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We study the existence and multiplicity of positive solutions for the following semilinear elliptic
equation −Δu + u = λa(x)|u|q−2u + b(x)|u|p−2u in R

N , u ∈ H1(RN), where λ > 0, 1 < q < 2 < p <
2∗(2∗ = 2N/(N − 2) if N ≥ 3, 2∗ = ∞ if N = 1, 2), a(x), b(x) satisfy suitable conditions, and a(x)
may change sign in R

N .

1. Introduction and Main Results

In this paper, we deal with the existence and multiplicity of positive solutions for the
following semilinear elliptic equation:

−Δu + u = λa(x)|u|q−2u + b(x)|u|p−2u, in R
N,

u > 0, in R
N,

u ∈ H1
(
R
N
)
,

(Eλa,b)

where λ > 0, 1 < q < 2 < p < 2∗ (2∗ = (2N/(N − 2)) ifN ≥ 3, 2∗ = ∞ ifN = 1, 2), and a, b are
measurable functions and satisfy the following conditions:

(A1) a ∈ C(RN) ∩ Lq∗(RN)(q∗ = p/(p − q))with a+ = max{a, 0}/≡ 0 in R
N ;

(B1) b ∈ C(RN) ∩ L∞(RN) and b+ = max{b, 0}/≡ 0 in R
N .
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Semilinear elliptic equations with concave-convex nonlinearities in bounded domains
are widely studied. For example, Ambrosetti et al. [1] considered the following equation:

−Δu = λuq−1 + up−1, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(Eλ)

where λ > 0, 1 < q < 2 < p < 2∗. They proved that there exists λ0 > 0 such that (Eλ) admits at
least two positive solutions for all λ ∈ (0, λ0) and has one positive solution for λ = λ0 and no
positive solution for λ > λ0. Actually, Adimurthi et al. [2], Damascelli et al. [3], Ouyang and
Shi [4], and Tang [5] proved that there exists λ0 > 0 such that (Eλ) in the unit ball BN(0; 1)
has exactly two positive solutions for λ ∈ (0, λ0) and has exactly one positive solution for
λ = λ0 and no positive solution exists for λ > λ0. For more general results of (Eλ) (involving
sign-changing weights) in bounded domains see Ambrosetti et al. [6], Garcı́a Azorero et al.
[7], Brown and Wu [8], Brown and Zhang [9], Cao and Zhong [10], de Figueiredo et al. [11],
and their references. However, little has been done for this type of problem in R

N . We are
only aware of the works [12–16] which studied the existence of solutions for some related
concave-convex elliptic problems (not involving sign-changing weights). Furthermore, we
do not know of any results for concave-convex elliptic problems involving sign-changing
weight functions except [17]. Wu in [17] has studied the multiplicity of positive solutions for
the following equation involving sign-changing weights:

−Δu + u = aλ(x)uq−1 + bμ(x)up−1, in R
N,

u > 0, in R
N,

u ∈ H1
(
R
N
)
,

(Eaλ,bμ)

where 1 < q < 2 < p < 2∗, the parameters λ, μ ≥ 0. He also assumed that aλ(x) = λa+(x)+a−(x)
is sign-chaning and bμ(x) = c(x) + μd(x), where c and d satisfy suitable conditions, and
proved that (Eaλ,bμ) has at least four positive solutions.

The main aim of this paper is to study (Eλa,b) in R
N involving concave-convex

nonlinearities and sign-changing weight functions. We will discuss the Nehari manifold and
examine carefully connection between the Nehari manifold and the fibrering maps; then
using arguments similar to those used in [18], we will prove the existence of two positive
solutions by using Ekeland’s variational principle [19].

Set

Λ0 =

(
2 − q(

p − q)‖b+‖L∞

)(2−q)/(p−2)(
p − 2(

p − q)‖a+‖Lq∗

)
S
(p(2−q)/2(p−2))+(q/2)
p > 0, (1.1)

where ‖b+‖L∞ = supx∈RN b+(x), ‖a+‖Lq∗ = (
∫
RN |a+(x)|q∗dx)1/q

∗
, and Sp is the best Sobolev

constant for the imbedding ofH1(RN) into Lp(RN). Now, we state the first main result about
the existence of positive solution of (Eλa,b) in R

N .
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Theorem 1.1. Assume that (A1) and (B1) hold. If λ ∈ (0,Λ0), then (Eλa,b) admits at least one
positive solution inH1(RN).

Associated with (Eλa,b), we consider the energy functional Jλa,b inH1(RN):

Jλa,b(u) =
1
2
‖u‖2H1 − λ

q

∫

RN

a(x)|u|qdx − 1
p

∫

RN

b(x)|u|pdx, (1.2)

where ‖u‖H1 = (
∫
RN (|∇u|2 + u2)dx)1/2. By [20, Proposition B.10], Jλa,b ∈ C1(H1(RN),R). It is

well known that the solutions of (Eλa,b) are the critical points of the energy functional Jλa,b in
H1(RN).

Under assumptions (A1), (B1), and λ > 0, (Eλa,b) can be regarded as a perturbation
problem of the following semilinear elliptic equation:

−Δu + u = b(x)up−1, in R
N,

u > 0, in R
N,

u ∈ H1
(
R
N
)
,

(Eb)

where b(x) ∈ C(RN)∩L∞(RN) and b(x) > 0 for all x ∈ R
N . We denote by Sbp the best constant

which is given by

Sbp = inf
u∈H1(RN)\{0}

‖u‖2H1

(∫
RN b(x)|u|pdx

)2/p . (1.3)

A typical approach for solving problem of this kind is to use the Minimax method:

αbΓ = inf
γ∈Γ

max
t∈[0,1]

Jb0
(
γ(t)

)
, (1.4)

where

Γ =
{
γ ∈ C

(
[0, 1],H1

(
R
N
))

: γ(0) = 0, γ(1) = e
}
, (1.5)

Jb0 (e) = 0, and e /= 0. By the Mountain Pass Lemma due to Ambrosetti and Rabinowitz [21],
we called the nonzero critical point u ∈ H1(RN) of Jb0 a ground state solution of (Eb) in R

N if
Jb0 (u) = αbΓ. We remark that the ground state solutions of (Eb) in R

N can also be obtained by
the Nehari minimization problem

αb0 = inf
v∈Mb

0

Jb0 (v), (1.6)
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where Mb
0 = {u ∈ H1(RN) \ {0} : ‖u‖2H1 =

∫
RN b(x)|u|pdx}. Note that Mb

0 contains every
nonzero solution of (Eb) in R

N (see Willem [22])

αbΓ = αb0 =
p − 2
2p

(
Sbp

)p/(p−2)
> 0. (1.7)

When b(x) ≡ b∞ is a constant function in R
N , the existence of ground state solutions of

(Eb) in R
N has been established by Berestycki and Lions [23]. Actually, Kwong [24] proved

that the positive solution of (Eb) in R
N is unique.

When b(x)/≡ b∞ and b(x) ∈ C(RN) ∩ L∞(RN), it is well known that the existence of
ground state solutions of (Eb) has been established by the condition b(x) ≥ b∞ = lim|x|→∞b(x)
and the existence of ground state solutions of limit equation

−Δu + u = b∞up−1, in R
N,

u > 0, in R
N,

u ∈ H1
(
R
N
)
.

(Eb∞)

In order to get the second positive solution of (Eλa,b) in R
N , we need some additional

assumptions for a(x) and b(x). We assume the following conditions on a(x) and b(x):

(B2) b(x) > 0 for all x ∈ R
N , and b(x) satisfies suitable conditions such that (Eb) in R

N

has a positive ground state solution w0, that is, Jb0 (w0) = αb0;

(A2)
∫
RN a(x)|w0|qdx > 0, where w0 is a positive ground state solution of (Eb) in R

N .

Theorem 1.2. Assume that (A1)-(A2) and (B1)-(B2) hold. If λ ∈ (0, (q/2)Λ0), (Eλa,b) admits at
least two positive solutions inH1(RN).

Remark 1.3. (i) In [17, Theorem 1.1], the author has proved that if

bμ(x) = c(x) + μd(x), aλ(x) = λa+(x) + a−(x),

lim
|x|→∞

c(x) = 1, lim
|x|→∞

d(x) = 0,

1 ≥ c(x) ≥ 1 − c0 exp(−ra|x|), for c0 < 1, ∀x ∈ R
N,

d(x) ≥ d0 exp(−rb|x|), for d0 > 0, ∀x ∈ R
N,

a−(x) ≥ −ĉ exp(−rf− |x|
)
, ∀x ∈ R

N,

(1.8)

where rb < min{ra, rf− , q}, then for sufficiently small λ and μ,(Eaλ,bμ),

−Δu + u = aλ(x)uq−1 + bμ(x)up−1, in R
N,

u > 0, in R
N,

u ∈ H1
(
R
N
)
,

(1.9)
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admits at least two positive solutions in R
N. In particular, bμ satisfies the following condition:

bμ(x) = c(x) + μd(x) ≥ 1 = lim
|x|→∞

bμ(x), for large |x|. (1.10)

(ii) According to Lions’ paper, if b(x) ≥ b∞ = lim|x|→∞ b(x) for any x ∈ R
N, then there

is a positive ground state solution w0 of (Eb) in R
N. Supposing

∫
RN a(x)w

p

0dx =
∫
RN [a+(x) +

a−(x)]w
p

0dx > 0, we can prove that for sufficiently small λ,(Eλa,b),

−Δu + u = λa(x)uq−1 + b(x)up−1, in R
N,

u > 0, in R
N,

u ∈ H1
(
R
N
)

(1.11)

admits at least two positive solutions in R
N. We give an example of a(x) as follows. Let

η1 : R
N → [0, 1] be a C∞

c -function on R
N such that 0 ≤ η1 ≤ 1 and

η1(x) =

⎧
⎨
⎩
1, for |x| ≤ 1,

0, for |x| ≥ 2.
(1.12)

Since w0 ∈ H1(RN), there is a positive number R > 2 such that

∫

{|x|≥R}
w
p

0dx <

∫

{|x|≤1}
w
p

0dx. (1.13)

Let η2 : R
N → [0, 1] be a C∞-function on R

N such that 0 ≤ η2 ≤ 1 and

η2(x) =

⎧
⎨
⎩
0, for |x| ≤ R,
1, for |x| ≥ 2R.

(1.14)

Define

a(x) = η1(x) − η2(x)|x|−r , where r > 0, N − rq∗ < 0, (1.15)

then by (1.13), we have that

∫

RN

a(x)wp

0dx ≥
∫

{|x|≤1}
w
p

0dx −
∫

{|x|≥R}
|x|−rwp

0dx

≥
∫

{|x|≤1}
w
p

0dx − R−r
∫

{|x|≥R}
w
p

0dx > 0.

(1.16)
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In this case, a−(x) = −η2(x)|x|−r and b(x) do not satisfy the assumptions of exponential decay
in [17].

Throughout this paper, (A1) and (B1) will be assumed.H1(RN) denotes the standard
Sobolev space, whose norm ‖ · ‖H1 is induced by the standard inner product. The dual space
of H1(RN) will be denoted by H−1(RN). 〈·, ·〉 denotes the usual scalar product in H1(RN).
We denote the norm in Ls(RN) by ‖ · ‖Ls for 1 ≤ s ≤ ∞. on(1) denotes on(1) → 0 as n → ∞.
C, Ci will denote various positive constants, the exact values of which are not important. This
paper is organized as follows. In Section 2, we give some properties of Nehari manifold. In
Sections 3 and 4, we complete proofs of Theorems 1.1 and 1.2.

2. Nehari Manifold

In this section, we will give some properties of Nehari manifold. As the energy functional
Jλa,b is not bounded below on H1(RN), it is useful to consider the functional on the Nehari
manifold

Mλa,b =
{
u ∈ H1

(
R
N
)
\ {0} :

〈
(Jλa,b)′(u), u

〉
= 0
}
. (2.1)

Thus, u ∈ Mλa,b if and only if

〈(Jλa,b)′(u), u〉 = ‖u‖2H1 − λ
∫

RN

a(x)|u|qdx −
∫

RN

b(x)|u|pdx = 0. (2.2)

Note that Mλa,b contains every nonzero solution of (Eλa,b). Moreover, we have the following
results.

Lemma 2.1. The energy functional Jλa,b is coercive and bounded below on Mλa,b.

Proof. If u ∈ Mλa,b, then by (A1), (2.2), and Hölder and Sobolev inequalities

Jλa,b(u) =
p − 2
2p

‖u‖2H1 − λ
(
p − q
pq

)∫

RN

a(x)|u|qdx (2.3)

≥ p − 2
2p

‖u‖2H1 − λ
(
p − q
pq

)
S
−(q/2)
p ‖a+‖Lq∗ ‖u‖qH1 . (2.4)

Thus, Jλa,b is coercive and bounded below on Mλa,b.
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The Nehari manifold is closely linked to the behavior of the function of the form ϕu :
t → Jλa,b(tu) for t > 0. Such maps are known as fibering maps and were introduced by
Drábek and Pohozaev in [25] and are also discussed in [9]. If u ∈ H1(RN), we have

ϕu(t) =
t2

2
‖u‖2H1 − tq

q
λ

∫

RN

a(x)|u|qdx − tp

p

∫

RN

b(x)|u|pdx;

ϕ′
u(t) = t‖u‖2H1 − tq−1λ

∫

RN

a(x)|u|qdx − tp−1
∫

RN

b(x)|u|pdx;

ϕ′′
u(t) = ‖u‖2H1 −

(
q − 1

)
tq−2λ

∫

RN

a(x)|u|qdx − (p − 1
)
tp−2

∫

RN

b(x)|u|pdx.

(2.5)

It is easy to see that

tϕ′
u(t) = ‖tu‖2H1 − λ

∫

RN

a(x)|tu|qdx −
∫

RN

b(x)|tu|pdx, (2.6)

and so, for u ∈ H1(RN) \ {0} and t > 0, ϕ′
u(t) = 0 if and only if tu ∈ Mλa,b, that is, the critical

points of ϕu correspond to the points on the Nehari manifold. In particular, ϕ′
u(1) = 0 if and

only if u ∈ Mλa,b. Thus, it is natural to split Mλa,b into three parts corresponding to local
minima, local maxima and points of inflection. Accordingly, we define

M+
λa,b =

{
u ∈ Mλa,b : ϕ′′

u(1) > 0
}
,

M0
λa,b =

{
u ∈ Mλa,b : ϕ′′

u(1) = 0
}
,

M−
λa,b =

{
u ∈ Mλa,b : ϕ′′

u(1) < 0
}

(2.7)

and note that if u ∈ Mλa,b, that is, ϕ′
u(1) = 0, then

ϕ′′
u(1) =

(
2 − p)‖u‖2H1 −

(
q − p)λ

∫

RN

a(x)|u|qdx (2.8)

=
(
2 − q)‖u‖2H1 −

(
p − q)

∫

RN

b(x)|u|pdx. (2.9)

We now derive some basic properties of M+
λa,b

,M0
λa,b

, and M−
λa,b

.

Lemma 2.2. Assume that uλ is a local minimizer for Jλa,b on Mλa,b and uλ /∈M0
λa,b

. Then
(Jλa,b)

′(uλ) = 0 inH−1(RN).

Proof. Our proof is almost the same as that in Brown and Zhang [9, Theorem 2.3] (or see
Binding et al. [26]).
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Lemma 2.3. One has the following.

(i) If u ∈ M+
λa,b

∪M0
λa,b

, then
∫
RN a(x)|u|qdx > 0;

(ii) If u ∈ M−
λa,b

, then
∫
RN b(x)|u|pdx > 0.

Proof. The proof is immediate from (2.8) and (2.9).

Moreover, we have the following result.

Lemma 2.4. If λ ∈ (0,Λ0), thenM0
λa,b

= ∅, where Λ0 is the same as in (1.1).

Proof. Suppose the contrary. Then there exists λ ∈ (0,Λ0) such that M0
λa,b /= ∅. Then for u ∈

M0
λa,b by (2.8) and Sobolev inequality, we have

2 − q
p − q‖u‖

2
H1 =

∫

RN

b(x)|u|pdx ≤ ‖b+‖L∞S
−(p/2)
p ‖u‖p

H1 (2.10)

and so

‖u‖H1 ≥
(

2 − q(
p − q)‖b+‖L∞

)1/(p−2)
S
p/2(p−2)
p . (2.11)

Similarly, using (2.9) and Hölder and Sobolev inequalities, we have

‖u‖2H1 = λ
p − q
p − 2

∫

RN

a(x)|u|qdx ≤ λp − q
p − 2

‖a+‖Lq∗S−(q/2)
p ‖u‖q

H1 (2.12)

which implies that

‖u‖H1 ≤
(
λ
p − q
p − 2

‖a+‖Lq∗
)1/(2−q)

Sp
−(q/2(2−q)). (2.13)

Hence, we must have

λ ≥
(

2 − q(
p − q)‖b+‖L∞

)(2−q)/(p−2)(
p − 2(

p − q)‖a+‖Lq∗

)
S
(p(2−q)/2(p−2))+(q/2)
p = Λ0, (2.14)

which is a contradiction. This completes the proof.

In order to get a better understanding of the Nehari manifold and fibering maps, we
consider the function ψu : R

+ → R defined by

ψu(t) = t2−q‖u‖2H1 − tp−q
∫

RN

b(x)|u|pdx, for t > 0. (2.15)
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Clearly tu ∈ Mλa,b if and only if ψu(t) = λ
∫
RN a(x)|u|qdx. Moreover,

ψ ′
u(t) =

(
2 − q)t1−q‖u‖2H1 −

(
p − q)tp−q−1

∫

RN

b(x)|u|pdx, for t > 0, (2.16)

and so it is easy to see that, if tu ∈ Mλa,b, then tq−1ψ ′
u(t) = ϕ′′

u(t). Hence, tu ∈ M+
λa,b

(or
tu ∈ M−

λa,b) if and only if ψ ′
u(t) > 0 (or ψ ′

u(t) < 0).
Let Z = {u ∈ H1(RN) :

∫
RN b(x)|u|pdx = 0}. Suppose that u ∈ H1(RN) \ Z. Then, by

(2.16), ψu has a unique critical point at t = tmax(u), where

tmax(u) =

( (
2 − q)‖u‖2H1(

p − q) ∫
RN b(x)|u|pdx

)1/(p−2)
> 0, (2.17)

and clearly ψu is strictly increasing on (0, tmax(u)) and strictly decreasing on (tmax(u),∞)with
limt→∞ ψu(t) = −∞. Moreover, if λ ∈ (0,Λ0), then

ψu(tmax(u)) =

[(
2 − q
p − q

)(2−q)/(p−2)
−
(
2 − q
p − q

)(p−q)/(p−2)] ‖u‖2(p−q)/(p−2)
H1

(∫
RN b(x)|u|pdx

)(2−q)/(p−2)

= ‖u‖q
H1

(
p − 2
p − q

)(
2 − q
p − q

)(2−q)/(p−2)( ‖u‖p
H1∫

RN b(x)|u|pdx

)(2−q)/(p−2)

≥ ‖u‖q
H1

(
p − 2
p − q

)(
2 − q
p − q

)(2−q)/(p−2)
S
p(2−q)/2(p−2)
p

> λ‖a+‖Lq∗S−(q/2)
p ‖u‖q

H1‖b+‖L∞

≥ λ
∫

RN

a+(x)|u|qdx

≥ λ
∫

RN

a(x)|u|qdx.

(2.18)

Therefore, we have the following lemma.

Lemma 2.5. Let λ ∈ (0,Λ0). For each u ∈ H1(RN) \ Z, one has the following.

(i) If λ
∫
RN a(x)|u|qdx ≤ 0, then there exists a unique t− = t−(u) > tmax(u) such that t−u ∈

M−
λa,b

, ϕu is increasing on (0, t−) and decreasing on (t−,∞). Moreover,

Jλa,b
(
t−u
)
= sup

t≥0
Jλa,b(tu). (2.19)
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(ii) If λ
∫
RN a(x)|u|qdx > 0, then there exists unique 0 < t+ = t+(u) < tmax(u) < t− = t−(u)

such that t+u ∈ M+
λa,b

, t−u ∈ M−
λa,b

, ϕu is decreasing on (0, t+), increasing on (t+, t−), and
decreasing on (t−,∞)

Jλa,b(t+u) = inf
0≤t≤tmax(u)

Jλa,b(tu); Jλa,b
(
t−u
)
= sup

t≥t+
Jλa,b(tu). (2.20)

(iii) M−
λa,b

= {u ∈ H1(RN) \ Z : (1/‖u‖H1)t−(u/‖u‖H1) = 1}.

(iv) There exists a continuous bijection between U = {u ∈ H1(RN) \ Z : ‖u‖H1 = 1} and
M−

λa,b
. In particular, t− is a continuous function for u ∈ H1(RN) \ Z.

Proof. Fix u ∈ H1(RN) \ Z.

(i) Suppose λ
∫
RN a(x)|u|qdx ≤ 0. Then ψu(t) = λ

∫
RN a(x)|u|qdx has a unique solution

t− > tmax(u) such that ψ ′
u(t

−) < 0 and ϕ′
u(t

−) = 0. Thus, by tq−1ψ ′
u(t) = ϕ′′

u(t), ϕu has
a unique critical point at t = t− and ϕ′′

u(t
−) < 0. Therefore, t−u ∈ M−

λa,b and (2.19)
holds.

(ii) Suppose λ
∫
RN a(x)|u|qdx > 0. Since ψu(tmax(u)) > λ

∫
RN a(x)|u|qdx, the equation

ψu(t) = λ
∫
RN a(x)|u|qdx has exactly two solutions t+ < tmax(u) < t− such that

ψ ′
u(t

+) > 0 and ψ ′
u(t

−) < 0. Thus, there exist exactly two multiples of u lying in
H1(RN), that is, t+u ∈ M+

λa,b
and t−u ∈ M−

λa,b
. Therefore, by tq−1ψ ′

u(t) = ϕ
′′
u(t), ϕu has

critical points at t = t+ and t = t− with ϕ′′
u(t

+) > 0 and ϕ′′
u(t

−) < 0. Therefore, ϕu is
decreasing on (0, t+), increasing on (t+, t−) and decreasing on (t−,∞). This implies
that (2.20) holds.

(iii) For u ∈ M−
λa,b

. By Lemma 2.3(ii) and, considering w = u/‖u‖H1 , we have
u ∈ H1(RN) \ Z. By (i) and (ii), there exists a unique t−(w) > 0 such that
t−(w)w ∈ M−

λa,b
, that is, t−(u/‖u‖H1)(1/‖u‖H1)u ∈ M−

λa,b
. Since u ∈ M−

λa,b
, we have

(1/‖u‖H1)t−(u/‖u‖H1) = t−(u) = 1. Therefore

M−
λa,b ⊂

{
u ∈ H1

(
R
N
)
\ Z :

1
‖u‖H1

t−
(

u

‖u‖H1

)
= 1
}
. (2.21)

Conversely, if u ∈ H1(RN) \ Z is such that (1/‖u‖H1)t−(u/‖u‖H1) = t−(u) = 1, then
by the uniqueness of t−(u), we get that u ∈ M−

λa,b. Thus, we have

M−
λa,b =

{
u ∈ H1

(
R
N
)
:

1
‖u‖H1

t−
(

u

‖u‖H1

)
= 1
}
. (2.22)

(iv) Fix u ∈ U arbitrary. Define Gu : (0,∞) ×U → R by

Gu(t,w) =
〈
(Jλa,b)′(tw), tw

〉
= φλa,b(tw), (2.23)
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where φλa,b : H1(RN) → R is defined by φλa,b(u) = 〈(Jλa,b)′(u), u〉. Since
Gu(t−(u), u) = 〈(Jλa,b)′(t−(u)u), t−(u)u〉 = 0, and

∂Gu

∂t

(
t−(u), u

)
=
[
t−(u)

]−1〈(φλa,b
)′(
t−(u)u

)
, t−(u)u〉 < 0, (2.24)

then by the implicit function theorem, there is a neighborhood Wu of u in U and a
unique continuous function Hu : Wu → (0,∞) such that Gu(Hu(w), w) = 0 for all
w ∈ Wu, in particular Hu(u) = t−(u). Since u ∈ U is arbitrary, we obtain that the
functionH : U → (0,∞), given byH(u) = t−(u), is continuous and one to one. By
H− : U → M−

λa,b, whereH−(u) = t−(u)u, we have thatH− is continuous and one to
one. Now if u ∈ M−

λa,b
, then by (iii) we have that H−(w) = u, where w = u/‖u‖H1 .

Since t− is continuous on U, it follows that t− is continuous on H1(RN) \ Z. This
completes the proof.

3. Proof of Theorem 1.1

First, we remark that it follows from Lemma 2.4 that

Mλa,b = M+
λa,b ∪M−

λa,b (3.1)

for all λ ∈ (0,Λ0). Furthermore, by Lemma 2.5 it follows that M+
λa,b and M−

λa,b are nonempty,
and by Lemma 2.1 we may define

αλa,b = inf
u∈Mλa,b

Jλa,b(u);α+λa,b = inf
u∈M+

λa,b

Jλa,b(u);α−λa,b = inf
u∈M−

λa,b

Jλa,b(u). (3.2)

Then we get the following result.

Theorem 3.1. One has the following.

(i) If λ ∈ (0,Λ0), then one has α+λa,b < 0.

(ii) If λ ∈ (0, (q/2)Λ0), then α−λa,b > d0 for some d0 > 0.

In particular, for each λ ∈ (0, (q/2)Λ0), one has α+λa,b = αλa,b.

Proof. (i) Let u ∈ M+
λa,b

. By (2.8)

2 − q
p − q‖u‖

2
H1 >

∫

RN

b(x)|u|pdx (3.3)



12 Abstract and Applied Analysis

and so

Jλa,b(u) =
(
1
2
− 1
q

)
‖u‖2H1 +

(
1
q
− 1
p

)∫

RN

b(x)|u|pdx

<

[(
1
2
− 1
q

)
+
(
1
q
− 1
p

)(
2 − q
p − q

)]
‖u‖2H1

= −
(
p − 2

)(
2 − q)

2pq
‖u‖2H1 < 0.

(3.4)

Therefore, α+λa,b < 0.
(ii) Let u ∈ M−

λa,b
. By (2.8)

2 − q
p − q‖u‖

2
H1 <

∫

RN

b(x)|u|pdx. (3.5)

Moreover, by (B1) and Sobolev inequality

∫

RN

b(x)|u|pdx ≤ ‖b+‖L∞S
−(p/2)
p ‖u‖p

H1 . (3.6)

This implies that

‖u‖H1 >

(
2 − q(

p − q)‖b+‖L∞

)1/(p−2)
S
p/2(p−2)
p , ∀u ∈ M−

λa,b. (3.7)

By (2.4) and (3.7), we have

Jλa,b(u) ≥ ‖u‖q
H1

[
p − 2
2p

‖u‖2−q
H1 − λ

(
p − q
pq

)
S
−(q/2)
p ‖a+‖Lq∗

]

>

(
2 − q(

p − q)‖b+‖L∞

)q/(p−2)
S
pq/2(p−2)
p

×
⎡
⎣p − 2

2p
S
p(2−q)/2(p−2)
p

(
2 − q(

p − q)‖b+‖L∞

)(2−q)/(p−2)
− λ
(
p − q
pq

)
S
−(q/2)
p ‖a+‖Lq∗

⎤
⎦.

(3.8)

Thus, if λ ∈ (0, (q/2)Λ0), then

Jλa,b(u) > d0, ∀u ∈ M−
λa,b, (3.9)

for some positive constant d0. This completes the proof.
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Remark 3.2. (i) If λ ∈ (0,Λ0), then by (2.8) and Hölder and Sobolev inequalities, for each
u ∈ M+

λa,b
we have

‖u‖2H1 <
p − q
p − 2

λ

∫

RN

a(x)|u|qdx

≤ p − q
p − 2

λ‖a‖Lq∗S−(q/2)
p ‖u‖q

H1

<
p − q
p − 2

Λ0‖a‖Lq∗S−(q/2)
p ‖u‖q

H1 ,

(3.10)

and so

‖u‖H1 ≤
(
p − q
p − 2

Λ0‖a‖Lq∗S−(q/2)
p

)1/(2−q)
, ∀u ∈ M+

λa,b. (3.11)

(ii) If λ ∈ (0, (q/2)Λ0), then by Lemma 2.5(i), (ii) and Theorem 3.1(ii), for each u ∈
M−

λa,b we have

Jλa,b(u) = sup
t≥0

Jλa,b(tu). (3.12)

We define the Palais-Smale (simply by (PS)) sequences, (PS) values, and (PS)
conditions inH1(RN) for Jλa,b as follows.

Definition 3.3. (i) For c ∈ R, a sequence {un} is a (PS)c sequence in H1(RN) for Jλa,b if
Jλa,b(un) = c + on(1) and (Jλa,b)

′(un) = on(1) strongly inH−1(RN) as n → ∞.
(ii) c ∈ R is a (PS) value inH1(RN) for Jλa,b if there exists a (PS)c sequence inH

1(RN)
for Jλa,b.

(iii) Jλa,b satisfies the (PS)c-condition inH1(RN) if any (PS)c sequence {un} inH1(RN)
for Jλa,b contains a convergent subsequence.

Now, we use the Ekeland variational principle [19] to get the following results.

Proposition 3.4. (i) If λ ∈ (0,Λ0), then there exists a (PS)αλa,b sequence {un} ⊂ Mλa,b inH1(RN)
for Jλa,b.

(ii) If λ ∈ (0, (q/2)Λ0), then there exists a (PS)α−
λa,b

sequence {un} ⊂ M−
λa,b in H

1(RN) for
Jλa,b.

Proof. The proof is almost the same as that in [27, Proposition 9].

Now, we establish the existence of a local minimum for Jλa,b on M+
λa,b.

Theorem 3.5. Assume that (A1) and (B1) hold. If λ ∈ (0,Λ0), then Jλa,b has a minimizer uλ in
M+

λa,b
, and it satisfies the following:

(i) Jλa,b(uλ) = αλa,b = α+λa,b;

(ii) uλ is a positive solution of (Eλa,b) in R
N ;

(iii) ‖uλ‖H1 → 0 as λ → 0+.
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Proof. By Proposition 3.4(i), there is a minimizing sequence {un} for Jλa,b on Mλa,b such that

Jλa,b(un) = αλa,b + on(1), (Jλa,b)′(un) = on(1), in H−1
(
R
N
)
. (3.13)

Since Jλa,b is coercive on Mλa,b (see Lemma 2.1), we get that {un} is bounded in H1(RN).
Going if necessary to a subsequence, we can assume that there exists uλ ∈ H1(RN) such that

un ⇀ uλ, weakly in H1
(
R
N
)
,

un −→ uλ, almost everywhere in R
N,

un −→ uλ, strongly in Lsloc

(
R
N
)
, ∀1 ≤ s < 2∗.

(3.14)

By (A1), Egorov theorem, and Hölder inequality, we have

λ

∫

RN

a(x)|un|qdx = λ
∫

RN

a(x)|uλ|qdx + on(1), as n −→ ∞. (3.15)

First, we claim that uλ is a nonzero solution of (Eλa,b). By (3.13) and (3.14), it is easy to see
that uλ is a solution of (Eλa,b). From un ∈ Mλa,b and (2.3), we deduce that

λ

∫

RN

a(x)|un|qdx =
q
(
p − 2

)

2
(
p − q)‖un‖

2
H1 −

pq

p − qJλa,b(un). (3.16)

Let n → ∞ in (3.16); by (3.13), (3.15), and αλa,b < 0, we get

λ

∫

RN

a(x)|uλ|qdx ≥ − pq

p − qαλa,b > 0. (3.17)

Thus, uλ ∈ Mλa,b is a nonzero solution of (Eλa,b). Now we prove that un → uλ strongly in
H1(RN) and Jλa,b(uλ) = αλa,b. By (3.16), if u ∈ Mλa,b, then

Jλa,b(u) =
p − 2
2p

‖u‖2H1 −
p − q
pq

λ

∫

RN

a(x)|u|qdx. (3.18)

In order to prove that Jλa,b(uλ) = αλa,b, it suffices to recall that un, uλ ∈ Mλa,b, by (3.18) and
applying Fatou’s lemma to get

αλa,b ≤ Jλa,b(uλ) =
p − 2
2p

‖uλ‖2H1 −
p − q
pq

λ

∫

RN

a(x)|uλ|qdx

≤ lim inf
n→∞

(
p − 2
2p

‖un‖2H1 −
p − q
pq

λ

∫

RN

a(x)|un|qdx
)

≤ lim inf
n→∞

Jλa,b(un) = αλa,b.

(3.19)
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This implies that Jλa,b(uλ) = αλa,b and limn→∞‖un‖2H1 = ‖uλ‖2H1 . Let vn = un − uλ, then Brezis-
Lieb lemma [28] implies that

‖vn‖2H1 = ‖un‖2H1 − ‖uλ‖2H1 + on(1). (3.20)

Therefore, un → uλ strongly in H1(RN). Moreover, we have uλ ∈ M+
λa,b

. On the contrary,
if uλ ∈ M−

λa,b, then by Lemma 2.5, there are unique t+0 and t−0 such that t+0uλ ∈ M+
λa,b and

t−0uλ ∈ M−
λa,b

. In particular, we have t+0 < t
−
0 = 1. Since

d

dt
Jλa,b

(
t+0uλ

)
= 0,

d2

dt2
Jλa,b

(
t+0uλ

)
> 0, (3.21)

there exists t+0 < t ≤ t−0 such that Jλa,b(t+0uλ) < Jλa,b(tuλ). By Lemma 2.5,

Jλa,b
(
t+0uλ

)
< Jλa,b

(
tuλ
)
≤ Jλa,b

(
t−0uλ

)
= Jλa,b(uλ), (3.22)

which is a contradiction. Since Jλa,b(uλ) = Jλa,b(|uλ|) and |uλ| ∈ M+
λa,b, by Lemma 2.2 we may

assume that uλ is a nonzero nonnegative solution of (Eλa,b). By Harnack inequality [29] we
deduce that uλ > 0 in R

N . Finally, by (2.3) and Hölder and Sobolev inequalities,

‖uλ‖2−qH1 < λ
p − q
p − 2

‖a+‖Lq∗S−(q/2)
p (3.23)

and so ‖uλ‖H1 → 0 as λ → 0+.

Now, we begin the proof of Theorem 1.1: By Theorem 3.5, we obtain that (Eλa,b) has a
positive solution uλ inH1(RN).

4. Proof of Theorem 1.2

In this section, we will establish the existence of the second positive solution of (Eλa,b) by
proving that Jλa,b satisfies the (PS)α−

λa,b
-condition.

Lemma 4.1. Assume that (A1) and (B1) hold. If {un} ⊂ H1(RN) is a (PS)c sequence for Jλa,b, then
{un} is bounded inH1(RN).

Proof. We argue by contradiction. Assume that ‖un‖H1 → ∞. Let ûn = un/‖un‖H1 . We may
assume that ûn ⇀ û weakly inH1(RN). This implies that ûn → û strongly in Lsloc(R

N) for all
1 ≤ s < 2∗. By (A1), Egorov theorem, and Hölder inequality, we have

λ

q

∫

RN

a(x)|ûn|qdx =
λ

q

∫

RN

a(x)|û|qdx + on(1). (4.1)
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Since {un} is a (PS)c sequence for Jλa,b and ‖un‖H1 → ∞, there hold

1
2
‖ûn‖2H1 −

λ‖un‖q−2H1

q

∫

RN

a(x)|ûn|qdx − ‖un‖p−2H1

p

∫

RN

b(x)|ûn|pdx = c + on(1),

‖ûn‖2H1 − λ‖un‖q−2H1

∫

RN

a(x)|ûn|qdx − ‖un‖p−2H1

∫

RN

b(x)|ûn|pdx = on(1).

(4.2)

From (4.1)-(4.2), we can deduce that

‖ûn‖2H1 =
2
(
p − q)

q
(
p − 2

)‖un‖q−2λ
∫

RN

a(x)|û|qdx + on(1). (4.3)

Since 1 < q < 2 and ‖un‖H1 → ∞, (4.3) implies that

‖ûn‖2H1 −→ 0, as n −→ ∞, (4.4)

which contradicts with the fact ‖ûn‖H1 = 1 for all n.

We assume that condition (B2) holds and recall

Sbp = inf
u∈H1(RN)\{0}

‖u‖2H1

(∫
RN b(x)|u|pdx

)2/p . (4.5)

Lemma 4.2. Assume that (A1) and (B1)-(B2) hold. If {un} ⊂ H1(RN) is a (PS)c sequence for Jλa,b
with c ∈ (0, αb0), then there exists a subsequence of {un} converging weakly to a nonzero solution of
(Eλa,b) in R

N .

Proof. Let {un} ⊂ H1(RN) be a (PS)c sequence for Jλa,b with c ∈ (0, αb0). We know from
Lemma 4.1 that {un} is bounded inH1(RN), and then there exist a subsequence of {un} (still
denoted by {un}) and u0 ∈ H1(RN) such that

un ⇀ u0, weakly in H1
(
R
N
)
,

un −→ u0, almost everywhere in R
N,

un −→ u0, strongly in Lsloc

(
R
N
)
, ∀1 ≤ s < 2∗.

(4.6)

It is easy to see that (Jλa,b)
′(u0) = 0, and by (A1), Egorov theorem, and Hölder inequality, we

have

λ

∫

RN

a(x)|un|qdx = λ
∫

RN

a(x)|u0|qdx + on(1). (4.7)
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Next we verify that u0 /≡ 0. Arguing by contradiction, we assume that u0 ≡ 0. We set

l = lim
n→∞

∫

RN

b(x)|un|pdx. (4.8)

Since (Jλa,b)
′(un) = on(1) and {un} is bounded, then by (4.7), we can deduce that

0 = lim
n→∞

〈(Jλa,b)′(un), un〉

= lim
n→∞

(
‖un‖2H1 −

∫

RN

a(x)|un|qdx −
∫

RN

b(x)|un|pdx
)

= lim
n→∞

‖un‖2H1 − l,

(4.9)

that is,

lim
n→∞

‖un‖2H1 = l. (4.10)

If l = 0, then we get c = limn→∞Jλa,b(un) = 0, which contradicts with c > 0. Thus we
conclude that l > 0. Furthermore, by the definition of Sbp we obtain

‖un‖2H1 ≥ Sbp
(∫

RN

b(x)|un|pdx
)2/p

. (4.11)

Then as n → ∞we have

l = lim
n→∞

‖un‖2H1 ≥ Sbpl2/p, (4.12)

which implies that

l ≥
(
Sbp

)p/(p−2)
. (4.13)

Hence, from (1.7) and (4.7)–(4.13) we get

c = lim
n→∞

Jλa,b(un)

=
1
2
lim
n→∞

‖un‖2H1 − λ

q
lim
n→∞

∫

RN

a(x)|un|qdx − 1
p
lim
n→∞

∫

RN

b(x)|un|pdx

=
(
1
2
− 1
p

)
l ≥ p − 2

2p

(
Sbp

)p/(p−2)
= αb0.

(4.14)

This is a contradiction to c < αb0. Therefore u0 is a nonzero solution of (Eλa,b).
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Lemma 4.3. Assume that (A1)-(A2) and (B1)-(B2) hold. Let w0 be a positive ground state solution
of (Eb), then

(i) supt≥0 Jλa,b(tw0) < αb0 for all λ > 0;
(ii) α−λa,b < α

b
0 for all λ ∈ (0,Λ0).

Proof. (i) First, we consider the functional Q : H1(RN) → R defined by

Q(u) =
1
2
‖u‖2H1 − 1

p

∫

RN

b(x)|u|pdx, ∀u ∈ H1
(
R
N
)
. (4.15)

Then, from (1.3) and (1.7), we conclude that

sup
t≥0

Q(tw0) =
p − 2
2p

⎛
⎝ ‖w0‖2H1

(∫
RN b(x)|w0|pdx

)2/p

⎞
⎠

p/(p−2)

=
p − 2
2p

(
Sbp

)p/(p−2)
= αb0, (4.16)

where the following fact has been used:

sup
t≥0

(
t2

2
A − tp

p
B

)
=
p − 2
2p

(
A

B2/p

)p/(p−2)
, where A,B > 0. (4.17)

Using the definitions of Jλa,b, w0, and b(x) > 0 for all x ∈ R
N , for any λ > 0 we have

Jλa,b(tw0) −→ −∞, as t −→ ∞. (4.18)

From this we know that there exists t0 > 0 such that

sup
t≥0

Jλa,b(tw0) = sup
0≤t≤t0

Jλa,b(tw0). (4.19)

By the continuity of Jλa,b(tw0) as a function of t ≥ 0 and Jλa,b(0) = 0, we can find some
t1 ∈ (0, t0) such that

sup
0≤t≤t1

Jλa,b(tw0) < αb0. (4.20)

Thus, we only need to show that

sup
t1≤t≤t0

Jλa,b(tw0) < αb0. (4.21)

To this end, by (A2) and (4.16), for all λ > 0 we have

sup
t1≤t≤t0

Jλa,b(tw0) ≤ sup
t≥0

Q(tw0) −
t
q

1

q
λ

∫

RN

a(x)|w0|qdx < αb0. (4.22)

Hence (i) holds.
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(ii) By (A1), (A2), and the definition of w0, we have

∫

RN

b(x)|w0|pdx > 0,
∫

RN

a(x)|w0|qdx > 0. (4.23)

Combining this with Lemma 2.5(ii), from the definition of α−λa,b and part (i), for all λ ∈ (0,Λ0),
we obtain that there exists t0 > 0 such that t0w0 ∈ M−

λa,b
and

α−λa,b ≤ Jλa,b(t0w0) ≤ sup
t≥0

Jλa,b(tw0) < αb0. (4.24)

Therefore (ii) holds.

Now, we establish the existence of a local minimum of Jλa,b on M−
λa,b

.

Theorem 4.4. Assume that (A1)-(A2), (B1), and (RN
b ) hold. If λ ∈ (0, (q/2)Λ0), then Jλa,b has a

minimizerUλ inM−
λa,b

, and it satisfies the following:

(i) Jλa,b(Uλ) = α−λa,b;

(ii) Uλ is a positive solution of (Eλa,b) in R
N .

Proof. If λ ∈ (0, (q/2)Λ0), then by Theorem 3.1(ii), Proposition 3.4(ii), and Lemma 4.3(ii),
there exists a (PS)α−

λa,b
sequence {un} ⊂ M−

λa,b
in H1(RN) for Jλa,b with α−

λa,b
∈ (0, αb0).

From Lemma 4.2, there exist a subsequence still denoted by {un} and a nonzero solution
Uλ ∈ H1(RN) of (Eλa,b) such that un ⇀ Uλ weakly inH1(RN). Now we prove that un → Uλ

strongly inH1(RN) and Jλa,b(Uλ) = α−λa,b. By (3.18), if u ∈ Mλa,b, then

Jλa,b(u) =
p − 2
2p

‖u‖2H1 −
p − q
pq

λ

∫

RN

a(x)|u|qdx. (4.25)

First, we prove thatUλ ∈ M−
λa,b

. On the contrary, ifUλ ∈ M+
λa,b

, then by the definition of

M−
λa,b =

{
u ∈ Mλa,b : ϕ′′

u(1) < 0
}

(4.26)

and Lemma 2.4, we have ‖Uλ‖2H1 < lim infn→∞‖un‖2H1 . From Lemma 2.3(i) and b(x) > 0 for
all x ∈ R

N , we get

∫

RN

a(x)|Uλ|qdx > 0,
∫

RN

b(x)|Uλ|pdx > 0. (4.27)

By Lemma 2.5(ii), there exists a unique t−
λ
such that t−

λ
Uλ ∈ M−

λa,b
. Since un ∈ M−

λa,b
, Jλa,b(un) ≥

Jλa,b(tun) for all t ≥ 0, and by (4.25), we have

α−λa,b ≤ Jλa,b
(
t−λUλ

)
< lim

n→∞
Jλa,b

(
t−λun

) ≤ lim
n→∞

Jλa,b(un) = α−λa,b, (4.28)

and this is a contradiction.
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In order to prove that Jλa,b(Uλ) = α−λa,b, it suffices to recall that un,Uλ ∈ M−
λa,b for all n,

by (4.25) and applying Fatou’s lemma to get

α−λa,b ≤ Jλa,b(Uλ) =
p − 2
2p

‖Uλ‖2H1 −
p − q
pq

λ

∫

RN

a(x)|Uλ|qdx

≤ lim inf
n→∞

(
p − 2
2p

‖un‖2H1 −
p − q
pq

λ

∫

RN

a(x)|un|qdx
)

≤ lim inf
n→∞

Jλa,b(un) = α−λa,b.

(4.29)

This implies that Jλa,b(Uλ) = α−λa,b and limn→∞‖un‖2H1 = ‖Uλ‖2H1 . Let vn = un −Uλ, then Brézis
and Lieb lemma [28] implies that

‖vn‖2H1 = ‖un‖2H1 − ‖Uλ‖2H1 + on(1). (4.30)

Therefore, un → Uλ strongly inH1(RN).
Since Jλa,b(Uλ) = Jλa,b(|Uλ|) and |Uλ| ∈ M−

λa,b, by Lemma 2.2 wemay assume thatUλ is
a nonzero nonnegative solution of (Eλa,b). Finally, By the Harnack inequality [29]we deduce
thatUλ > 0 in R

N .
Now, we complete the proof of Theorem 1.2. By Theorems 3.5 and 4.4, we obtain that

(Eλa,b) has two positive solutions uλ and Uλ such that uλ ∈ M+
λa,b

, Uλ ∈ M−
λa,b

. Since M+
λa,b

∩
M−

λa,b
= ∅, this implies that uλ andUλ are distinct. It completes the proof of Theorem 1.2.
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