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The study of dual Toeplitz operators was elaborated by Stroethoff and Zheng (2002), where various
corresponding algebraic and spectral properties were established. In this paper, we characterize
numerical ranges of certain classes of dual Toeplitz operators. Moreover, we introduce the analog
of Halmos’ fifth classification problem for quasinormal dual Toeplitz operators. In particular, we
show that there are no quasinormal dual Toeplitz operators with bounded analytic or coanalytic
symbols which are not normal.

1. Introduction

Let D be the unit disk of the complex plane C, and let dA be the Lebesgue measure on D.
The Lebesgue space of (classes of) square summable complex-valued functions is denoted by
L2(D, dA). The Bergman space L2

a is the Hilbert subspace of L2(D, dA) consisting of analytic
functions. The orthogonal complement of L2

a in L2(D, dA) is denoted by (L2
a)

⊥. The Hilbert
space (L2

a)
⊥ is readily seen to be not a reproducing kernel Hilbert space. This is one of the

major difficulties that occurs when dealing with this space. A second one is the fact that its
elements have no standard common qualities such as analyticity harmonicity, while a lesser
difficulty is the complicated form of the corresponding basis.

Despite the difficulties just listed, Stroethoff and Zheng in [1, 2] have adopted new
techniques to investigate various properties of a class of operators acting on (L2

a)
⊥, namely,

dual Toeplitz operators. A dual Toeplitz operator is defined on (L2
a)

⊥ to be a multiplication
(by the symbol) followed by a projection onto (L2

a)
⊥. Although dual Toeplitz operators

are different from Toeplitz operators in many respects, they do share some properties with
them. But surprisingly, dual Toeplitz operators on (L2

a)
⊥ resemble much more Hardy space
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Toeplitz operators than Bergman space Toeplitz operators. Lu in [3] and Cheng and Yu in [4]
considered dual Toeplitz operators in higher dimensions; while Yu and Wu in [5] considered
dual Toeplitz operators in the framework of Dirichlet spaces.

The study of the numerical ranges of Hardy space Toeplitz operators goes back to
Brown and Halmos [6]. Subsequent treatment was reconsidered in Halmos’ book [7]. Later
on, Klein [8] showed that the numerical range depends only on the spectrum of the given
Hardy space Toeplitz operator. The Bergman space case was successfully considered only
twenty years later by Thukral [9] in case of bounded harmonic symbols. More recently
Choe and Lee [10], as well as Gu [11], treat higher-dimensional Bergman space analogs. The
case of Bergman space Toeplitz operators with bounded radial symbols has been considered
very recently by Wang and Wu [12]. The connection between spectral sets and numerical
ranges was considered first by Schreiber [13]. Further investigations had been pursued by
Hildebrandt [14] and Clark [15]. The subnormality, and particularly the quasinormality, of
Hardy space Toeplitz operators has been discussed chronologically by Itô and Wong [16],
Amemiya et al. [17], Abrahamse [18], Cowen and Long [19], Cowen [20, 21], Lee [22], and
Yoshino [23]. The case of Bergman space Toeplitz operators has been discussed by Faour in
[24] as well as by Jim Gleason in a recent preprint.

Accordingly, in this paper, we mainly investigate qualitative properties of the
numerical range of a dual Toeplitz operator. We consider various classes of such operators,
such as normal and quasinormal ones. We completely describe the numerical ranges of some
of them and establish the main qualitative properties of the numerical ranges of others. We
also shed some light on the analog of Halmos’ fifth problem on the classification of subnormal
Toeplitz operators.

Our paper is organized as follows: in Section 2, we exhibit some preliminary concepts
needed in the sequel. Section 3 mainly concerns the description of the numerical ranges
of normal dual Toeplitz operators. Section 4 contains the characterization of the numerical
ranges of the more general case of nonnormal dual Toeplitz operators with harmonic
symbols. In Section 5, we give heuristic proofs of some results based on the concept of lines of
support of the numerical range. In Section 6, we briefly discuss the connection between spec-
tral sets and spectra of dual Toeplitz operators. Section 7 is devoted to the quasinormality of
dual Toeplitz operators. For the case of dual Toeplitz operators, we introduce and adumbrate
the analog of Halmos’ fifth problem on the classification of subnormal Toeplitz operators.

2. Preliminaries

Let T be a bounded operator on a Hilbert space H. Denote its spectrum by σ(T). The
numerical range is a prototype of the spectrum, and it proves useful whenever information
about T is needed. It is defined by W(T) := {〈Tϕ, ϕ〉, ϕ ∈ H, ‖ϕ‖ = 1}. The main
involved features of the numerical range are as follows.W(T) is always bounded and convex,
(Toeplitz-Hausdorff theorem). Its closure W(T) contains the spectrum σ(T). If W(T) reduces
to the singleton {λ}, then T = λI. W(T) is a linear function of T, that is, W(αT + β) =
αW(T) + β, ∀α, β ∈ C; hence we see that ωW(Sf) = W(Sωf), for ω ∈ C, and that λ ∈ W(Sf)
implies that 0 ∈ W(Sf−λ). If W(T) is a subset of the real axis, then T must be self-adjoint.
If T is normal and W(T) is closed, then the extreme points of W(T) are eigenvalues. If T is
normal, the closure of W(T) is the smallest closed convex set containing the spectrum of T.
For further details on the numerical ranges as well as various applications of this pioneering
tool in operator theory, see [7, 25–27].
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For f ∈ L∞(D), define the dual Toeplitz operator Sf to be the operator on (L2
a)

⊥ given
by

Sf : u ∈
(
L2

a

)⊥
	−→ Sf(u) = Q

(
fu

)
∈
(
L2

a

)⊥
. (2.1)

Here Q = I − P is the familiar orthogonal projection from L2(D, dA) onto (L2
a)

⊥ and P is the
orthogonal projection from L2(D, dA) onto the Bergman space L2

a. Moreover, for f ∈ L∞(D)
and g ∈ H∞, (the algebra of bounded analytic functions) we have

Sfg = SgSf , Sfg = SfSg, (2.2)

SfSg = Sfg −HfH
∗
g, (2.3)

where Hf : u ∈ L2
a 	−→ Hfu = Q(fu) ∈ (L2

a)
⊥ is the Hankel operator. If E is a subset of C,

then the convex hull of E, denoted by H(E), is the smallest convex set containing E. Useful
properties of the convex hull are well known [26, 28]. For instance, we know that in general
the convex hull of an open set is open and the convex hull of a compact set is compact. The
following easy property will be also used

Remark 2.1. If A is a bounded subset of a finite dimensional normed space, then we have
H(A) = H(A). Indeed, observe that A ⊂ A implies that H(A) ⊂ H(A), whence H(A) ⊂
H(A) = H(A). Conversely, since A ⊂ H(A), we infer that H(A) ⊂ H(H(A)) = H(A), as
H(A) is convex.

The following main spectral properties of Sf are due to Stroethoff and Zheng [1].

Theorem 2.2. (1) If f is in L∞(D), then R(f) ⊂ σe(Sf) ⊂ σ(Sf) ⊂ H(R(f)).
(2) Let f be a continuous real-valued function on D, then σ(Sf) = σe(Sf) = f(D).
(3) If f is a bounded analytic or coanalytic function on D, then σ(Sf) = σe(Sf) = f(D).

For our purpose, we now prove the following useful facts about dual Toeplitz
operators.

Lemma 2.3. Let f be in L∞(D). Then, Sf is self-adjoint if and only if f is real.

Proof. Sf is self-adjoint means that Sf = S∗
f . This is equivalent to the fact that f = f , since

‖Sg‖ = ‖g‖∞, for g ∈ L∞(D), which is equivalent to the fact that f is real-valued.

Lemma 2.4. Let f be in L∞(D). Then, Sf ≥ 0 if and only if f ≥ 0.

Proof. If f ≥ 0, then 〈Sfg, g〉 = 〈Q(fg), g〉 = 〈fg, g〉 =
∫
D
f(z)|g(z)|2dA(z) ≥ 0, ∀g ∈ (L2

a)
⊥
.

Conversely, suppose that Sf ≥ 0, then in particular its spectrum lies in [0,∞). By part (1) of
Theorem 2.2, we obtain R(f) ⊂ σ(Sf) ⊂ [0,∞), whence f ≥ 0.

Corollary 2.5. (i) A bounded dual Toeplitz operator with a real spectrum must be self-adjoint.
(ii) A bounded dual Toeplitz operator with spectrum lying in the positive real half-axis must be

positive.
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Proof. This result follows from part (1) of Theorem 2.2 and Lemmas 2.3 and 2.4.

Theorem 2.6. Let f be a nonconstant bounded harmonic real-valued function on D. Then, the
operator Sf has no eigenvalues.

Proof. Since in general for a constant λ we have Sf − λ = Sf−λ and f − λ is harmonic if f is,
it suffices to show that Sfg = 0 implies that g = 0, ∀g ∈ (L2

a)
⊥. If Sfg = Q(fg) = 0, then

fg ∈ L2
a. Let h ∈ H∞(D), then hg ∈ (L2

a)
⊥. Indeed, ‖hg‖2 ≤ ‖h‖∞‖g‖2, and 〈hg, u〉 = 〈g, hu〉 =

0, ∀u ∈ L2
a, (as hu ∈ L2

a and g ∈ (L2
a)

⊥). It follows that 〈fg, hg〉 = 0. Taking real parts and
noticing that f is real, we see that

Re
(〈

fg, hg
〉)

= Re
∫

D

fg
(
hg

)
dA =

∫

D

f
∣∣g∣∣2Re(h)dA = 0. (2.4)

Since Re(H∞) is weak ∗-dense in the set of bounded real harmonic functions [29], we can
replace Re(h) with f in the latter to obtain f2|g|2 = 0. This implies that f2 and |g|2 have
disjoint supports. However, the harmonic function f cannot vanish on a set of positive
measure without being zero, whence g = 0.

3. Characterization of the Numerical Range

An operator T : M → M is said to be subnormal if it admits an extension S : E → E, such
that M ⊂ E, S is normal, and M is invariant under S. It is well known that if an operator T is
subnormal, then it is convexoid, that is, W(T) = H(σ(T)). First, the following observation is
worth stressing.

Proposition 3.1. Suppose that f ∈ H∞(D). Then Sf and Sf are convexoid, that is, W(Sf) =

H(σ(Sf)), and W(Sf) = H(σ(Sf)).

Proof. Let f ∈ H∞(D), then the multiplication operator Mf : L2(D) → L2(D) is a normal

extension ofSf . Indeed, we haveMfMf = MfMf andMf((L2
a)

⊥) = {fg, g ∈ (L2
a)

⊥} ⊂ (L2
a)

⊥.

Moreover, it is clear that Sf is the restriction of Mf to (L2
a)

⊥. Thus Sf is subnormal, whence

W(Sf) = H(σ(Sf)).
Concerning the other part of the Proposition, of course Sf is not necessarily

subnormal, nevertheless we obtain a similar result by exploring the fact that W(Sf) = {λ, λ ∈
W(Sf)} and σ(Sf) = {λ, λ ∈ σ(Sf)}.Hence, we obtain W(Sf) = H(σ(Sf)).

For bounded analytic or coanalytic symbols, the fact that Sf is convexoid comes
from the subnormality of this operator as Proposition 3.1 asserts. However, the spectral
inclusion theorem, (namely, part (1) of Theorem 2.2), refines this result. Indeed, making use
of the spectral inclusion property, it turns out that all bounded dual Toeplitz operators are
convexoid; this represents the aim of the following assertion.
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Proposition 3.2. The closure of the numerical range of a bounded dual Toeplitz operator is the convex
hull of its spectrum, that is, W(Sf) = H(σ(Sf)), for f ∈ L∞(D).

Proof. Consider the multiplication operator Mf on L2(D, dA). It is known to be normal,
whence convexoid. Thus W(Mf) = H(σ(Mf)). By Problem 67 of [7], we see that σ(Mf) =
R(f). By the spectral inclusion Theorem, we see that σ(Mf) = R(f) ⊂ σ(Sf). This yields
the following inclusions W(Mf) = H(σ(Mf)) = H(R(f)) ⊂ H(σ(Sf)). Now, since Mf is
the minimal normal dilation of Sf , we see that W(Sf) ⊂ W(Mf), which is clear from the
definition of the numerical range and the fact that Sf is the compression of Mf . Therefore,
we obtain the first inclusion W(Sf) ⊂ H(σ(Sf)).

The reverse inclusion is easier: we have σ(Sf) ⊂ W(Sf), which implies that
H(σ(Sf)) ⊂ H(W(Sf)) = W(Sf), since W(Sf) is convex.

Remark 3.3. In connection with Proposition 3.2, we ask whether all elements of the dual
Toeplitz algebra DT, (the C∗-algebra generated by {Sf , f ∈ H∞}), are convexoid, according
to the fact that it is generated by subnormal operators.

Now, we are going to characterize the numerical ranges of dual Toeplitz operators
with bounded harmonic symbols. First, we make the following observation.

Remark 3.4. According to part (2) of Theorem 2.2, for a nonconstant bounded continuous real-
valued function f on D, we infer that σ(Sf) = R(f) = f(D) is an interval. As f is bounded,
we deduce that σ(Sf) = [inf f, sup f]. Obviously, we have H(σ(Sf)) = [inf f, sup f].

Lemma 3.5. Suppose that f is a nonconstant bounded harmonic real-valued function on D. Then one
has W(Sf) = (inf f, sup f).

Proof. By Proposition 3.2 and Remark 3.4, we see that W(Sf) = [inf f, sup f], (the continuity
is redundant in the harmonicity). Since W(Sf) is a convex set whose closure is [inf f, sup f],
W(Sf) contains all elements of [inf f, sup f] except possibly the extreme points inf f and
sup f . Thus (inf f, sup f) ⊂ W(Sf).

Now, suppose that either inf f or sup f belongs to W(Sf). Then it is an extreme point
ofW(Sf), which in fact must be an eigenvalue of Sf . However, Theorem 2.6 tells us that such
Sf has no eigenvalues. Thus, we should have W(Sf) = (inf f, sup f).

Parallel to Brown and Halmos [6] characterization of normal Hardy space Toeplitz
operators as well as Axler and Čučković [30] one of normal Bergman space Toeplitz operators
with bounded harmonic symbols, normal dual Toeplitz operators were characterized in [1] as
follows: for a bounded measurable function f on D, the dual Toeplitz operator Sf is normal if
and only if the range of f lies on a line. Accordingly, we are able to characterize the numerical
range of normal dual Toeplitz operators with bounded harmonic symbols.

Theorem 3.6. Let f be a nonconstant bounded harmonic function on D, and suppose that Sf is
normal. Then, there are (complex) numbers a, b such that σ(Sf) is the closed line segment [a, b] and
W(Sf) is the corresponding open line segment (a, b).

Proof. Taking into account the assumption that Sf is normal, we are certain from the existence
of (complex) constants α, β and a real-valued function g such that f = αg + β whence Sf =
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αSg + β. From the harmonicity of f and the linearity of the Laplacian, we see that g must be
bounded harmonic and real-valued. Now, Lemma 3.5 asserts, therefore, that σ(Sg) = [m,M]
and W(Sg) = (m,M), where m = inf g and M = sup g. Thus σ(Sf) = [a, b] and W(Sf) =
(a, b), (line segments in C), with a = αm + β, and b = αM + β.

4. The Numerical Range of a Nonnormal Dual Toeplitz Operator

Lemma 2.4 has a nice consequence on the self-adjointness of certain dual Toeplitz operators.

Theorem 4.1. Let f ∈ L∞(D) be harmonic. Suppose thatW(Sf) lies in the complex upper half-plane
and contains some real number. Then Sf must be self-adjoint.

Proof. The numerical range lies in the upper half-plane means that Im(〈Sfg, g〉) ≥ 0, for
‖g‖ = 1. Taking g/‖g‖2 if necessary, we may conclude that Im(〈Sfg, g〉) ≥ 0, ∀g ∈ (L2

a)
⊥.

Since 〈Sfg, g〉 =
∫
D
f |g|2dA, ∀g ∈ (L2

a)
⊥
, taking imaginary parts, we obtain

Im
(〈
Sfg, g

〉)
=
∫

D

Im
(
f
)∣∣g∣∣2dA =

〈
SIm(f)g, g

〉
≥ 0, ∀g ∈

(
L2

a

)⊥
. (4.1)

This happens only if Im(f) ≥ 0, by Lemma 2.4. Now, suppose that a real number c ∈ W(Sf),
then there exists some h ∈ (L2

a)
⊥, with ‖h‖ = 1, such that 〈Sfh, h〉 = c. Writing c in the form

c = c〈h, h〉, we obtain
∫
D
(f − c)hhdA = 0. Again, taking imaginary parts we obtain

∫

D

Im
(
f
)
|h|2dA = 0. (4.2)

As Im(f) ≥ 0, we deduce that Im(f)|h|2 = 0 on D. This implies that Im(f) and |h|2 have
disjoint supports. Since ‖h‖ = 1, we deduce that h/= 0 on D. Thus supp(Im(f)) has a positive
measure, that is, the harmonic function Im(f) must be zero on a set of nonzero measure. It
follows that Im(f) = 0 on D, whence Sf is self-adjoint by Lemma 2.3.

Regarding the numerical ranges of a certain class of dual Toeplitz operators, we have
the following qualitative characterization.

Theorem 4.2. Let f ∈ L∞(D) be harmonic such that Sf is nonnormal. Then W(Sf) is an open
convex set.

Proof. We need only to verify that the convex set W(Sf) is open. To see this, we proceed
by contradiction and suppose that it is not open. Hence it intersects its boundary ∂W(Sf).
Let λ be one of such points, that is, λ ∈ W(Sf) ∩ ∂W(Sf), which can be rewritten as 0 ∈
W(Sf−λ) ∩ ∂W(Sf−λ). Now, the convexity of W(Sf−λ) and the fact that 0 ∈ ∂W(Sf−λ) enable
us to rotate it so that it lies in the upper half-plane. This means that there exists a unimodular
complex number ω = eiθ, for some θ ∈ [0, 2π], such that ωW(Sf−λ) = W(Sωf−ωλ) lies in the
upper half-plane. By Theorem 4.1, Sωf−ωλ must be self-adjoint. In other words there exists a
real-valued function g on D such that ωf − ωλ = g. This implies that f = αg + β, for some
constants α and β. So, we infer that Sf = αSg + β is normal, which contradicts the original
hypothesisand completes the proof.
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Remark 4.3. Note that Theorems 4.1 and 4.2, (as well as their subsequent corollaries), remain
still valid if one assumes merely that the symbols have harmonic imaginary parts.

Corollary 4.4. If f is a bounded analytic or coanalytic function, thenW(Sf) = H(f(D)).

Proof. If f is constant, the fact is trivially satisfied. If f is not constant, then Sf is not normal
(because the range of an analytic or coanalytic function cannot lie on a line). Hence, by
Theorem 4.2,W(Sf) is an open convex set. On the other hand, by the open mapping theorem
f(D) is open whence H(f(D)) is an open convex set too. Now, by Proposition 3.1 and part
(3) of Theorem 2.2 as well as Remark 2.1, we see thatW(Sf) = H(f(D)) = H(f(D)). Since an
open convex planar set is the interior of its closure, we infer that W(Sf) coincides with the
convex hull of f(D).

5. Aesthetic Consequences Using Lines of Support of W(Sf)

A line L is said to be a line of support of a planar convex set K at a boundary point P ∈ ∂K,
if P ∈ L and the set K is contained in the closure of one of the two half-planes into which
L cuts the plane. Clearly, every point on the boundary of a planar convex set lies on a line
of support. Based on the concept of lines of support of the numerical range W(Sf), several
interesting consequences of Theorem 4.1 can be observed. Note that the underlying idea goes
back to Brown and Halmos [6].

Corollary 5.1. Let f ∈ L∞(D) be harmonic. If a line of support of the numerical range W(Sf) of the
dual Toeplitz operator Sf contains a point of W(Sf), then it contains its whole spectrum σ(Sf) (and
hence its entire numerical rangeW(Sf)).

Corollary 5.2. Let f ∈ L∞(D) be harmonic. If the spectrum σ(Sf) consists of merely a finite number
of eigenvalues, then the operator Sf is scalar.

Proofs

Proof of Corollary 5.1

With regard to Corollary 5.1, clearly the line of support can be rotated along with the
numerical range till the line will be horizontal and the numerical range above it. Then we
translate both in such a way that the line of support will be the real axis; (these two operations
correspond to a linear function of the form z → eiθz+ω, for a fixed complex numberω and a
fixed θ ∈ [0, 2π]). Then one can apply Theorem 4.1 to conclude that eiθSf + ω is self-adjoint,
whence eiθσ(Sf) + ω ⊂ R, and therefore σ(Sf) lies on the original line of support. Since
W(Sf) ⊂ W(Sf) = H(σ(Sf)), by Proposition 3.2, we infer thatW(Sf) lies on the relevant line
of support.

Proof of Corollary 5.2

Concerning Corollary 5.2, if σ(Sf) consists of a finite number of eigenvalues, then H(σ(Sf))
is a polygon with vertices of some of such values. Thus, one can find at least a line of support
passing through one of such vertices, which must be in fact an extreme point of W(Sf).
Hence, making use of Corollary 5.1, we infer that all those eigenvalues of Sf lie on such



8 Abstract and Applied Analysis

line. Consequently, the numerical range is a segment on this line with two extreme points.
Taking the line of support perpendicular to the above line, and passing by an endpoint of the
segment, and repeating the same procedure, we infer that the numerical range lies on the new
line of support as well. A segment lying in two perpendicular lines must be a single point.
So, σ(Sf) must be a singleton. By Proposition 3.2 and the properties of the numerical range,
we infer that Sf must be scalar.

Remark 5.3. Suppose that Sf is compact. We know that its spectrum consists of at most a
countable number of eigenvalues, including 0. Arguing in the same manner as in the proof of
Corollary 5.2, we can show that there are no nonzero compact dual Toeplitz operators with
bounded harmonic symbols, which is a particular case of [1, Theorem 7.5].

6. Connection with Spectral Sets

A compact subset E ⊂ C containing the spectrum σ(T) of a bounded linear operator T acting
on a given Hilbert space is called a k-spectral set for T if

‖F(T)‖ ≤ k‖F‖
E

(6.1)

holds for every function F(z) analytic in a neighborhood of E (in [13], rational functions
are used instead), where the first norm in the above inequality is the operator norm and the
second one is the sup norm over E. In particular, if k = 1, 1-spectral sets are simply called
spectral sets. For more details on spectral sets, we refer to [13–15, 31] and the references
therein. For instance, the spectrum of any subnormal operator is a spectral set. The closed
unit disk is a spectral set for any contraction.

Our main concern in this section is to describe the dual Toeplitz operators analog of
an interesting connection, pointed out by Schreiber [13], between spectral sets and numerical
ranges of Toeplitz operators. Let us start with some trivial situations, where σ(Sϕ) is spectral

(1) If Sϕ is a bounded normal dual Toeplitz operator, (i.e., ϕ(D) lies on a line in C [1]),
then σ(Sϕ) is a spectral set.

(2) If ϕ is a bounded coanalytic function on the unit disk D, then σ(Sϕ) is a spectral set,
(since it is subnormal by the proof of Proposition 3.1).

(3) If the spectrum of a bounded dual Toeplitz operator Sϕ is a disk, then σ(Sϕ) is a
spectral set too.

However, we can observe that the spectra of dual Toeplitz operators with analytic
symbols are also spectral sets for their corresponding operators. This follows from the
following observation. If E ⊂ C is a planar subset, set E

∗ = {ω,ω ∈ E}, in particular it can
be easily verified that σ(T ∗) = σ(T)∗. Also we adopt the notation f∗(z) = f(z) which is an
analytic function on E

∗ whenever f is analytic on E. Then we have the following.

Lemma 6.1. Let T be a bounded linear operator on a given Hilbert space. Then, σ(T) is a k-spectral
set for T if and only if σ(T)∗ is a k-spectral set for its adjoint T ∗.
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Proof. The fact that σ(T) is a k-spectral set of T means that Inequality (6.1) holds, for any F
holomorphic in a neighborhood of σ(T). Notice that from the definition of the holomorphic
functional calculus we have

‖F∗(T ∗)‖ =
∥∥(F(T))∗∥∥ = ‖F(T)‖. (6.2)

On the other hand, we have

‖F∗‖σ(T)∗ = sup
{
|F∗(w)|, w ∈ σ(T)∗

}

= sup
{∣∣∣F(z)

∣∣∣, z ∈ σ(T)
}

= ‖F‖σ(T).

(6.3)

Combining Inequality (6.1) and the last two identities, we infer that

‖F∗(T ∗)‖ ≤ k‖F∗‖σ(T∗). (6.4)

In order to establish the equivalence, it suffices to observe that if F is holomorphic in a
neighborhood of σ(T), then F∗ is holomorphic in the conjugate of the same neighborhood
which contains σ(T)∗ and conversely.

Therefore, from the above discussion, we deduce the following.

Corollary 6.2. If ϕ is a bounded analytic function on the unit disk D, then σ(Sϕ) is a spectral set for
Sϕ.

Similar results for coanalytic Toeplitz operators on both Hardy and Bergman spaces
can also be inferred.

Corollary 6.3. (i) If ϕ ∈ H∞(∂D), then σ(Tϕ) is a spectral set for Tϕ defined on H2(∂D).
(ii) If ϕ is a bounded coanalytic function on the unit disk D, then σ(Tϕ) is a spectral set for Tϕ

defined on L2
a(D).

7. Some Thoughts on Quasinormal Dual Toeplitz Operators

The Bergman space L2
a has normalized reproducing kernel kw given by

kw(z) =
1 − |w|2

(1 −wz)2
. (7.1)

Recall that for w ∈ D, the involutive disk automorphism ϕw is defined by

ϕw(z) =
w − z

1 −wz
, for z ∈ D. (7.2)
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For a linear operator T on (L2
a)

⊥ and w ∈ D, define the operator Sw(T) := T − SϕwTSϕw
. A

second application of it gives

S
2
w(T) = T − 2SϕwTSϕw

+S2
ϕw
TS2

ϕw
. (7.3)

For f, g ∈ L2(D, dA), define the rank one operator (f ⊗ g) by

(
f ⊗ g

)
: h ∈ L2(D,dA) −→

(
f ⊗ g

)
(h) =

〈
h, g

〉
f ∈ L2(D,dA). (7.4)

If T1 and T2 are bounded linear operators on L2(D, dA), then for f , g ∈ L2(D, dA),we
have

T1
(
f ⊗ g

)
T∗
2 =

(
T1f

)
⊗
(
T2g

)
. (7.5)

In the sequel, wewill need a formula relating the image of the productHfH
∗
g
under the action

of the operator S
2
w and the functionsHf(kw) andHg(kw). For f, g ∈ L∞(D), combining (2.3),

(7.3), and (7.5), (for a detailed proof see [1, 2]), we obtain

S
2
w

(
HfH

∗
g

)
= Hf(kw ⊗ kw)H∗

g =
(
Hf(kw)

)
⊗
(
Hg(kw)

)
. (7.6)

An operator T on a Hilbert space is called quasinormal if it commutes with T∗T. It is well
known that quasinormal operators are subnormal. In what follows we are going to show
that there are no quasinormal dual Toeplitz operators with bounded analytic or coanalytic
symbols that are not normal.

Theorem 7.1. Let f be in H∞(D), and suppose that Sf is quasinormal. Then, the symbol f must be
constant.

Proof. If f = 0, the conclusion is obvious. So, suppose that f /= 0 and that Sf is quasinormal,
then we have

SfS∗
fSf = S∗

fSfSf . (7.7)

Since f is analytic, using Relations (2.2), we obtain

SfS∗
fSf = S|f |2Sf = S|f |2f −H|f |2H

∗
f
, (7.8)

S∗
fSfSf = SfSf2 = Sff2 −HfH

∗
f
2 . (7.9)

Now, (7.7)–(7.9) yield

H|f |2H
∗
f
= HfH

∗
f
2 . (7.10)
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Introducing the operator Sω, by (7.6), we see that

S
2
ω

(
H|f |2H

∗
f

)
= H|f |2kω ⊗Hfkω, S

2
ω

(
HfH

∗
f
2

)
= Hfkω ⊗H

f
2kω. (7.11)

Combining the latter with (7.10), we obtain H|f |2kω ⊗ Hfkω = Hfkω ⊗ H
f
2kω. Since k0 = 1,

taking ω = 0, we obtain H|f |21 ⊗Hf1 = Hf1 ⊗H
f
21. In other words, by the definition of the

rank one operator, we have

〈
u,Hf1

〉
H|f |21 =

〈
u,H

f
21
〉
Hf1, ∀u ∈

(
L2

a

)⊥
. (7.12)

If Hf1 = 0, then f ∈ L2
a. Thus f must be constant, whence the result follows immediately. If

Hf1/= 0, we distinguish several cases as follows.

(i) The case H|f |21 = 0 and H
f
21 = 0 cannot happen (because Hf1 = Q(f) = f − f(0)

andH
f
21 = Q(f

2
) = f

2
− f

2
(0) vanish simultaneously).

(ii) The similar case H|f |21/= 0 and H
f
21 = 0 is impossible too, for the same reason.

(iii) The case H|f |21 = 0 and H
f
21/= 0 is impossible too, otherwise 〈u,H

f
21〉 = 0, for all

u ∈ (L2
a)

⊥; thus H
f
21 ∈ L2

a too, whence H
f
21 = 0 contradicting the assumption.

(iv) IfH|f |21/= 0 andH
f
21/= 0, then clearly from (7.12) there exists some nonzero constant

λ ∈ C, such that

Hf1 = λH|f |21, Hf1 = λH
f
21. (7.13)

Rephrasing (7.13), we see thatQ(f −λ|f |2) = 0 andQ(f −λ f
2
) = 0. Thus, f −λ|f |2 and f −λ f

2

are in L2
a, (they are analytic in particular). But, since f is analytic, we see that f(1 − λf) =

f − λf2 is analytic too, whence it is constant. So, set f(1 − λf) = μ, for some nonzero complex
constant μ. On the other hand, since f−λ|f |2 = f(1−λf) is analytic, multiplying by the analytic
function f2, we obtain an analytic function, namely, f(1 − λf)f2 = |f |2(1 − λf)f = μ|f |2.
Now, the function μ|f |2, (whose range lies on a line, as |f |2 is real-valued and μ is constant),
can be analytic only if it is constant; whence we infer that |f |2 is constant. Finally, it is well
known that an analytic function with a constant modulus must be constant, whence f must
be constant.

For bounded conjugate analytic symbols the matter is much more simpler and it uses
the Brown-Halmos type Theorem (namely, [1, Theorem 3.1]). Indeed, we have the following.

Theorem 7.2. Let f be in H∞(D), and suppose that Sf is quasinormal. Then, f must be constant.
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Proof. If f = 0, the matter is obvious; so suppose that f /= 0. Since f is coanalytic, using
Relations (2.2) and (2.3), we obtain

SfS∗
fSf = SfS|f |2 , (7.14)

S∗
fSfSf = S|f |2Sf = Sf |f |2 . (7.15)

Suppose thatSf is quasinormal, then from (7.7), (7.14), and (7.15), we see thatSfS|f |2 = Sf |f |2 .
Hence SfS|f |2 is a dual Toeplitz operator. By the Brown-Halmos type Theorem ([1, Theorem
3.1]), we infer that either f is analytic or |f |2 is coanalytic. If f is analytic, then it is constant
since it is coanalytic by hypothesis. If the real function |f |2 is coanalytic, then it is constant;
whence f is constant as well, (as a coanalytic function with constant modulus). Thus, in all
cases, we infer that f is constant.

Remark 7.3. Clearly if f is constant, then Sf is normal and then it is quasinormal. So,
Theorems 7.1 and 7.2 can be expressed as follows. Let f be a bounded analytic, (or
coanalytic), function. Then, Sf is quasinormal if and only if f is constant,
that is, there are no quasinormal dual Toeplitz operators with bounded analytic or coanalytic
symbols that are not normal.

Corollary 7.4. Let f be a bounded analytic or coanalytic function, and suppose that Sf is
quasinormal. Then, the numerical range of Sf reduces to a singleton, that is, W(Sf) = {λ} for some
complex constant λ.

Proof. Just observe that from Proposition 3.1 one hasW(Sf) = H(σ(Sf)). IfSf is quasinormal,
by Theorems 7.1 and 7.2, we infer that f = λ for some complex constant λ. The convex hull of
a singleton is the set itself. Hence, we obtain W(Sf) = H({λ}) = {λ}.

It seems to be of interest to consider also the typical case of bounded harmonic
symbols. It is well known that such functions can be decomposed as f = f1 + f2, with Bloch
functions f1 and f2. Here, we confine ourselves to the related case, where f = g + λg, for
g ∈ H∞(D) and λ a complex constant.

Proposition 7.5. Suppose that f = g + λg, 0/=λ ∈ C, and 0/= g ∈ H∞(D). If Sf is quasinormal,
then Sf is normal and λ must be unimodular.

Proof. Since Sf is quasinormal, (7.7) holds. Taking adjoints, we obtain

Sf

(
SfSf − SfSf

)
= 0,

(
SfSf − SfSf

)
Sf = 0. (7.16)

Therefore, using the Hilbert space orthogonality relations, we see that ker([Sf ,Sf]) =

Ran(Sf), which must be nontrivial. Next, a couple of manipulations lead to

[
Sf ,Sf

]
=
(
1 − |λ|2

)(
SgSg − SgSg

)
=
(
1 − |λ|2

)[
Sg,Sg

]
. (7.17)
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Now, (2.3) as well as the fact that g is analytic yields [Sg,Sg] = −HgH
∗
g
, whence

[
Sf ,Sf

]
=
(
|λ|2 − 1

)
HgH

∗
g. (7.18)

Since the Hankel operator Hg is one-to-one (as g ∈ H∞), we infer that HgH
∗
g
has a trivial

kernel. This contradicts the fact that [Sf ,Sf] has a nontrivial kernel, unless [Sf ,Sf] = 0,
which happens only if |λ|2 = 1. Thus Sf is normal and λ must be unimodular.

Corollary 7.6. Let f be as in Proposition 7.5 and suppose that Sf is quasinormal. Then, W(Sf) =
(a, b) for some complex constants a and b.

Proof. Combining Proposition 7.5 and Theorem 3.6, the result follows.

At this stage, we would like to conclude with a crucial point, which probably sheds
some light on the fifth Halmos’ problem [32]. This problem asks whether every subnormal
Hardy space Toeplitz operator is either normal or analytic. In the Hardy space setting, the
original general problem was weakened to whether every quasinormal Toeplitz operator
is either normal or analytic, and it was completely solved positively by Amemiya et al.
[17], whereas Cowen and Long [19] answered the original problem in the negative. For
further results in this direction, see [16, 18, 20–23]. The Bergman space analog seems to be
still pending [24]. However, for dual Toeplitz operators, a similar conjecture can be stated
with slight modifications, namely: every quasinormal dual Toeplitz operator must be
normal. Theorems 7.1 and 7.2, Proposition 7.5 as well as Remark 7.3 support this conjecture.
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