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We prove the generalized Hyers-Ulam stability of homomorphisms and derivations on non-
Archimedean Banach algebras. Moreover, we prove the superstability of homomorphisms on
unital non-Archimedean Banach algebras and we investigate the superstability of derivations in
non-Archimedean Banach algebras with bounded approximate identity.

1. Introduction and Preliminaries

In 1897, Hensel [1] has introduced a normed space which does not have the Archimedean
property.

During the last three decades theory of non-Archimedean spaces has gained the
interest of physicists for their research in particular in problems coming from quantum
physics, p-adic strings, and superstrings [2]. Although many results in the classical normed
space theory have a non-Archimedean counterpart, their proofs are essentially different and
require an entirely new kind of intuition [3–9].

Let � be a field. A non-Archimedean absolute value on � is a function | · | : � → �

such that for any a, b ∈ � we have

(i) |a| ≥ 0 and equality holds if and only if a = 0,

(ii) |ab| = |a||b|,

(iii) |a + b| ≤ max{|a|, |b|}.
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Condition (iii) is called the strict triangle inequality. By (ii), we have |1| = | − 1| = 1. Thus, by
induction, it follows from (iii) that |n| ≤ 1 for each integer n. We always assume in addition
that | · | is non trivial, that is, that there is an a0 ∈ � such that |a0|/∈ {0, 1}.

Let X be a linear space over a scalar field � with a non-Archimedean nontrivial
valuation | · |. A function ‖ · ‖ : X → � is a non-Archimedean norm (valuation) if it satisfies
the following conditions:

(NA1) ‖x‖ = 0 if and only if x = 0;

(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ � and x ∈ X;

(NA3) the strong triangle inequality (ultrametric), namely,

∥
∥x + y

∥
∥ ≤ max

{‖x‖,∥∥y∥∥} (

x, y ∈ X). (1.1)

Then (X, ‖ · ‖) is called a non-Archimedean space.
It follows from (NA3) that

‖xm − xl‖ ≤ max
{∥
∥xj+1 − xj

∥
∥ : l ≤ j ≤ m − 1

}

(m > l), (1.2)

therefore a sequence {xm} is Cauchy in X if and only if {xm+1 − xm} converges to zero in
a non-Archimedean space. By a complete non-Archimedean space we mean one in which
every Cauchy sequence is convergent. A non-Archimedean Banach algebra is a complete
non-Archimedean algebraA which satisfies ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. For more detailed
definitions of non-Archimedean Banach algebras, we can refer to [10].

The first stability problem concerning group homomorphisms was raised by Ulam
[11] in 1960 and affirmatively solved by Hyers [12]. Perhaps Aoki was the first author who
has generalized the theorem of Hyers (see [13]).

T. M. Rassias [14] provided a generalization of Hyers’ Theorem which allows the
Cauchy difference to be unbounded.

Theorem 1.1 (T. M. Rassias). Let f : E → E′ be a mapping from a normed vector space E into a
Banach space E′ subject to the inequality

∥
∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ∥∥y∥∥p) (1.3)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f(2nx)
2n

(1.4)

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥
∥f(x) − L(x)∥∥ ≤ 2ε

2 − 2p
‖x‖p (1.5)

for all x ∈ E. Also, if for each x ∈ E the mapping f(tx) is continuous in t ∈ �, then L is �-linear.
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Moreover, Bourgin [15] and Găvruţa [16] have considered the stability problem with
unbounded Cauchy differences (see also [17–27]).

On the other hand, J. M. Rassias [28–33] considered the Cauchy difference controlled
by a product of different powers of norm. However, there was a singular case; for this
singularity a counterexample was given by Găvruţa [34]. This stability phenomenon is called
the Ulam-Găvruta-Rassias stability (see also [35]).

Theorem 1.2 (J. M. Rassias [28]). Let X be a real normed linear space and Y a real complete normed
linear space. Assume that f : X → Y is an approximately additive mapping for which there exist
constants θ ≥ 0 and p, q ∈ � such that r = p + q /= 1 and f satisfies the inequality

∥
∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ θ‖x‖p∥∥y∥∥q (1.6)

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y satisfying

∥
∥f(x) − L(x)

∥
∥ ≤ θ

|2r − 2| ‖x‖
r (1.7)

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the transformation t 	→ f(tx) is
continuous in t ∈ � for each fixed x ∈ X, then L is an �-linear mapping.

Very recently, Ravi et al. [36] in the inequality (1.6) replaced the bound by a mixed one
involving the product and sum of powers of norms, that is, θ{‖x‖p‖y‖p + (‖x‖2p + ‖y‖2p)}.

For more details about the results concerning such problems and mixed product-sum
stability (J. M.-Rassias Stability) the reader is referred to [37–49].

Khodaei and T. M. Rassias [50] have established the general solution and investi-
gated the Hyers-Ulam-Rassias stability of the following n-dimensional additive functional
equation:

n∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)

f

⎛

⎝

n∑

i=1,i /= i1,...,in−k+1

aixi −
n−k+1∑

r=1

airxir

⎞

⎠

+ f

(
n∑

i=1

aixi

)

= 2n−1a1f(x1),

(1.8)

where a1, . . . , an ∈ �− {0}with a1 /= ± 1.
In this paper, we investigate the Hyers-Ulam stability of homomorphisms and

derivations associated with functional equation (1.8).
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2. Main Results

Before taking up the main subject, for a given f : A → B between vector spaces, we define
the difference operator

Df(x1, . . . , xn) :=
n∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)

f

⎛

⎝

n∑

i=1,i /= i1,...,in−k+1

aixi −
n−k+1∑

r=1

airxir

⎞

⎠

+ f

(
n∑

i=1

aixi

)

− 2n−1a1f(x1).

(2.1)

Theorem 2.1. Let A,B be two non-Archimedean Banach algebras and let ψ : An → [0,∞), φ :
A2 → [0,∞) be functions such that

lim
m→∞

1
|a1|m

ψ
(

am1 x1, . . . , a
m
1 xn
)

= lim
k→∞

1
k
φ
(

kx, y
)

= 0 (2.2)

for all x1, . . . , xn ∈ A, and the limit

ψ̃(x) := lim
m→∞

max

{

1

|a1|�
ψ
(

a�1x, 0, . . . , 0
)

: 0 ≤ � < m
}

(2.3)

exists and limk→∞(1/k)ψ̃(kx) = 0 for all x ∈ A. Suppose that f : A → B is a function satisfying

∥
∥Df(x1, . . . , xn)

∥
∥ ≤ ψ(x1, . . . , xn),

∥
∥f
(

xy
) − f(x)f(y)∥∥ ≤ φ(x, y) (2.4)

for all x1, . . . , xn, x, y ∈ A. Then there exists a ring homomorphismH : A → B such that

∥
∥f(x) −H(x)

∥
∥ ≤ 1

|2n−1a1|
ψ̃(x) (2.5)

for all x ∈ A and

H(x)
(

H
(

y
) − f(y)) = (f(x) −H(x)

)

H
(

y
)

= 0 (2.6)

for all x, y ∈ A. Moreover, if

lim
j→∞

lim
m→∞

max

{

1

|a1|�
ψ
(

a�1x, 0, . . . , 0
)

: j ≤ � < m + j

}

= 0, (2.7)

thenH is the unique ring homomorphism satisfying (2.5).
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Proof. By [50, Theorem 4.4], there exists an additive function H : A → B which satisfies
(2.5). We have

H(x) := lim
m→∞

am1 f

(

x

am1

)

(2.8)

for all x ∈ A. Now we show thatH is a multiplicative function. It follows from (2.5) that

∥
∥f(kx) −H(kx)

∥
∥ ≤ 1

|2n−1a1|
ψ̃(kx) (2.9)

for all x ∈ A and all k ∈ �. On the other handH is additive then we have

∥
∥
∥
∥

1
k
f(kx) −H(x)

∥
∥
∥
∥
≤ 1
|2n−1a1|k

ψ̃(kx) (2.10)

for all x ∈ A and all k ∈ �. If k → ∞, then by (2.3), the right hand side of above inequality
tends to zero. It follows that

H(x) = lim
k→∞

1
k
f(kx) (2.11)

for all x ∈ A. Applying (2.3), (2.4), and (2.11) we have

H
(

xy
) −H(x)f

(

y
)

= lim
k→∞

1
k

(

f
(

kxy
) − f(kx)f(y)) = 0 (2.12)

for all x, y ∈ A. This means that

H
(

xy
)

= H(x)f
(

y
)

(2.13)

for all x, y ∈ A. From (2.13) and additivity ofH we have

H(x)H
(

y
)

= H(x) lim
k→∞

1
k
f
(

ky
)

= lim
k→∞

1
k

(

H(x)f
(

ky
))

= lim
k→∞

1
k
H
(

x
(

ky
))

= H
(

xy
)

(2.14)

for all x, y ∈ A. In other words,H is multiplicative. It follows from (2.13) and (2.14) that

H(x)
(

H
(

y
) − f(y)) = 0 (2.15)

for all x, y ∈ A. Similarly, we can show that

(

f(x) −H(x)
)

H
(

y
)

= 0 (2.16)
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for all x, y ∈ A. To prove the uniqueness property of H , let T : A → B be another ring
homomorphism which satisfies (2.5). Applying (2.11) and (2.5) we have

‖H(x) − T(x)‖ = lim
k→∞

1
k

∥
∥f
(

kxy
) − T(kx)∥∥ ≤ lim

k→∞
1
k

1
|2n−1a1|

ψ̃(kx) = 0 (2.17)

for all x ∈ A which is the desired conclusion.

Now, we establish the superstability of homomorphisms as follows.

Corollary 2.2. Let A,B be two unital non-Archimedean Banach algebras, and let ψ : An →
[0,∞), φ : A2 → [0,∞), f : A → B be functions with conditions of Theorem 2.1. Suppose that

lim
m→∞

am1 f

(

1A
am1

)

= 1B. (2.18)

Then the mapping f : A → B is a ring homomorphism.

Proof. It follows from (2.6) and (2.18) that f = H in Theorem 2.1. Hence, f is a ring
homomorphism.

Corollary 2.3. Let η : [0,∞) → [0,∞) be a function satisfying

(i) η(|a1|t) ≤ η(|a1|)η(t) for all t ≥ 0;

(ii) η(|a1|) < |a1|;

(iii) limk→∞(1/k)η(k|a1|) = 0.

Suppose that ε > 0, and let f : A → B satisfying

∥
∥Df(x1, . . . , xn)

∥
∥ +
∥
∥f
(

xy
) − f(x)f(y)

∥
∥ ≤ εMin

{
n∑

i=1

η(‖xi‖), η(‖x‖)η
(∥
∥y
∥
∥
)

}

(2.19)

for all x1, . . . , xn, x, y ∈ A. Then there exists a unique ring homomorphismH : A → B such that

∥
∥f(x) −H(x)

∥
∥ ≤ ε

|2n−1a1|
η(‖x‖) (2.20)

for all x ∈ A.

Proof. Defining ψ : An → [0,∞) and φ : A2 → [0,∞) by

ψ(x1, . . . , xn) := ε
n∑

i=1

η(‖xi‖), φ
(

x, y
)

:= η(‖x‖)η(∥∥y∥∥), (2.21)
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respectively, we have

lim
m→∞

1
|a1|m

ψ
(

am1 x1, . . . , a
m
1 xn
) ≤ lim

m→∞

(
η(|a1|)
|a1|

)m

ψ(x1, . . . , xn) = 0 (2.22)

for all x1, . . . , xn ∈ A. Hence

ψ̃(x) := lim
m→∞

max

{

1

|a1|�
ψ
(

a�1x, 0, . . . , 0
)

: 0 ≤ � < m
}

= ψ(x, 0, . . . , 0),

lim
j→∞

lim
m→∞

max

{

1

|a1|�
ψ
(

a�1x, 0, . . . , 0
)

: j ≤ � < m + j

}

= lim
j→∞

1
|a1|j

ψ
(

a
j

1x, 0, . . . , 0
)

= 0

(2.23)

for all x ∈ A. On the other hand

lim
k→∞

1
k
φ
(

kx, y
)

= lim
k→∞

1
k
η(k‖x‖)η(∥∥y∥∥) = 0 (2.24)

for all x, y ∈ A. The conclusion follows from Theorem 2.1.

Remark 2.4. The classical example of the function η is the function η(t) = tp for all t ∈ [0,∞),
where p > 1 with the further assumption that |a1| < 1.

Now, we prove the stability of derivations non-Archimedean Banach algebras by using
Theorem 2.1.

Theorem 2.5. LetA be a non-Archimedean Banach algebra, and letX be a non-Archimedean Banach
A-module. Let ψ : An → [0,∞), φ : A2 → [0,∞) be a function such that

lim
m→∞

1
|a1|m

ψ
(

am1 x1, . . . , a
m
1 xn
)

= lim
k→∞

1
k
φ
(

kx, y
)

= 0 (2.25)

for all x1, . . . , xn ∈ A, and the limit

ψ̃(x) := lim
m→∞

max

{

1

|a1|�
ψ
(

a�1x, 0, . . . , 0
)

: 0 ≤ � < m
}

(2.26)

exists and limk→∞(1/k)ψ̃(kx) = 0 for all x ∈ A. Suppose that f : A → X is a function satisfying

∥
∥Df(x1, . . . , xn)

∥
∥ ≤ ψ(x1, . . . , xn),

∥
∥f
(

xy
) − f(x)y − xf(y)∥∥ ≤ φ(x, y) (2.27)
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for all x1, . . . , xn, x, y ∈ A. Then there exists a ring derivationD : A → X such that

∥
∥f(x) −D(x)

∥
∥ ≤ 1

|2n−1a1|
ψ̃(x) (2.28)

for all x ∈ A.

Proof. It is easy to see that X⊕1 A is a non-Archimedean Banach algebra equipped with the
product

(x1, a1)(x2, a2) = (x1 · a2 + a1 · x2, a1a2) (a1, a2 ∈ A, x1, x2 ∈ X) (2.29)

and with the following �1-norm:

‖(x, a)‖ = ‖x‖ + ‖a‖ (a ∈ A, x ∈ X). (2.30)

Let us define the mapping ϕf : A → X⊕1 A by a 	→ (f(a), a). It is easy to see that ϕf :
A → X⊕1 A satisfies the conditions of Theorem 2.1. By Theorem 2.1, there exists a unique
ring homomorphismH : A → X⊕1 A such that

∥
∥H(a) − ϕf(a)

∥
∥ ≤ 1

|2n−1a1|
ψ̃(a) (a ∈ A). (2.31)

We define projection maps π1 : X⊕1 A → X and π2 : X⊕1 A → A by (x, b) 	→ x and
(x, b) 	→ b, respectively.

It follows from (2.31) that

∥
∥
(

π2 ◦ ϕf
)

(ka) − (π2 ◦H)(ka)
∥
∥ ≤ ∥∥ϕf(ka) −H(ka)

∥
∥ ≤ 1

|2n−1a1|
ψ̃(ka) (k ∈ �, a ∈ A).

(2.32)

By the additivity of mappings under consideration

(

π2 ◦ ϕ
)

(ka) = k
(

π2 ◦ ϕ
)

(a),
(

π2 ◦ ϕf
)

(ka) = π2
(

f(ka), ka
)

= ka,
(2.33)

whence, by (2.32),

‖a − (π2 ◦H)(a)‖ ≤ 1
k

1
|2n−1a1|

ψ̃(ka) (2.34)

for all k ∈ �, a ∈ A. By letting k tend to ∞ in (2.34), we obtain by (2.25) that

(π2 ◦H)(a) = a (a ∈ A). (2.35)
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Put D := π1 ◦H . Then we have

((π1 ◦H)(ab), ab) = (π1(H(ab)), π2(H(ab))) = H(ab) = H(a)H(b)

= (π1(H(a)), π2(H(a)))(π1(H(b)), π2(H(b)))

= (π1(H(a)), a)(π1(H(b)), b)

= (aπ1(H(b)) + π1(H(a))b, ab)

(2.36)

for all a, b ∈ A. It follows that D is a derivation. On the other hand, by (2.31) we have

∥
∥D(a) − f(a)∥∥ =

∥
∥π1(H(a)) − π1

(

ϕf(a)
)∥
∥ ≤ ∥∥H(a) − ϕf(a)

∥
∥ ≤ 1

|2n−1a1|
ψ̃(a) (2.37)

for all a ∈ A.
To prove the uniqueness property of D, assume that D∗ is another derivation from A

into X satisfying

∥
∥D∗(a) − f(a)∥∥ ≤ 1

|2n−1a1|
ψ̃(a) (a ∈ A). (2.38)

Then by (2.25), we have

‖D(a) −D∗(a)‖ = lim
k→∞

1
k
‖D(ka) −D∗(ka)‖ ≤ lim

k→∞

(
1
k

∥
∥D∗(a) − f(a)∥∥ + 1

k

∥
∥D(a) − f(a)∥∥

)

≤ lim
k→∞

2
k

1
|2n−1a1|

ψ̃(ka)

= 0
(2.39)

for all a ∈ A. This means thatD(a) = D∗(a) for all a ∈ A.

Corollary 2.6. Let η : [0,∞) → [0,∞) be a function satisfying

(i) η(|a1|t) ≤ η(|a1|)η(t) for all t ≥ 0;

(ii) η(|a1|) < |a1|;
(iii) limk→∞(1/k)η(k|a1|) = 0.

Suppose that ε > 0, and let f : A → X satisfying

∥
∥Df(x1, . . . , xn)

∥
∥ +
∥
∥f
(

xy
) − f(x)y − xf(y)∥∥ ≤ εMin

{
n∑

i=1

η(‖xi‖), η(‖x‖)η
(∥
∥y
∥
∥
)

}

(2.40)
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for all x1, . . . , xn, x, y ∈ A. Then there exists a unique ring derivationD : A → X such that

∥
∥f(x) −D(x)

∥
∥ ≤ ε

|2n−1a1|
η(‖x‖) (2.41)

for all x ∈ A.

Now, we would like to prove the superstability of derivations on non-Archimedean
Banach algebras.

Theorem 2.7. Let A be a non-Archimedean Banach algebra with bounded approximate identity. Let
ψ : An → [0,∞), φ : A2 → [0,∞), f : A → A be functions satisfying the conditions of
Theorem 2.5. Then f : A → A is a ring derivation.

Proof. In the proof of Theorem 2.5, we can see that

H(b)
(

H(a) − ϕf(a)
)

=
(

H(a) − ϕf(a)
)

H(b) = 0 (2.42)

for all a, b ∈ A
(

f(a) −D(a)
)

b = π1
((

f(a) −D(a)
)

b, 0
)

= π1
((

f(a) −D(a), 0
)

(D(b), b)
)

= π1
((

π1
(

H(a) − ϕf(a)
)

, 0
)

(π1(H(b)), b)
)

= π1
((

π1
(

H(a) − ϕf(a)
)

, 0
)

H(b)
)

= π1
((

(π1(H(a)), a) − (π1
(

ϕf(a)
)

, a
))

H(b)
)

= π1(0, 0)
(

by (2.42)
)

= 0

(2.43)

for all a, b ∈ A. Since A has a bounded approximate identity, then by above equation, we
have f(a) = D(a) for all a ∈ A. f is a ring derivation on A.
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