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We study the existence and multiplicity of positive solutions for the fractional m-point boundary
value problem Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = u′(0) = 0, u′(1) =
∑m−2

i=1 aiu
′(ξi), where 2 <

α < 3, Dα
0+ is the standard Riemann-Liouville fractional derivative, and f : [0, 1] × [0,∞) �→ [0,∞)

is continuous. Here, ai � 0 for i = 1, . . . , m− 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, and ρ =
∑m−2

i=1 aiξ
α−2
i with

ρ < 1. In light of some fixed point theorems, some existence and multiplicity results of positive
solutions are obtained.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary
(noninteger) order. It has been applied to almost every field of science, engineering, and
mathematics in the last three decades [1–5]. But the investigation of the theory of fractional
differential equations has only been started quite recently.

Among all the researches on the theory of the fractional differential equations, the
study of the boundary value problems for fractional differential equations recently has
attracted a great deal of attention from many researchers. And some results have been
obtained on the existence of solutions (or positive solutions) of the boundary value problems
for some specific fractional differential equations [6–11].

More specifically, Bai [12] discussed the existence of positive solutions for the
boundary value problem (BVP for short)

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α � 2,

u(0) = 0, u(1) = βu
(
η
)
,

(1.1)
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where 0 < βηα−1 < 1, 0 < η < 1, Dα
0+ is the standard Riemann-Liouville fractional derivative.

Some existence results of at least one positive solution for the above-mentioned BVP are
obtained by the use of fixed point index theory.

In [13], Salem considered the existence of Pseudosolutions for the nonlinear m-point
BVP,

Dαx(t) + q(t)f(t, x(t)) = 0, 0 < t < 1, α ∈ (n − 1, n], n � 2,

x(0) = x′(0) = x′′(0) = · · · = x(n−2) = 0, x(1) =
m−2∑

i=1

ξix
(
ηi
)
,

(1.2)

where x takes values in a reflexive Banach space E. Here, 0 < η1 < · · · < ηm−2 < 1, ξi > 0
with

∑m−2
i=1 ξiη

α−1
i < 1, and x(k) denotes the kth Pseudoderivative of x while Dα denotes the

Pseudofractional differential operator of order α. In light of the fixed point theorem given by
O’Regan, the criteria for the existence of at least one Pseudo solution for them-point BVP are
established.

Very recently, M. El-Shahed [14] considered the existence and nonexistence of positive
solutions to the fractional differential equation

Dα
0+u(t) + λf(u(t)) = 0, 0 < t < 1, 2 < α < 3, (1.3)

subject to the boundary conditions

u(0) = u′(0) = 0, u′(1) = 0. (1.4)

Their analysis relies on Krasnoselskii’s fixed point theorem.
Goodrich [15] then considered the BVP for the higher-dimensional fractional

differential equation as follows:

Dαx(t) + f(t, x(t)) = 0, 0 < t < 1, α ∈ (n − 1, n], n > 3,

xi(0) = 0, 0 � i � n − 2,

Dνx(t)|t=1 = 0, 1 � ν � n − 2,

(1.5)

and a Harnack-like inequality associated with the Green’s function related to the above
problem is obtained improving the results in [16].

Motivated by the aforementioned results and techniques in coping with those
boundary value problems of the fractional differential equations, we then turn to investigate
the existence and multiplicity of positive solutions for the following BVP:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = u′(0) = 0, u′(1) =
m−2∑

i=1

aiu
′(ξi),

(1.6)
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where Dα
0+ is the standard Riemann-Liouville fractional derivative of order α. Here, by a

positive solution of BVP (1.6), we mean a function which is positive on (0, 1) and satisfies
the equation and boundary conditions in (1.6).

Throughout the paper, we will assume that the following conditions hold.

(H1) f : [0, 1] × [0,∞) → [0,∞) is continuous.

(H2) ai � 0 for i = 1, . . . , m − 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, and ρ =
∑m−2

i=1 aiξ
α−2
i with

ρ < 1.

There is a vast literature concerning the multipoint BVPs for the integer-order
differential equations. An important recent paper was given by Webb and Infante [17]; and
they established a new unified method for the existence of multiple positive solutions to a
large number of nonlinear nonlocal BVPs for the integer-order differential equations. While
in the setting of the fractional-order derivatives, as far as we know, the existence of positive
solutions for the multipoint BVP (1.6) has not been discussed in the literature.

The rest of the paper is organized as follows. Section 2 preliminarily provides some
definitions and lemmas which are crucial to the following discussion. In Section 3, we obtain
the existence and multiplicity results of positive solutions for the BVP (1.6) by means of some
fixed point theorems. Finally, we give a concrete example to illustrate the possible application
of our analytical results.

2. Preliminaries

In this section, we preliminarily provide some definitions and lemmas which are useful in
the following discussion.

Definition 2.1 (see [3]). The fractional integral of order α > 0 of a function y : (0,∞) �→ R is
given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds (2.1)

provided the right side is pointwise defined on (0,∞).

Definition 2.2 (see [3]). The standard Riemann-Liouville fractional derivative of order α > 0
of a continuous function y : (0,∞) �→ R is given by

Dα
0+y(t) =

1
Γ(n − α)

(
d
dt

)n ∫ t

0

y(s)

(t − s)α−n+1
ds, (2.2)

where n = [α] + 1 provided the right side is pointwise defined on (0,∞).

Lemma 2.3 (see [6]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0,
then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · · + cNtα−N, (2.3)

for some ci ∈ R, i = 0, 1, . . . ,N, where N is the smallest integer greater than or equal to α.
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By Lemma 2.3, we next present an integral presentation of the solution for the BVP of
the linearized equation associated with the BVP (1.6).

Lemma 2.4. Let y ∈ C[0, 1], then the BVP

Dα
0+u(t) + y(t) = 0, 0 < t < 1, 2 < α < 3,

u(0) = u′(0) = 0, u′(1) =
m−2∑

i=1

aiu
′(ξi)

(2.4)

has a unique solution

u(t) =
∫1

0
G(t, s)y(s)ds, (2.5)

where the Green function G is given by G(t, s) = G1(t, s) +G2(t, s), where

G1(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − s)α−2tα−1 − (t − s)α−1

Γ(α)
, 0 � s � t � 1,

(1 − s)α−2tα−1

Γ(α)
, 0 � t � s � 1,

G2(t, s) =
1

(
1 − ρ

)
Γ(α)

(

ρ(1 − s)α−2 −
m−2∑

i=1

ai(ξi − s)α−2χEi(s)

)

tα−1.

(2.6)

Here, Ei = [0, ξi], and χEi denotes the characteristic function of the set Ei for i = 1, 2, . . . , m − 2.

Proof. Lemma 2.3 yields

u(t) = −Iα0+y(t) + c1t
α−1 + c2t

α−2 + c3t
α−3. (2.7)

This, with the condition that u(0) = 0, gives c3 = 0. Furthermore, differentiating both sides of
the expression of u(t)with respect to t, we obtain

u′(t) = −Iα−10+ y(t) + c1(α − 1)tα−2 + c2(α − 2)tα−3. (2.8)

Now, by the conditions that u′(0) = 0 and u′(1) =
∑m−2

i=1 aiu
′(ξi), we get that c2 = 0 and

c1 =
1

(α − 1)
(
1 − ρ

)

(

Iα−10+ y(1) −
m−2∑

i=1

aiI
α−1
0+ y(ξi)

)

. (2.9)
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Hence,

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds +

tα−1

Γ(α)

∫1

0
(1 − s)α−2y(s)ds

+
tα−1

(
1 − ρ

)
Γ(α)

(

ρ

∫1

0
(1 − s)α−2y(s)ds −

m−2∑

i=1

ai

∫ ξi

0
(ξi − s)α−2y(s)ds

)

= − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds +

tα−1

Γ(α)

∫1

0
(1 − s)α−2y(s)ds

+
tα−1

(
1 − ρ

)
Γ(α)

(

ρ

∫1

0
(1 − s)α−2y(s)ds −

∫1

0

m−2∑

i=1

ai(ξi − s)α−2χEi(s)y(s)ds

)

=
∫1

0
G(t, s)y(s)ds.

(2.10)

The proof is complete.

The functions Gi(t, s) (i = 1, 2) have important properties as follows.

Lemma 2.5. Assume (H2) holds, then Gi(1, s) � Gi(t, s) � q(t)Gi(1, s) � 0 for all t, s ∈ [0, 1] and
i = 1, 2, where q(t) = tα−1.

Proof. The asserted relation for i = 1 is a direct result of Lemma 2.8 in [14]. In addition, the
case for i = 2 follows from a direct application of the definition of G2(t, s) and the fact that

G2(t, s) =
1

(
1 − ρ

)
Γ(α)

(
m−2∑

i=1

aiξ
α−2
i (1 − s)α−2 −

m−2∑

i=1

aiξ
α−2
i

(

1 − s

ξi

)α−2
χEi(s)

)

tα−1

� 1
(
1 − ρ

)
Γ(α)

(
m−2∑

i=1

aiξ
α−2
i (1 − s)α−2 −

m−2∑

i=1

aiξ
α−2
i (1 − s)α−2

)

tα−1

= 0

(2.11)

holds for t, s ∈ [0, 1]. The proof is complete.

Remark 2.6. The definition of G(t, s) and Lemma 2.5 yield

G(1, s) � G(t, s) � q(t)G(1, s) � 0, 0 � t, s � 1. (2.12)

Remark 2.7. It is necessary to mention that Bai and Lü [6] showed that their Green’s function
did not satisfy a classical Harnack-like inequality (HLI) for the homogenous two-point BVP
of fractional differential equation with order α in (1, 2]. They proved thatG(t, s) > γ(s)G(s, s),
where γ(s) → 0+ as s → 0+, which is a challenge for our seeking positive solutions.

On the other hand, Goodrich [15], for the homogenous BVP of fractional differential
equation with order α in (n − 1, n] (n > 3), established a HLI: mint∈[1/2,1]G(t, s) > γG(1, s),
where γ is a positive constant. Using this inequality, the author obtained sufficient conditions
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on the existence of positive solutions. In Remark 2.6, we get a generalized HLI contrasting
to the result in [15]. In fact, for a constant θ ∈ (0, 1], it follows from Remark 2.6 that
mint∈[θ,1]G(t, s) > θα−1G(1, s).

From the above discussion, we may infer that it is closely related to both the order
of fractional differential equations and boundary conditions that whether or not the Green’s
function satisfies a traditional HLI, which needs more detailed and rigorous investigations.

Next, we introduce some fixed point theorems which will be adopted to prove the
main results in the following section.

Lemma 2.8 (see [18]). Let B be a Banach space, P ⊆ B a cone, andΩ1, Ω2 two bounded open balls
of B centered at the origin with Ω1 ⊂ Ω2. Suppose that A : P ∩ (Ω2 \ Ω1) → P is a completely
continuous operator such that either

(B1) ‖Ax‖ � ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ � ‖x‖, x ∈ P ∩ ∂Ω2 or

(B2) ‖Ax‖ � ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ � ‖x‖, x ∈ P ∩ ∂Ω2

Holds, thenA has a fixed point in P ∩ (Ω2 \Ω1).

Definition 2.9. The map θ is said to be a nonnegative continuous concave functional on a cone
P of a real Banach space B provided that θ : P → [0,∞) is continuous and θ(tx + (1 − t)y) �
tθ(x) + (1 − t)θ(y) for all x, y ∈ P and 0 � t � 1.

Lemma 2.10 (see [19]). Let P be a cone in a real Banach space B, Pc = {x ∈ P | ‖x‖ < c}, θ

a nonnegative continuous concave functional on P such that θ(x) � ‖x‖, for all x ∈ Pc, and
P(θ, b, d) = {x ∈ P | b � θ(x), ‖x‖ � d}. Suppose that A : Pc → Pc is completely continuous
and there exist constants 0 < a < b < d � c such that

(C1) {x ∈ P(θ, b, d) | θ(x) > b}/= ∅ and θ(Ax) > b for x ∈ P(θ, b, d),

(C2) ‖Ax‖ < a for x ∈ Pa,

(C3) θ(Ax) > b for x ∈ P(θ, b, c) with ‖Ax‖ > d,

thenA has at least three fixed points x1, x2, and x3 such that

‖x1‖ < a, b < θ(x2), a < ‖x3‖ with θ(x3) < b. (2.13)

Remark 2.11. If there holds d = c, then condition (C1) of Lemma 2.10 implies condition (C3)
of Lemma 2.10.

3. Main Results

In order to apply the fixed point theorems to the BVP (1.6), we first import some notations
and operator.

Let B = C[0, 1] be the classical Banach space with the norm ‖u‖ = supt∈[0,1]|u(t)|.
Furthermore, define the cone P by

P =
{
u ∈ B | u(t) � q(t)‖u‖ for t ∈ [0, 1]

}
. (3.1)
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Notice that ‖u‖ = u(1) for each u ∈ P. For a positive number r, define the function space Ωr

by

Ωr = {u ∈ C[0, 1] : ‖u‖ < r}. (3.2)

Also define the operator A : P → B by

[Au](t) =
∫1

0
G(t, s)f(s, u(s))ds. (3.3)

Next, we show some properties of the operator A.

Lemma 3.1. If (H1)-(H2) hold, thenA(P) ⊂ P.

Proof. From the definition of the operator A and Remark 2.6, it follows that, for u ∈ P,

[Au](t) � q(t)
∫1

0
G(1, s)f(s, u(s))ds

� q(t)max
t∈[0,1]

{∫1

0
G(t, s)f(s, u(s))ds

}

= q(t)‖[Au]‖,

(3.4)

Therefore, A(P) ⊂ P. This completes the proof.

Lemma 3.2. Assume that (H1)-(H2) hold, then the operator A : Ωr ∩ P → P is completely
continuous.

Proof. Lemma 3.1 implies that A(Ωr ∩ P) ⊂ P. Moreover, the uniform continuity of the
function f(t, u) on the compact set [0, 1] × [0, r] yields that the operator A : Ωr ∩ P → P
is continuous.

We now show that A(Ωr ∩ P) is bounded. To this end, let l = max{f(t, u) : 0 � t �
1, 0 � u � r}, then, for u ∈ Ωr ∩ P, it follows from Remark 2.6 that

0 � [Au](t) =
∫1

0
G(t, s)f(s, u(s))ds � l

∫1

0
G(1, s)ds, (3.5)

which implies that A(Ωr ∩ P) is bounded.
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In addition, for each u ∈ Ωr ∩ P, t1, t2 ∈ [0, 1], t1 < t2, writing F(t1, t2) = |[Au](t1) −
[Au](t2)|, we have the following estimation:

F(t1, t2) � l

∫1

0
|G1(t2, s) −G1(t1, s)|ds + l

∫1

0
|G2(t2, s) −G2(t1, s)|ds

� l

∫ t1

0
|G1(t2, s) −G1(t1, s)|ds + l

∫ t2

t1

|G1(t2, s) −G1(t1, s)|ds

+ l

∫1

t2

|G1(t2, s) −G1(t1, s)|ds +
ρl

(α − 1)
(
1 − ρ

)
Γ(α)

(
tα−12 − tα−11

)

� l

Γ(α)

∫ t1

0

((
tα−12 − tα−11

)
(1 − s)α−2 + (t2 − s)α−1 − (t1 − s)α−1

)
ds

+
l

Γ(α)

∫ t2

t1

((
tα−12 − tα−11

)
(1 − s)α−2 + (t2 − s)α−1

)
ds

+
l

Γ(α)

∫1

t2

(
tα−12 − tα−11

)
(1 − s)α−2ds +

ρl
(
tα−12 − tα−11

)

(α − 1)
(
1 − ρ

)
Γ(α)

� l

(α − 1)
(
1 − ρ

)
Γ(α)

(
tα−12 − tα−11

)
+

l

αΓ(α)
(
tα2 − tα1

)
.

(3.6)

Now, using the fact that the functions tα−1 and tα are uniformly continuous on [0, 1], we
conclude that A(Ωr ∩ P) is an equicontinuous set on [0, 1]. It follows from the Arzelà-Ascoli
Theorem thatA(Ωr ∩P) is a relatively compact set. As a consequence, we complete the whole
proof.

Lemma 3.3. Assume that (H1)-(H2) hold, then u ∈ C[0, 1] is a solution of the BVP (1.6) if and only
if it is a fixed point of A in P.

Proof. If u ∈ P and Au = u, then

u(t) = −Iα0+f(t, u(t)) +
1

(α − 1)
(
1 − ρ

)

(

Iα−10+ f(1, u(1)) −
m−2∑

i=1

aiI
α−1
0+ f(ξi, u(ξi))

)

tα−1. (3.7)

Thus,

Dα
0+u(t) + f(t, u(t)) = 0, (3.8)

and u(0) = 0. Furthermore, differentiation of (3.7) with respect to t produces

u′(t) = −Iα−10+ f(t, u(t)) +
1

(
1 − ρ

)

(

Iα−10+ f(1, u(1)) −
m−2∑

i=1

aiI
α−1
0+ f(ξi, u(ξi))

)

tα−2. (3.9)
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This yields u′(0) = 0 and

u′(1) =
1

(
1 − ρ

)

(

ρIα−10+ f(1, u(1)) −
m−2∑

i=1

aiI
α−1
0+ f(ξi, u(ξi))

)

=
m−2∑

i=1

aiu
′(ξi). (3.10)

Therefore, u is a positive solution of the BVP (1.6).
On the other hand, if u is a positive solution of the BVP (1.6), then Lemma 2.4 implies

Au = u. Moreover, in view of the proof of Lemma 3.1, we also get u(t) � q(t)‖u‖ for t ∈ [0, 1].
Hence, u is a fixed point of A in P. We consequently complete the proof.

In the following, fix η in (0,1) and set

L =

(∫1

0
G1(1, s)ds +

ρ

(α − 1)
(
1 − ρ

)
Γ(α)

)−1
, M =

(

ηα−1
∫1

η

G1(1, s)ds

)−1
. (3.11)

We now present two main results on the existence of positive solutions for the BVP (1.6).

Theorem 3.4. Assume that (H1)-(H2) hold. In addition, and suppose that one of the following two
conditions holds:

(H3) limu→ 0mint∈[0,1](f(t, u)/u) = ∞, limu→∞maxt∈[0,1](f(t, u)/u) = 0,

(H4) limu→ 0mint∈[0,1](f(t, u)/u) = 0, limu→∞maxt∈[0,1](f(t, u)/u) = ∞,

then the BVP (1.6) has at least one positive solution.

Proof. Notice that Lemma 3.2 guarantees that the operator A : Ωr ∩ P → P is completely
continuous.

Now, assume that condition (H3) holds. Since limu→ 0mint∈[0,1](f(t, u)/u) = ∞, there
exists an r1 > 0 such that

f(t, u) � ε1u for t ∈ [0, 1], 0 � u � r1, (3.12)

where the constant ε1 > 0 is chosen, so that

ε1

∫1

0
G(1, s)q(s)ds > 1. (3.13)

Thus,

f(t, u(t)) � ε1u(t) for u ∈ P ∩ ∂Ωr1 , t ∈ [0, 1]. (3.14)
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This, together with the definitions of A and Remark 2.6, implies that for any u ∈ P ∩ ∂Ωr1 ,

‖Au‖ =
∫1

0
G(1, s)f(s, u(s))ds � ε1

∫1

0
G(1, s)u(s)ds

� ε1

∫1

0
G(1, s)q(s)ds‖u‖ � ‖u‖.

(3.15)

That is, for u ∈ P ∩ ∂Ωr1 , ‖Au‖ � ‖u‖.
On the other hand, from limu→∞maxt∈[0,1](f(t, u)/u) = 0, it follows that there exists a

l1 > 0 such that

f(t, u) � ε2u for t ∈ [0, 1], u � l1, (3.16)

where the constant ε2 > 0 satisfies

ε2

∫1

0
G(1, s)ds <

1
2
. (3.17)

Now, write l2 = max{f(t, u) : t ∈ [0, 1], u ∈ [0, l1]}. Then the relation (3.16) yields

f(t, u) � ε2u + l2 for t ∈ [0, 1], u � 0. (3.18)

Set r2 = max{2r1, 2l2
∫1
0 G(1, s)ds} and let u ∈ P ∩ ∂Ωr2 , then Remark 2.6 and (3.18) imply

‖Au‖ = [Au](1)

=
∫1

0
G(1, s)f(s, u(s))ds

�
∫1

0
G(1, s)(ε2u(s) + l2)ds

� ε2

∫1

0
G(1, s)ds‖u‖ + l2

∫1

0
G(1, s)ds

� ‖u‖.

(3.19)

Thus, the operatorA satisfies condition (B2) of Lemma 2.8. Consequently, the operatorA has
at least one fixed point u ∈ P ∩ (Ω2 \Ω1), which is one positive solution of the BVP (1.6).

Next, we suppose that (H4) holds. The proof is similar to that of the case in which
assumption (H3) holds and will only be sketched here. Select two positive constants ε3 and ε4
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with ε3
∫1
0 G(1, s)ds < 1 and ε4η

α−1 ∫1
η G(1, s)ds > 1, respectively. Then, there exist two positive

numbers r3 and l3, such that

f(t, u) � ε3u for t ∈ [0, 1], 0 � u � r3, (3.20)

f(t, u) � ε4u for t ∈ [0, 1], u � l3. (3.21)

It follows from Remark 2.6 and (3.20) that for u ∈ P ∩ ∂Ωr3 ,

‖Au‖ =
∫1

0
G(1, s)f(s, u(s))ds � ε3

∫1

0
G(1, s)u(s)ds � ‖u‖. (3.22)

In addition, let r4 = max{2r3, l3η1−α}. If u ∈ P ∩ ∂Ωr4 , then

u(t) � q(t)‖u‖ � ηα−1r4 � l3 for t ∈ [η, 1], (3.23)

and by (3.21),

f(t, u(t)) � ε4u(t) for u ∈ P ∩ ∂Ωr4 , t ∈ [η, 1]. (3.24)

This yields that, for u ∈ ∂Ωr4 ∩ P,

‖Au‖ = [Au](1)

=
∫1

0
G(1, s)f(s, u(s))ds

� ε4

∫1

η

G(1, s)u(s)ds

� ε4

∫1

η

G(1, s)q(s)‖u‖ds

� ε4η
α−1
∫1

η

G(1, s)ds‖u‖

� ‖u‖.

(3.25)

Thus, ‖Au‖ � ‖u‖ for u ∈ ∂Ωr4 ∩ P. Hence, the operator A satisfies condition (B1) in
Lemma 2.8. As a consequence, the operator A has at least one fixed point u ∈ P ∩ (Ω4 \Ω3).
This means that the BVP (1.6) has at least one positive solution u. We complete the whole
proof.



12 Abstract and Applied Analysis

Theorem 3.5. Assume (H1)-(H2) hold. In addition, suppose that there exist constants 0 < a < b < c
withMb < Lc, such that the following assumptions hold:

(H5) f(t, u) < La, for (t, u) ∈ [0, 1] × [0, a],

(H6) f(t, u) > Mb, for (t, u) ∈ [η, 1] × [b, c],

(H7) f(t, u) � Lc, for (t, u) ∈ [0, 1] × [0, c],

then the BVP (1.6) has at least three positive solutions.

Proof. Define the nonnegative continuous concave functional θ on the cone P by

θ(u) = min
η�t�1

u(t). (3.26)

Next, we intend to verify that all the conditions in Lemma 2.10 hold with respect to the
operator A. Lemma 2.10 involves parameters a, b, c, and d with 0 < a < b < d � c. Now,
let d = c, then by Remark 2.11, it is sufficient to verify that the conditions (C1) and (C2) in
Lemma 2.10 hold. To this end, let u ∈ Pc, then ‖u‖ � c. This together with assumption (H7)
implies that for 0 � t � 1, f(t, u(t)) � Lc. This relation and Remark 2.6 yield

‖Au‖ �
∫1

0
G(1, s)f(s, u(s))ds

�
∫1

0
G1(1, s)f(s, u(s))ds +

∫1

0

ρ
(
1 − ρ

)
Γ(α)

(1 − s)α−2f(s, u(s))ds

� Lc

[∫1

0
G1(1, s)ds +

ρ

(α − 1)
(
1 − ρ

)
Γ(α)

]

= c.

(3.27)

This, with Lemma 3.2, clearly manifests that the operator A : Pc → Pc is completely
continuous. In a similar argument, if u ∈ Pa, then assumption (H5) yields f(t, u(t)) < La, 0 �
t � 1. Therefore, condition (C2) of Lemma 2.10 is satisfied.

Moreover, the set {x ∈ P(θ, b, c) | θ(x) > b} is not empty, since the constant function
u(t) ≡ (b + c)/2 is contained in the set {x ∈ P(θ, b, c) | θ(x) > b}. Now, let u ∈ P(θ, b, c), then
0 � u(t) � c for t ∈ [0, 1] and b � minη�t�1u(t). Thus, we obtain

b � u(t) � c, η � t � 1. (3.28)

Assumption (H6) and (3.28) imply

f(t, u(t)) > Mb, η � t � 1. (3.29)
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Hence, it follows from (3.29) and Lemma 2.5 that

θ(Au) = min
η�t�1

([Au](t))

� ηα−1
∫1

η

G1(1, s)f(s, u(s))ds

> Mbηα−1
∫1

η

G1(1, s)ds

= b.

(3.30)

Accordingly, the validity of condition (C1) in Lemma 2.10 is verified. Consequently, by virtue
of Lemma 2.10 and Remark 2.11, the operator A has at least three fixed points u1, u2, and u3

satisfying

max
0�t�1

|u1(t)| < a, b < min
η�1�1

|u2(t)|,

a < max
0�t�1

|u3(t)|, min
η�1�1

|u3(t)| < b.
(3.31)

These fixed points are positive solutions for the BVP (1.6). The proof is complete.

4. Illustrative Example

Consider the BVP

D5/2
0+ u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) =
1
2
u′
(

1
64

)

+
1
4
u′
(

9
16

)

,
(4.1)

where

f(t, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
t + 100

+ 52u3, 0 � t � 1, u � 1,

u

t + 100u
+ u + 51, 0 � t � 1, 1 < u.

(4.2)

Let η = 3/4. Clearly, the parameters ρ = (1/2)(1/64)1/2 +(1/4)(9/16)1/2 = 1/4 < 1, L =
135

√
π/88 ≈ 4.871, M = 480

√
π/17

√
3 ≈ 51.196. Choosing a = 1/10, b = 1, c = 20, then
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Mb < Lc. Now, we can verify the validity of conditions (H5)–(H7) in Theorem 3.5. Indeed,
indirect computations yield

f(t, u) =
u

t + 100u
+ 52u3 � 0.01 + 52a3 < La, for (t, u) ∈ [0, 1] × [0, a],

f(t, u) =
u

t + 100u
+ u + 51 � b + 51 � Mb, for (t, u) ∈

[
3
4
, 1
]

× [b, c],

f(t, u) � u

t + 100u
+ u + 51 � 0.01 + c + 51 < Lc, for (t, u) ∈ [0, 1] × [0, c].

(4.3)

Hence, conditions (H5)–(H7) in Theorem 3.5 are satisfied for the above-specified functions
and parameters. Therefore, in light of Theorem 3.5, we conclude that the above BVP has
at least three positive solutions u1, u2, and u3 defined on [0, 1] satisfying max0�t�1|u1(t)| <
a, b < minη�1�1|u2(t)|, and a < max0�t�1|u3(t)|with minη�1�1|u3(t)| < b.
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