.2). By using Lemma 4.2, we have

∫∞

0
‖Ps+th − Pth‖ν(ds) ≤ K1‖Pth‖ +K2‖APth‖ ≤ K1‖h‖ +K2‖APth‖ (6.4)

for some K1, K2 > 0. Therefore, by (6.3), we conclude that

‖AβPth‖ ≤ K3‖h‖ +K4‖APth‖, (6.5)
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where K3 := a + K1 and K4 := b + K2. Moreover, combining Lemma 6.3, (1.9), and (6.5), we
have

∫1

0
‖AβPsh‖βt(ds) ≤ K3‖h‖

∫1

0
βt(ds) +K4

∫1

0
‖APsh‖βt(ds)

≤ K3‖h‖ +K4C‖h‖
∫1

0

1
s
βt(ds) <∞.

(6.6)

Hence, (6.2) holds.

Remark 6.5. The condition (1.9) holds as soon as the associated Bernstein function f satisfies

∫∞

0
e−tf(r)dr <∞, t > 0. (6.7)

Indeed by using the Fubini’s theorem, we have

∫1

0

1
s
βt(ds) ≤

∫∞

0

(∫∞

0
e−srdr

)
βt(ds) ≤

∫∞

0

(∫∞

0
e−srβt(ds)

)
dr

≤
∫∞

0
L(

βt
)
(r)dr ≤

∫∞

0
e−tf(r)dr.

(6.8)

Hence, (1.9) holds for the Dirac and the fractional power subordinators.

Theorem 6.6. Let P be a C0-contraction holomorphic semigroup on B and let β be a Bochner
subordinator satisfying (1.9). Then each zero-integrable P

β-exit law ψ is subordinated to a unique
P-exit law ϕ := (ϕt)t>0. Moreover, ϕ is explicitly given by

ϕt =
(
q + a

)
PtVq

(
ψ
) − bAPtVq(ψ) +

∫∞

0

(
PsVq

(
ψ
) − Ps+tVq(ψ))ν(ds), t > 0, (6.9)

where a, b, and ν are the parameters of β and Vq(ψ) :=
∫∞
0 e−qsψsds for some q > 0.

Proof. Let q > 0. Since Vq(ψ) :=
∫∞
0 e−qsψsds ∈ B, then from Proposition 6.4, (1.6) and (1.7)

hold. Therefore, ψ satisfies (H). So the proof is an immediate consequence of Theorem 5.5
and (4.6).

Acknowledgment

The authors want to thank professor Mohamed Hmissi for many helpful discussions on these
and related topics.



16 Abstract and Applied Analysis

References

[1] E. B. Dynkin, “Green’s and Dirichlet spaces associated with fine Markov processes,” Journal of
Functional Analysis, vol. 47, no. 3, pp. 381–418, 1982.

[2] S. Ben Othman, S. Bouaziz, and M. Hmissi, “On subordination of convolution semigroups,”
International Journal of Bifurcation and Chaos, vol. 13, no. 7, pp. 1917–1922, 2003.

[3] P. J. Fitzsimmons, “Markov process and non symmetric Dirichlet forms without regularity,” Journal of
Functional Analysis, vol. 85, pp. 287–306, 1989.

[4] F. Hmissi, “On energy formulas for symmetric semigroups,” Annales Mathematicae Silesianae, no. 19,
pp. 7–18, 2005.

[5] F. Hmissi, M. Hmissi, and W. Maaouia, “On subordinated exit laws for densities,” in Iteration Theory
(ECIT ’06), vol. 351 ofGrazerMathematische Berichte, pp. 52–65, Institut fürMathematik, Karl-Franzens-
Universität Graz, Graz, Austria, 2007.

[6] F. Hmissi and W. Maaouia, “On Bochner subordination of contraction semigroups with sector
condition,” International Journal of Applied Mathematics, vol. 18, no. 4, pp. 429–445, 2005.

[7] M. Hmissi, “Lois de sortie et semi-groupes basiques,” Manuscripta Mathematica, vol. 75, no. 3, pp.
293–302, 1992.

[8] M. Hmissi, “Sur la représentation par les lois de sortie,” Mathematische Zeitschrift, vol. 213, no. 4, pp.
647–656, 1993.

[9] M. Hmissi and H. Mejri, “On representation by exit laws for some Bochner subordinated
semigroups,” Annales Mathematicae Silesianae, vol. 22, pp. 7–26, 2008.

[10] M. Hmissi, H. Mejri, and E. Mliki, “On the abstract exit equation,” Grazer Mathematische Berichte, vol.
354, pp. 84–98, 2009.

[11] M. Hmissi, H. Mejri, and E. Mliki, “On the fractional powers of semidynamical systems,” in Iteration
Theory (ECIT ’06), vol. 351 of Grazer Mathematische Berichte, pp. 66–78, Institut für Mathematik, Karl-
Franzens-Universität Graz, Graz, Austria, 2007.

[12] M. Hmissi and E. Mliki, “On exit law for subordinated semigroups by means of C1-subordinators,”
submitted to Commentationes Mathematicae Universitatis Carolinae.

[13] H. Mejri and E. Mliki, “On the exit laws for semidynamical systems and Bochner subordination,”
IAENG International Journal of Applied Mathematics, vol. 40, no. 1, pp. 6–12, 2010.

[14] W. Arendt, A. Grabosch, G. Greiner et al., One-Parameter Semigroups of Positive Operators, vol. 1184 of
Lecture Notes in Mathematics, Springer, Berlin, Germany, 1986.

[15] K. Yosida, Functional Analysis, Springer, Berlin, Germany, 1965.
[16] K. J. Engel and N. Nagel, One-Parameter Semigroups for Linear Evolution Equations, vol. 194 of Graduate

Texts in Mathematics, Springer, Berlin, Germany, 2000.
[17] N. Jacob, Pseudo Differential Operators and Markov Processes. Vol. I: Fourier Analysis and Semigroup,

Imperial College Press, London, UK, 2003.
[18] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Ergebnisse der Mathematik

und ihrer Grenzgebiete, Band 8, Springer, New York, NY, USA, 1975.
[19] A. S. Carasso and T. Kato, “On subordinated holomorphic semigroups,” Transactions of the American

Mathematical Society, vol. 327, no. 2, pp. 867–878, 1991.


