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New nonoscillation and oscillation criteria are derived for scalar delay differential equations
ẋ(t) + a(t)x(h(t)) = 0, a(t) ≥ 0, h(t) ≤ t, t ≥ t0, and ẋ(t) +

∑m
k=1 ak(t)x(hk(t)) = 0, ak(t) ≥ 0, hk(t) ≤ t,

and t ≥ t0, in the critical case including equations with several unbounded delays, without the
usual assumption that the parameters a, h, ak, and hk of the equations are continuous functions.
These conditions improve and extend some known oscillation results in the critical case for delay
differential equations.

1. Introduction

It is well known that a scalar linear equation with delay

ẋ(t) +
1
e
x(t − 1) = 0 (1.1)

has a nonoscillatory solution as t → ∞. This means that there exists an eventually positive
solution. The coefficient 1/e is called critical with the following meaning: for any α > 1/e, all
solutions of the equation

ẋ(t) + αx(t − 1) = 0 (1.2)

are oscillatory while, for α ≤ 1/e, there exists an eventually positive solution.
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In [1] the third author considered the equation

ẋ(t) + a(t)x(t − τ) = 0, (1.3)

where a : [t0,∞) → (0,∞), t0 ∈ R (throughout this paper we assume that t0 ≥ 0 is sufficiently
large), is a continuous function and the delay τ > 0 is a constant. For the critical case, he
obtained the following result.

Theorem 1.1. (a) Let an integer k ≥ 0 exists such that a(t) ≤ ak(t) if t → ∞ where

ak(t) :=
1
eτ

+
τ

8et2
+

τ

8e(t ln t)2
+ · · · + τ

8e(t ln t ln2t · · · lnkt)
2
. (1.4)

Then there exists an eventually positive solution x of (1.3).
(b) Let an integer k ≥ 2 and θ > 1, θ ∈ R, exist such that

a(t) > ak−2(t) +
θτ

8e(t ln t ln2t · · · lnk−1t)
2 (1.5)

if t → ∞. Then all solutions of (1.3) oscillate.

In this theorem for k ≥ 1, lnkt = ln(lnk−1t), ln0 t = t, t > expk−21 where expk t =
exp(expk−1t), exp0 t = t, and exp−1t = 0.

Further results on the critical case for (1.3) can be found in [2–6]. Theorem 1.1 was
generalized in [7] for the following equation with a variable delay

ẋ(t) + a(t)x(t − τ(t)) = 0, (1.6)

where a : [t0,∞) → (0,∞), t0 ∈ R, and τ : [t0,∞) → (0,∞), t0 ∈ R, are continuous functions.
The main results of this paper include the following.

Theorem 1.2 (see [7]). Let t − τ(t) ≥ t0 − τ(t0) if t ≥ t0. Let an integer k ≥ 0 exists such that
a(t) ≤ akτ(t) for t → ∞, where

akτ(t) :=
1

eτ(t)
+
τ(t)
8et2

+
τ(t)

8e(t ln t)2
+ · · · + τ(t)

8e(t ln t ln2t · · · lnkt)
2
. (1.7)

If moreover

∫ t

t−τ(t)

1
τ(ξ)

dξ ≤ 1, when t −→ ∞, (1.8)

lim
t→∞

τ(t) ·
(
1
t
ln t ln2t · · · lnkt

)

= 0, (1.9)

then there exists an eventually positive solution x of (1.6) for t → ∞.
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Theorem 1.3 (see [7]). Let one assume that t − τ(t) ≥ t0 − τ(t0) if t ≥ t0 and

a(t) ≤ 1
τ(t)

exp

[

−
∫ t

t−τ(t)

1
τ(ξ)

dξ

]

(1.10)

as t → ∞. Then there exists an eventually positive solution x of (1.6).

In this paper we obtain new nonoscillation and oscillation sufficient conditions for
(1.6) in the critical case, independent of Theorems 1.1−1.3. We also obtain nonoscillation and
oscillation conditions for equations with several delays, including equations with unbounded
delays. To the best of our knowledge, we are the first to investigate the critical case of such
equations.

2. Preliminaries

We consider a scalar delay differential equation

ẋ(t) +
m∑

i=1

bi(t)x(hi(t)) = 0, t ≥ t0, (2.1)

subject to the following conditions:
(a1) bi : [t0,∞) → [0,∞), i = 1, . . . , m, are Lebesgue measurable functions essentially

bounded in each finite interval [t0, b]with b > t0.
(a2) hi : [t0,∞) → R are Lebesgue measurable functions, hi(t) ≤ t, t ∈ [t0,∞), and

lim supt→∞ hi(t) = +∞, i = 1, . . . , m.
Along with (2.1) we consider an initial value problem

ẋ(t) +
m∑

i=1

bi(t)x(hi(t)) = f(t), t ≥ t0, (2.2)

x(t) = ϕ(t), t < t0, x(t0) = x0. (2.3)

We also assume that the following hypothesis holds:
(a3) f : [t0,∞) → R is a Lebesgue measurable function essentially bounded in each

finite interval [t0, b] with b > t0, and ϕ : (−∞, t0) → R is a Borel measurable bounded
function.

Definition 2.1. A function absolutely continuous on each interval [t0, b] with b > t0, x : R →
R, is called a solution of problem (2.2), (2.3) if it satisfies (2.2) for almost all t ∈ [t0,∞) and
equalities (2.3) for t ≤ t0.

Lemma 2.2 (see [8]). Let (a1)-(a3) hold. Then there exists exactly one solution of problem (2.2),
(2.3).

Definition 2.3. One will say that (2.1) has a nonoscillatory solution if, for some problem (2.2),
(2.3)with f(t) ≡ 0, t ≥ t0, there exists an eventually positive solution. Otherwise, all solutions
of (2.1) oscillate.
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To formulate a comparison result, consider the following equation:

ẋ(t) +
m∑

i=1

ci(t)x
(
gi(t)

)
= 0. (2.4)

Let (a1) holds with bi(t) := ci(t) and (a2) holds with hi(t) := gi(t), i = 1, 2, . . . , m.

Lemma 2.4 (see [9, 10]). Let (2.4) have a nonoscillatory solution. If

bi(t) ≤ ci(t), gi(t) ≤ hi(t), t ≥ t0, (2.5)

then (2.1) has a nonoscillatory solution as well.
Suppose that all solutions of (2.4) are oscillatory. If

bi(t) ≥ ci(t), gi(t) ≥ hi(t), t ≥ t0, (2.6)

then all solutions of (2.1) are oscillatory as well.

Lemma 2.5 (see [9, 10]). Let exist t0 such that

∫ t

mini=1,...,m{max{t0,hi(t)}}

m∑

j=1

bj(s)ds ≤ 1
e
, t ≥ t0. (2.7)

Then there exists a positive solution of (2.1) for t ≥ t0.

Lemma 2.6 (see [9, 10]). A nonoscillatory solution of (2.1) exists if and only if, for some t0, there
exists a nonnegative locally integrable function u(t) ≥ 0, t ∈ R, such that

u(t) ≥
m∑

i=1

bi(t)e
∫ t
hi(t)

u(s)ds
, t ≥ t0,

u(t) = 0, t < t0.

(2.8)

3. Differential Equation with a Single Delay

Equation (1.6) is a special case of (2.1) for m = 1, b1(t) = a(t), and h1(t) = t − τ(t).
Our first result is a simple consequence of Theorem 1.1 and Lemma 2.4. Theorem 1.1

was obtained under the assumption that a(t) and τ(t) are continuous functions. But the proof
of this theorem remains valid even for more general conditions (a1)-(a2).

Theorem 3.1. (A) Let τ > 0, 0 ≤ τ(t) ≤ τ, for t → ∞, and let condition (a) of Theorem 1.1 holds.
Then (1.6) has a nonoscillatory solution.

(B) Let τ(t) ≥ τ > 0 for t → ∞, and let condition (b) of Theorem 1.1 holds. Then all solutions
of (1.6) oscillate.
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Proof. (A) We set h1(t) := t − τ(t), g1(t) := t − τ . Obviously h1(t) ≥ g1(t) for t → ∞. By
Theorem 1.1, (1.3) has a nonoscillatory solution. By Lemma 2.4 (with m = 1, b1(t) = c1(t) =
a(t)), (1.6) also has a nonoscillatory solution.

(B) The proof of this part is much the same (using Theorem 1.1 and Lemma 2.4) as the
proof of part (A).

Theorems 1.2 and 1.3 can be applied to equations with one unbounded delay. Here, we
want to give some new nonoscillation and oscillation conditions for equations with one delay,
also including equations with unbounded delays. We remove some conditions of Theorems
1.2 and 1.3, in particular conditions (1.8) and (1.9). Moreover, the delay function τ(t) used
in Theorems 1.2 and 1.3 as a coefficient appears in our conditions in both integral and
nonintegral expressions.

For every integer k ≥ 0, δ > 0, and t → ∞we define

Ak(t) : =
1

eδτ(t)
+

δ

8eτ(t)s2
+

δ

8eτ(t)(s ln s)2
+ · · · + δ

8eτ(t)(s ln s ln2s · · · lnks)
2
, (3.1)

where

s = p(t) :=
∫ t

t0

1
τ(ξ)

dξ. (3.2)

Theorem 3.2. Let for t0 sufficiently large and t ≥ t0: τ(t) > 0 a.e. 1/τ(t) be a locally integrable
function,

lim
t→∞

(t − τ(t)) = ∞,

∫∞

t0

1
τ(ξ)

dξ = ∞, (3.3)

and let there exists t1 > t0 such that t − τ(t) ≥ t0, t ≥ t1.
(a) If there exists a δ ∈ (0,∞) such that

∫ t

t−τ(t)

1
τ(ξ)

dξ ≤ δ, t ≥ t1 (3.4)

and, for a fixed integer, k ≥ 0,

a(t) ≤ Ak(t), t ≥ t1, (3.5)

then there exists an eventually positive solution of (1.6).
(b) If there exists a δ ∈ (0,∞) such that

∫ t

t−τ(t)

1
τ(ξ)

dξ ≥ δ, t ≥ t1, (3.6)
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and, for a fixed integer k ≥ 2 and θ > 1, θ ∈ R,

a(t) > Ak−2(t) +
θδ

8eτ(t)(s ln s ln2s · · · lnk−1s)
2 (3.7)

if t ≥ t1, then all solutions of (1.6) oscillate.

Proof. (a) For the proof we will use a transformation applied to delay equations for the first
time in [11]. Consider (1.6) for t ≥ t1. Denote

h(t) := t − τ(t). (3.8)

Since, by (3.2), s > 0, p is a strictly increasing function and, hence, there exists an inverse
function t = p−1(s). Denote

y(s) := x(t) = x
(
p−1(s)

)
, l(s) := p(h(t)) = p

(
h
(
p−1(s)

))
. (3.9)

Since h(t) ≤ t, we have l(s) ≤ s (by (3.9) and (3.2)). From (3.9) we also have

l(s) =
∫h(t)

t0

1
τ(ξ)

dξ. (3.10)

Substituting x(t) = y(s) in (1.6), we have ẋ(t) = ẏ(s)/τ(t) and (using (3.9))

x(t − τ(t)) = x(h(t)) = x
(
h
(
p−1(s)

))
= x
(
p−1
[
p
(
h
(
p−1(s)

))])

= x
(
p−1(l(s))

)
= y(l(s)).

(3.11)

Hence, (1.6) takes the form

ẏ(s) + τ(t)a(t)y(l(s)) = 0, (3.12)

where τ(t)a(t) = τ(p−1(s))a(p−1(s)). Equality

y(s) = x(t) (3.13)

implies that the oscillation properties of (1.6) and (3.12) are equivalent. We have (by (3.2),
(3.10), (3.8), and (3.4))

s − l(s) =
∫ t

t0

1
τ(s)

ds −
∫h(t)

t0

1
τ(s)

ds =
∫ t

h(t)

1
τ(s)

ds =
∫ t

t−τ(t)

1
τ(s)

ds ≤ δ. (3.14)
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Hence

l(s) ≥ s − δ. (3.15)

Consider an equation

ẏ(s) + a∗
k(s)y(s − δ) = 0, (3.16)

where a∗
k(s) is defined similar to ak(t) by (1.4), where τ is replaced by δ and t by s, that is,

a∗
k(s) :=

1
eδ

+
δ

8es2
+

δ

8e(s ln s)2
+ · · · + δ

8e(s ln s ln2s · · · lnks)
2
. (3.17)

By Theorem 1.1, (3.16) has a positive solution. Equation (3.12) is of type (2.1) with

m = 1, b1(s) = τ
(
p−1(s)

)
a
(
p−1(s)

)
, h1(s) = l(s). (3.18)

Now we use comparison of Lemma 2.4 where (2.4) is replaced by (3.16), that is,

m = 1, c1(s) = a∗
k(s), g1(s) = s − δ. (3.19)

Since, by (3.5) and (3.1),

b1(s) = τ
(
p−1(s)

)
a
(
p−1(s)

)
≤ τ
(
p−1(s)

)
Ak

(
p−1(s)

)
= a∗

k(s) = c1(s) (3.20)

and, by (3.15),

g1(s) = s − δ ≤ l(s) = h1(s), (3.21)

equation (3.12) and, due to (3.13), equation (1.6) also has a positive (i.e., nonoscillatory)
solution. Part (b) can be proved in much the same way.

Now we want to compare Theorem 3.2 and Theorems 1.2 and 1.3 for equations with
unbounded delays. Note that Theorem 1.1 is not valid for such equations and Theorem 1.2
contains additional restrictions (1.8), (1.9). Theorem 1.3 is not explicitly valid for the critical
case.

Example 3.3. Let (1.6) be of the form

ẋ(t) + a(t)x
(
t

2

)

= 0, t ≥ t0 = 1, (3.22)
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where a : [1,∞) → (0,∞). Here

τ(t) =
t

2
, s = p(t) =

∫ t

t0

1
τ(ξ)

dξ =
∫ t

1

2
ξ
dξ = 2 ln t. (3.23)

We set

δ :=
∫ t

t−τ(t)

1
τ(ξ)

dξ =
∫ t

t/2

2
ξ
dξ = 2 ln 2. (3.24)

In accordance with Theorem 3.2 (case (a)where k = 0), (3.22) has a nonoscillatory solution if

a(t) ≤ A0(t) =
1

eδτ(t)
+

δ

8eτ(t)s2
=

1
(e ln 2)t

+
ln 2

8et(ln t)2
. (3.25)

Since (by Theorem 3.2, case (b) with k = 2) all solutions of (3.22) oscillate if

a(t) > A0(t) +
θδ

8eτ(t) (s ln s)2
=

1
(e ln 2)t

+
ln 2

8et(ln t)2
+

θ ln 2

8et(ln t)2(ln(2 ln t))2
, (3.26)

we conclude that the value

a(t) = a∗(t) :=
1

(e ln 2)t
+

ln 2

8et(ln t)2
(3.27)

is a critical value for the nonoscillation of (3.22).
The above statement is corroborated by Lemma 2.5 since, for m = 1, h1(t) = t − τ(t) =

t/2, b1(t) = a∗(t), and t ∈ [1, 2],
∫ t

max{t0,h1(t)}
b1(s)ds =

∫ t

t0

a∗(s)ds =
∫ t

1
a∗(s)ds =

ln t
e ln 2

≤ 1
e

(3.28)

and for t ≥ 2
∫ t

max{t0,h1(t)}
b1(s)ds =

∫ t

h1(t)
a∗(s)ds =

∫ t

t/2
a∗(s)ds

=
∫ t

t/2

1
(e ln 2)s

ds =
1
e
,

(3.29)

and (2.7) turns into an equality for t ≥ 2.

To apply Theorem 1.2, we verify condition (1.8). But, unfortunately, for (3.22)we have
∫ t

t−τ(t)

1
τ(ξ)

dξ =
∫ t

t/2

2
ξ
dξ = 2 ln 2 .= 1.386 > 1. (3.30)

Thus, this theorem is not applicable to (3.22).
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To compare Theorem 1.3 with Theorem 3.2 we set a(t) := a∗(t) (where a∗ is defined by
(3.27)) in (3.22). By Theorem 3.2, (3.22) has a nonoscillatory solution. By Theorem 1.3, (3.22)
has a nonoscillatory solution if (we set τ(t) := t/2 in (1.10))

a(t) ≤ 1
τ(t)

exp

[

−
∫ t

t−τ(t)

1
τ(ξ)

dξ

]

=
2
t
exp

[

−
∫ t

t/2

2
ξ
dξ

]

=
1
2t
. (3.31)

But in our case

a(t) = a∗(t) =
1

(e ln 2)t
+

ln 2

8et(ln t)2
≥ 1

1.885t
>

1
2t
, (3.32)

and Theorem 1.3 fails for this equation.

4. Differential Equation with Several Delays

We start with the following question: for what functions b(t) ≥ 0 and delay σ > 0 the equation

ẋ(t) + b(t)x(t − σ) +
1
eτ

x(t − τ) = 0 (4.1)

can have a nonoscillatory solution? It is easy to see that b should be vanishing.

Theorem 4.1. Let lim inft→∞ b(t) = b > 0, τ > 0, and σ ≥ 0. Then all solutions of (4.1) are
oscillatory.

Proof. Consider first the equation

ẋ(t) + bx(t − σ) +
1
eτ

x(t − τ) = 0. (4.2)

Suppose that (4.2) has a nonoscillatory solution. We set

m = 2,

b1(t) = c1(t) := b, b2(t) = c2(t) :=
1
eτ

,

g1(t) := t − σ, h2(t) = g2(t) := t − τ,

h1(t) := t.

(4.3)

Since g1(t) ≤ h1(t), by Lemma 2.4, the equation

ẋ(t) + bx(t) +
1
eτ

x(t − τ) = 0 (4.4)
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has a nonoscillatory solution. After the substitution x(t) = e−bty(t), (4.4) takes a form

ẏ(t) +
ebτ

eτ
y(t − τ) = 0. (4.5)

Since ebτ > 1, all solutions of (4.5) are oscillatory by Theorem 1.1 (b). This is a contradiction.
Hence, all solutions of (4.2) are oscillatory.

For sufficiently large t0, we have b(t) ≥ b, t ≥ t0. We set

m = 2,

b1(t) := b(t) ≥ c1(t) := b,

b2(t) = c2(t) :=
1
eτ

,

h1(t) = g1(t) := t − σ, h2(t) = g2(t) := t − τ.

(4.6)

Now, Lemma 2.4 implies the statement of the theorem.

We consider general equation (2.1)with delays subject to restrictions (a1), (a2).

Theorem 4.2. (a) Let an integer k ≥ 0 and τ > 0 exist such that, for all sufficiently large t,
inequalities

t − hi(t) ≤ τ, i = 1, 2, . . . , m, (4.7)

m∑

i=1

bi(t) ≤ ak(t), (4.8)

where ak is defined by (1.4), are valid. Then there exists an eventually positive solution x of (2.1).
(b) Let an integer k ≥ 2, τ > 0, and θ > 1 exist such that, for all sufficiently large t, inequalities

t − hi(t) ≥ τ, i = 1, 2, . . . , m, (4.9)

m∑

i=1

bi(t) ≥ ak−2(t) +
θτ

8e(t ln t ln2t · · · lnk−1t)
2
, (4.10)

where ak−2 is defined by (1.4), are valid. Then all solutions of (2.1) oscillate.

Proof. Let the assumptions of case (a) be valid. Then, by Theorem 1.1, the equation

ẋ(t) + ak(t)x(t − τ) = 0 (4.11)
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has a nonoscillatory solution. By Lemma 2.6 (with m = 1, b1(t) = ak(t), and h1(t) = t − τ),
there exist a t0 and a locally integrable function u : R → [0,∞) such that

u(t) ≥ ak(t)e
∫ t
t−τ u(s)ds, t ≥ t0,

u(t) = 0, t < t0.
(4.12)

We have

m∑

i=1

bi(t)e
∫ t
hi(t)

u(s)ds ≤
(

m∑

i=1

bi(t)

)

e
∫ t
t−τ u(s)ds ≤ ak(t)e

∫ t
t−τ u(s)ds. (4.13)

Hence

u(t) ≥
m∑

i=1

bi(t)e
∫ t
hi(t)

u(s)ds
, t ≥ t0,

u(t) = 0, t < t0.

(4.14)

Now using Lemma 2.6 again, we conclude that there exists an eventually positive solution x
of (2.1).

Let the assumptions of case (b) be valid. Suppose, on the contrary, that (2.1) has a
nonoscillatory solution. Using calculations similar to those of the previous part of the proof,
one can deduce that (by Lemma 2.6) there exist a t0 and a locally integrable function u(t) ≥ 0
such that

u(t) ≥
m∑

i=1

bi(t)e
∫ t
hi(t)

u(s)ds ≥
(

ak−2(t) +
θτ

8e(t ln t ln2t · · · lnk−1t)
2

)

e
∫ t
t−τ u(s)ds, t ≥ t0,

u(t) = 0, t < t0.

(4.15)

Hence (using Lemma 2.6 again), an equation

ẋ(t) +

(

ak−2(t) +
θτ

8e(t ln t ln2t · · · lnk−1t)
2

)

x(t − τ) = 0 (4.16)

should have a nonoscillatory solution. Due to θ > 1 being arbitrary, we easily get a
contradiction to statement (b) of Theorem 1.1.

Example 4.3. We show that equation of type (2.1)

ẋ(t) +
1

8et2
x(t − σ) +

1
e
x(t − 1) = 0 (4.17)

has a nonoscillatory solution for any positive σ ≤ 1. Indeed, set m = 2, τ = 1, h1(t) = t − σ,
h2(t) = t − τ = t − 1, b1(t) = 1/(8et2), and b2(t) = 1/e. Then (4.8), where k = 0, holds and Part
(a) of Theorem 4.2 is valid.
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Now we consider (2.1)with unbounded delays.

Theorem 4.4. Let t0 be sufficiently large, for t ≥ t0, τ(t) > 0 a.e., 1/τ(t) let locally integrable
function,

lim
t→∞

(t − τ(t)) = ∞,

∫∞

t0

1
τ(ξ)

dξ = ∞, (4.18)

lim
t→∞

hi(t) = +∞, t − hi(t) ≤ τ(t), i = 1, 2, . . . , m, (4.19)

and let there exists t1 > t0 such that t − τ(t) ≥ t0 if t ≥ t1.
(a) If there exists a σ ∈ (0,∞) such that

∫ t

t−τ(t)

1
τ(ξ)

dξ ≤ σ, t ≥ t1, (4.20)

and, for a fixed integer k ≥ 0,

m∑

i=1

bi(t) ≤ Ak(t), t ≥ t1, (4.21)

where Ak(t) is defined by (3.1), (3.2), then there exists an eventually positive solution of (2.1).
(b) If there exists a σ ∈ (0,∞) such that

∫ t

t−τ(t)

1
τ(ξ)

dξ ≥ σ, t ≥ t1, (4.22)

and, for a fixed integer k ≥ 2 and θ > 1, θ ∈ R,

m∑

i=1

bi(t) ≥ Ak−2(t) +
θσ

8eτ(t)(s ln s ln2s · · · lnk−1s)
2
, t ≥ t1, (4.23)

where Ak−2(t) is defined by (3.1), (3.2), then all solutions of (2.1) oscillate.

Proof. Let the assumptions of case (a) be valid. By Theorem 3.2, the equation

ẋ(t) +

(
m∑

i=1

bi(t)

)

x(t − τ(t)) = 0 (4.24)

has a nonoscillatory solution. Equation (4.24) is of a form of (2.4) with ci(t) = bi(t), gi(t) =
t − τ(t), i = 1, 2, . . . , m. This means that we see (4.24) as an equation with m delayed terms.

Compare (4.24) with (2.1). We have bi(t) ≤ ci(t) and, due to (4.19), gi(t) ≤ hi(t), i =
1, 2, . . . , m. By Lemma 2.4, (2.1) has a nonoscillatory solution.

The proof of part (b) can be carried out in a way similar to that of the proof of part (a)
and, therefore, it is omitted.
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Example 4.5. Consider the equation of the type of (2.1):

ẋ(t) +
α

te ln 3
x

(
t

3

)

+
ln 3

8et(ln t)2
x

(
t

2

)

= 0, t ≥ t0 = 1. (4.25)

First let 0 < α ≤ 1. We set m = 2, t1 := 3, τ(t) =: 2t/3, and

σ :=
∫ t

t−τ(t)

1
τ(ξ)

dξ =
∫ t

t−(2t)/3

3
2ξ

dξ =
∫ t

t/3

3
2ξ

dξ =
3
2
ln 3. (4.26)

Moreover, we put

h1(t) =
t

3
, h2(t) =

t

2
, b1(t) =

α

te ln 3
, b2(t) =

ln 3

8et(ln t)2
,

t − hk(t) ≤ τ(t) =
2
3
t, k = 1, 2,

s =
∫ t

t0

1
τ(ξ)

dξ =
∫ t

1

3
2ξ

dξ =
3
2
ln t.

(4.27)

By (3.1),

A0(t) =
1

eστ(t)
+

σ

8eτ(t)s2
=

1
te ln 3

+
ln 3

8et(ln t)2
≥ b1(t) + b2(t). (4.28)

All conditions of Theorem 4.4 part (a) hold, hence (4.25) has a nonoscillatory solution.

Similarly, one can show (by Theorem 4.4 part (b)) that, for α > 1, all solutions of (4.25)
are oscillatory.

5. Differential Equation with Two Delays

In [12] the authors consider a differential equation with two delays

ẋ(t) + b1(t)x(h1(t)) + b2(t)x(h2(t)) = 0, t ≥ t0, (5.1)

where bi : [t0,∞) → [0,∞), i = 1, 2,

h1(t) = t − τ, h2(t) = t − σ, (5.2)

and τ , σ are positive constants. Let

lim inf
t→∞

b1(t) = p, lim inf
t→∞

b2(t) = q. (5.3)
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In accordance with [12] we say that (5.1) is in a critical state if there exists λ0 ≥ 0 such that

λ0 = peλ0τ + qeλ0σ (5.4)

and, for any λ > 0, λ/=λ0, we have

λ < peλτ + qeλσ. (5.5)

Theorem 5.1 (see [12]). Let (5.1) be in a critical case, p > 0, q > 0, and

lim inf
t→∞

[
b1(t + τ) − p

]
t = α,

lim inf
t→∞

[
b2(t + σ) − q

]
t = β,

(5.6)

where −∞ < α, β ≤ +∞. If αeλ0τ + βeλ0σ > 0, then all solutions of (5.1) oscillate.

Theorem 5.2 (see [12]). Let

lim inf
t→∞

b1(t) =
1
eτ

, lim inf
t→∞

b2(t) = 0,

lim inf
t→∞

[

b1(t + τ) − 1
eτ

]

t = α, lim inf
t→∞

tb2(t + σ) = β,

(5.7)

where −∞ < α ≤ +∞, β > 0. If eα + eσ/τβ > 0, then all solutions of (5.1) oscillate.

The aim of the following theorems is to obtain nonoscillation conditions for (5.1) in the
above-mentioned critical case. This will complete the oscillation results given by Theorems
5.1 and 5.2. Note that, in Theorems 5.3 and 5.4 below, delays h1 and h2 being not defined by
(5.2) are arbitrary and subject only to the restrictions indicated.

Theorem 5.3. Let t − h1(t) ≤ τ and t − h2(t) ≤ σ for t ≥ t0,

lim sup
t→∞

[
b1(t) − p

]
t = α,

lim sup
t→∞

[
b2(t) − q

]
t = β,

(5.8)

where −∞ < α, β < +∞, and let there exists a λ0 > 0 such that

λ0 ≥ peλ0τ + qeλ0σ, (5.9)

αeλ0τ + βeλ0σ < 0. (5.10)

Then (5.1) has a nonoscillatory solution.
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Proof. There exist t1 > t0 +max(τ, σ) and ε > 0 such that, owing to (5.8) and (5.10),

b1(t) ≤ p +
α + ε

t
,

b2(t) ≤ q +
β + ε

t
,

(α + ε)eλ0τ +
(
β + ε

)
eλ0σ ≤ 0

(5.11)

if t ≥ t1. By Lemma 2.4, withm = 2,

c1(t) := p +
α + ε

t
,

c2(t) := q +
β + ε

t
,

g1(t) := t − τ,

g2(t) := t − σ

(5.12)

in (2.4), the existence of a nonoscillatory solution of the equation

ẋ(t) +
(
p +

α + ε

t

)
x(t − τ) +

(

q +
β + ε

t

)

x(t − σ) = 0 (5.13)

implies the existence of a nonoscillatory solution of (5.1).
By Lemma 2.6, for the existence of a positive solution of (5.13), it is sufficient to find a

nonnegative solution of the inequality

u(t) ≥
(
p +

α + ε

t

)
e
∫ t
t−τ u(s)ds +

(

q +
β + ε

t

)

e
∫ t
t−σ u(s)ds, (5.14)

where t ≥ t1. Substituting u(t) for λ0 in inequality (5.14), we have

λ0 ≥ peλ0τ + qeλ0σ +
(α + ε)eλ0τ +

(
β + ε

)
eλ0σ

t
. (5.15)

Due to (5.9) and (5.11), we conclude that the last inequality holds, and, consequently, u(t) =
λ0 is a solution of inequality (5.14). By Lemma 2.6, (5.13) has a nonoscillatory solution. Hence,
(5.1) has a nonoscillatory solution, too.

Theorem 5.4. Let t − h1(t) ≤ τ , t − h2(t) ≤ σ for t ≥ t0,

lim sup
t→∞

[

b1(t) − 1
eτ

]

t = α,

lim sup
t→∞

tb2(t) = β,

(5.16)
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where α, β ∈ R. If

eα + eσ/τβ < 0, (5.17)

then (5.1) has a nonoscillatory solution.

Proof. There exist t1 > t0 +max(τ, σ) and ε > 0 such that, owing to (5.16) and (5.17),

b1(t) ≤ 1
eτ

+
α + ε

t
,

b2(t) ≤
β + ε

t
,

e(α + ε) + eσ/τ
(
β + ε

) ≤ 0

(5.18)

if t ≥ t1. By Lemma 2.4, withm = 2,

c1(t) =
1
eτ

+
α + ε

t
,

c1(t) =
β + ε

t
,

g1(t) = t − τ,

g2(t) = t − σ

(5.19)

in (2.4), the existence of a nonoscillatory solution of the equation

ẋ(t) +
(

1
eτ

+
α + ε

t

)

x(t − τ) +
(
β + ε

t

)

x(t − σ) = 0 (5.20)

implies the existence of a nonoscillatory solution of (5.1). By Lemma 2.6, it is sufficient to find
a nonnegative solution of the inequality

u(t) ≥
(

1
eτ

+
α + ε

t

)

e
∫ t
t−τ u(s)ds +

(
β + ε

t

)

e
∫ t
t−σ u(s)ds, (5.21)

where t ≥ t1. Put u(t) = 1/τ , t ≥ t1 in inequality (5.21). We have

1
τ
≥ 1

eτ
e +

e(α + ε) + eσ/τ
(
β + ε

)

t
. (5.22)

Due to (5.18), we conclude that the last inequality holds, and, consequently, u(t) = 1/τ is a
solution of inequality (5.21). Let u(t) = 0 for t < t1. By Lemma 2.6, (5.20) has a nonoscillatory
solution. Hence, (5.1) also has a nonoscillatory solution.
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Example 5.5. Consider (5.1) with

b1(t) =
1
eτ

+
|sin t| − 2

t
, b2(t) =

|cos t| + 1
t

(5.23)

and with h1(t), h2(t) defined by (5.2), that is,

ẋ(t) +
(

1
eτ

+
|sin t| − 2

t

)

x(t − τ) +
|cos t| + 1

t
x(t − σ) = 0, (5.24)

where t ≥ t0. Since

lim inf
t→∞

b1(t) =
1
eτ

, lim inf
t→∞

b2(t) = 0,

lim inf
t→∞

[

b1(t + τ) − 1
eτ

]

t = −2,

lim inf
t→∞

tb2(t + σ) = 1,

(5.25)

then, by Theorem 5.2 (with α = −2 and β = 1), all solutions of (5.24) oscillate if

σ

τ
> 1 + ln 2. (5.26)

Since

lim sup
t→∞

[

b1(t) − 1
eτ

]

t = −1,

lim sup
t→∞

tb2(t) = 2,
(5.27)

by Theorem 5.4 (with α = −1 and β = 2), (5.24) has a nonoscillatory solution if

σ

τ
< 1 − ln 2. (5.28)

5.1. Generalization for Equations with Several Delays

It is easy to generalize Theorem 5.3 for a general equation (2.1) with several delays. Denote

pi := lim inf
t→∞

bi(t), (5.29)

where i = 1, 2, . . . , m. We omit the proof of this generalization since it is similar to that of
Theorem 5.3.
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Theorem 5.6. Let τi, i = 1, 2, . . . , m, be positive constants such that

t − hi(t) ≤ τi (5.30)

for t ≥ t0,

lim sup
t→∞

[
bi(t) − pi

]
t = αi, (5.31)

where αi ∈ R, and let there exists a λ0 > 0 such that

λ0 ≥
m∑

i=1

pie
λ0τi ,

m∑

i=1

αie
λ0τi < 0.

(5.32)

Then (2.1) has a nonoscillatory solution.

The following statement generalizes Theorem 5.4. We will formulate this result for
(2.4).

Theorem 5.7. Let I ⊂ {1, . . . , m} be a set of indices such that

gk(t) ≤
⎧
⎨

⎩

h1(t), if k ∈ I,

h2(t), if k /∈ I,
(5.33)

where hi : [t0,∞) → R and hi(t) ≤ t. Let

b1(t) :=
∑

k∈I
ck(t), b2(t) :=

∑

k /∈ I

ck(t). (5.34)

If, for functions bi, hi, i = 1, 2, all assumptions of Theorem 5.4 are true, then (2.4) has a nonoscillatory
solution.

The proof of Theorem 5.7 is omitted as it can be done easily using Lemma 2.4 and
Theorem 5.4.

6. Concluding Remarks

In conclusion we note that there exist numerous results on nonoscillation for various classes
of delay differential equations in a noncritical case. We refer, for example, to monographs
[6, 9, 13, 14], recent papers [15–22], and references therein. Some of the books and papers
mentioned discuss the critical case from various points of view different from our approach,
and we mentioned them above. In the paper we investigate the critical case for delayed
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differential equations. It will be interesting as a motivation for further investigation along
these lines to consider cases, critical is a sense to other classes of equations, in particular,
for integrodifferential equations, differential equations with distributed delay, or differential
equations of a neutral type. Finally, for nonoscillation results for difference equations we refer
to [23–28].
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