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We define and investigate a new subclass of Salagean-type harmonic univalent functions.
We obtain coefficient conditions, extreme points, distortion bounds, convolution, and convex
combination for the above subclass of harmonic functions.

1. Introduction

Let A denote the class of functions of the form:

f(z) = z +
∞∑

k=2

akz
k (1.1)

which are analytic in the open unit disk � = {z ∈ � : |z| < 1}.
We denote the subclass of A consisting of analytic and univalent functions f(z) in the

unit disk � by S.
The following classes of functions and many others are well known and have been

studied repeatedly by many authors, namely, Sălăgean [1], Abdul Halim [2], and Darus [3]
to mention but a few.

(i) S0 = {f(z) ∈ A : Re{f(z)/z} > 0, z ∈ �}.
(ii) B(α) = {f(z) ∈ A : Re{f(z)/z} > α, 0 ≤ α < 1, z ∈ �}.
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(iii) δ(α) = {f(z) ∈ A : Re{f ′(z)} > α, 0 ≤ α < 1, z ∈ �}.

(iv) Bn(β) = {f(z) ∈ A : Re{Dnf(z)β/zβ} > 0, z ∈ U, n ∈ �0 = N ∪ {0}, β > 0}.

In 1994, Opoola defined the class Tβ
n (α) to be a subclass of A consisting of analytic functions

satisfying the condition

Re

{
Dnf(z)β

zβ

}
> α, z ∈ �, n ∈ �0 , 0 ≤ α < 1, β > 0, (1.2)

where Dn is the Salagean differential operator defined as follows:

D0f(z) = f(z),

D1f(z) = Df(z) = zf ′(z),

Dnf(z) = D
(
Dn−1f(z)

)
= z
(
Dn−1f(z)

)
.

(1.3)

We note that Tβ
n (α) is a generalization of the classes of functions S0, B(α), δ(α), and Bn(β).

Some properties of this class of functions were established by Opoola [4] namely,

(i) Tβ
n (α) is a subclass of univalent functions;

(ii) Tβ

n+1(α) ⊂ T
β
n (α);

(iii) if f(z) ∈ T
β
n (α), then the integral operator

Fc(z)β =
β + c

zβ

∫ c

0
tβ−1f(z)βdt (c ≥ 0) (1.4)

is also in T
β
n (α).

Now, by Binomial expansion, we have

f(z)β = zβ + βa2z
β+1 +

[
βa3 +

β
(
β − 1

)

2!
a3
2

]
zβ+2

+

[
βa4 +

β
(
β − 1

)

2!
2a2a3 +

β
(
β − 1

)(
β − 2

)

3!
a3
2

]
zβ+3 + · · · .

(1.5)

Hence, we define

f(z)β = zβ +
∞∑

k=2

βakz
β+k−1, β > 0,

Dnf(z)β = zβ +
∞∑

k=2

βknakz
β+k−1, n ∈ �0 .

(1.6)
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2. Preliminaries

A continuous function f = u + iv is a complex-valued harmonic function in a domain D ⊂ �

if both u and v are real harmonic in D. In any simply connected domain, we can write

f = h + g, (2.1)

where h and g are analytic in D. We call h the analytic part and g the coanalytic part of f . A
necessary and sufficient condition for f to be locally univalent and sense-preserving in D is
that |h′| > |g ′| in D.

Denote by SH the class of functions f of the form (2.1) that are harmonic univalent
and sense-preserving in the unit disk �. The subclasses of harmonic univalent functions have
been studied by some authors for different purposes and different properties (see examples
[5–12]). In this work, we may express the analytic functions h and g as

h(z)β = zβ +
∞∑

k=2

βakz
β+k−1, g(z)β =

∞∑

k=1

βbkz
β+k−1, |b1| < 1. (2.2)

Therefore,

f(z)β = h(z)β + g(z)β. (2.3)

We define the modified Salagean operator of f as

Dnf(z)β = Dnh(z)β + (−1)nDng(z)β, (2.4)

where

Dnh(z)β = zβ +
∞∑

k=2

βknakz
β+k−1, Dng(z)β =

∞∑

k=1

βknbkz
β+k−1. (2.5)

We let H(n, β, α) be the family of harmonic functions of the form (2.3) such that

Re

{
Dn+1f(z)β

Dnf(z)β

}
> α, β ≥ 1, 0 ≤ α < 1, n ∈ �0 , (2.6)

where Dnf(z)β is defined by (2.4).
It is clear that the class H(n, β, α) includes a variety of well-known subclasses of

SH. For example, H(0, 1, α) ≡ S∗
H(α) is the class of sense-preserving, harmonic univalent

functions f which are starlike of order α in �, that is, ∂/∂θ{arg(f(reiθ))} > α, andH(1, 1, α) ≡
HK(α) is the class of sense-preserving, harmonic univalent functions f which are convex of
order α in �, that is ∂/∂θ{arg(∂/∂θf(reiθ))} > α. Note that the classes S∗

H(α) and HK(α)
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were introduced and studied by Jahangiri [5]. Also note that the class H(n, 1, α) ≡ HK(α) is
the class of Salagean-type harmonic univalent functions introduced by Jahangiri et al. [13].

We let the subclassH(n, β, α) consist of harmonic functions fn = h+gn inH(n, β, α) so
h and g are of the form

hβ(z) = zβ −
∞∑

k = 2

|ak| zβ+k−1, g
β
n(z) = (−1)n

∞∑

k = 1

|bk| zβ+k−1. (2.7)

In 1984, Clunie and Sheil-Small [14] investigated the class SH as well as its geometric
subclasses and obtained some coefficient bounds. Since then, there have been several related
papers on SH and its subclasses such that Silverman [15], Silverman and Silvia [16], and
Jahangiri [5, 17] studied the harmonic univalent functions. Jahangiri [5] proved the following
theorem.

Theorem 2.1. Let f = h + g where h = z +
∑∞

k=2 akzk and g =
∑∞

k=1 bkz
k. If

∞∑

k=1

k − α

1 − α
|ak | +

k + α

1 − α
|bk| ≤ 2, (0 ≤ α < 1), (2.8)

then f is sense-preserving, harmonic, and univalent in � and f ∈ S∗
H(α). The condition (2.8) is also

necessary if f ∈ TH(α) ≡ H(0, 1, α).

In this paper, we will give the sufficient condition for functions fβ = hβ + gβ where hβ

and gβ are given by (2.2) to be in the class H(n, β, α) and it is shown that these coefficient
conditions are also necessary for functions in the class H(n, β, α). Also, we obtain distortion
theorems and characterize the extreme points for functions in H(n, β, α). Convolution and
convex combination are also obtained.

3. Main Results

In this section, we prove the main results.

3.1. Coefficient Estimates

Theorem 3.1. Let fβ = hβ + gβ, where hβ and gβ are given by (2.2). If

∞∑

k=1

[(k − α)|ak| + (k + α)|bk|]βkn ≤
(
1 + β

)
(1 − α), (3.1)

where a1 = 1, n ∈ �0 , β ≥ 1, and 0 ≤ α < 1, then fβ is sense-preserving, harmonic univalent in U,
and f ∈ H(n, β, α).
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Proof. If zβ1 /= z
β

2 , then

∣∣∣∣∣
f(z1)β − f(z2)β

h(z1)β − h(z2)β

∣∣∣∣∣ ≥ 1 −
∣∣∣∣∣
g(z1)β − g(z2)β

h(z1)β − h(z2)β

∣∣∣∣∣ = 1 −

∣∣∣∣∣∣∣

∑∞
k=1 βbk

(
z
k+β−1
1 − z

k+β−1
2

)

(
z
β

1 − z
β
2

)
+
∑∞

k=2 βak

(
z
k+β−1
1 − z

k+β−1
2

)

∣∣∣∣∣∣∣

> 1 −
∑∞

k=1
(
k + β − 1

)
bk

1 −
∑∞

k=2
(
k + β − 1

)
ak

≥ 1 −
∑∞

k=1(k + α)βkn/(1 − α)|bk|
1 −

∑∞
k=2(k − α)βkn/(1 − α)|ak |

≥ 0,

(3.2)

which proves univalence. Note that f is sense-preserving in �. This is because

∣∣∣h′(z)β
∣∣∣ ≥ β

(
|z|β−1 −

∞∑

k=2

(
k + β − 1

)
|ak||z|k+β−2

)
> β

(
1 −

∞∑

k=2

(k − α)βkn

1 − α
|ak|

)

≥ β

(
∞∑

k=1

(k + α)βkn

1 − α
|bk|

)
≥

∞∑

k=1

β
(
k + β − 1

)
|bk||z|k+β−2 ≥

∣∣∣g ′(z)β
∣∣∣.

(3.3)

By (2.6),

Re

{
Dn+1f(z)β

Dnf(z)β

}
= Re

⎧
⎨

⎩
Dn+1h(z)β + (−1)n+1Dn+1g(z)β

Dnh(z)β + (−1)nDng(z)β

⎫
⎬

⎭ > α. (3.4)

Using the fact that Re(w) > α if and only if |1 − α +w| ≥ |1 + α −w|, it suffices to show that

∣∣∣∣∣1 − α +
Dn+1f(z)β

Dnf(z)β

∣∣∣∣∣ −
∣∣∣∣∣1 + α −

Dn+1f(z)β

Dnf(z)β

∣∣∣∣∣ ≥ 0, (3.5)

∣∣∣Dn+1f(z)β + (1 − α)Dnf(z)β
∣∣∣ −
∣∣∣Dn+1f(z)β − (1 + α)Dnf(z)β

∣∣∣ ≥ 0. (3.6)

Substituting for Dn+1f(z)β,Dnf(z)β in (3.6), we have

∣∣∣∣D
n+1h(z)β + (−1)n+1Dn+1g(z)β + (1 − α)

[
Dnh(z)β + (−1)nDng(z)β

]∣∣∣∣

−
∣∣∣∣D

n+1h(z)β + (−1)n+1Dn+1g(z)β − (1 + α)
[
Dnh(z)β + (−1)nDng(z)β

]∣∣∣∣
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=

∣∣∣∣∣z
β +

∞∑

k=2

βkn+1akz
β+k−1 + (−1)n+1

∞∑

k=1

βkn+1bkzβ+k−1

+(1 − α)

[
zβ +

∞∑

k=2

βknakz
β+k−1 + (−1)n

∞∑

k=1

βknbkzβ+k−1

]∣∣∣∣∣

−
∣∣∣∣∣z

β +
∞∑

k=2

βkn+1akz
β+k−1 + (−1)n+1

∞∑

k=1

βkn+1bkzβ+k−1

−(1 + α)

[
zβ +

∞∑

k=2

βknakz
β+k−1 + (−1)n

∞∑

k=1

βknbkzβ+k−1

]∣∣∣∣∣

=

∣∣∣∣∣(2 − α)zβ +
∞∑

k=2

β(k + 1 − α)knakz
β+k−1 − (−1)n

∞∑

k=1

β(k − 1 + α)knbkz
β+k−1

∣∣∣∣∣

−
∣∣∣∣∣(−α)z

β +
∞∑

k=2

β(k − 1 − α)knakz
β+k−1 − (−1)n

∞∑

k=1

β(k + 1 + α)knbkz
β+k−1

∣∣∣∣∣

≥ 2(1 − α)|z|β −
∞∑

k=2

2βkn(k − α)|ak|
∣∣∣zβ+k−1

∣∣∣ −
∞∑

k=1

2βkn(k − α)|bk|
∣∣∣zβ+k−1

∣∣∣

= 2(1 − α)

[
1 −

∞∑

k=2

βkn (k − α)
1 − α

|ak| −
∞∑

k=1

βkn (k + α)
1 − α

|bk|
]
.

(3.7)

This last expression is nonnegative by (3.1), and so the proof is complete.

The harmonic function

f(z)β = zβ +
∞∑

k=2

β
1 − α

(k − α)βkn
xkz

k+β−1 +
∞∑

k=1

β
1 − α

(k + α)βkn
ykzk+β−1, (3.8)

where n ∈ �0 , β ≥ 1, 0 ≤ α < 1, and
∑∞

k=2 |xk| +
∑∞

k=1 |yk| = 1, shows that the
coefficient bound given by (3.1) is sharp. The functions of the form (3.8) are in H(n, β, α)
because

∞∑

k=1

[
k − α

1 − α
|ak| +

k + α

1 − α
|bk|
]
βkn = β +

∞∑

k=2

|xk | +
∞∑

k=1

∣∣yk

∣∣ = β + 1. (3.9)

In the following theorem, it is shown that the condition (3.1) is also necessary for

functions fβ
n = hβ + g

β
n where hβ and g

β
n are of the form (2.7).
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Theorem 3.2. Let fβ
n = hβ + g

β
n be given by (2.7). Then f

β
n ∈ H(n, β, α), if and only if

∞∑

k=1

[(k − α)|ak| + (k + α)|bk|]βkn ≤
(
1 + β

)
(1 − α), (3.10)

where a1 = 1, n ∈ �0 , β ≥ 1, and 0 ≤ α < 1.

Proof. Since H(n, β, α) ⊂ H(n, β, α), we only need to prove the “only if” part of the theorem.

To this end, for functions fβ
n of the form (2.7), we notice that the condition (2.6) is equivalent

to

Re

⎧
⎨

⎩
(1 − α)zβ −

∑∞
k=2(k − α)βknakzk+β−1 − (−1)2n

∑∞
k=1(k + α)βknbkzk+β−1

zβ −
∑∞

k=2 βk
nakzk+β−1 + (−1)n

∑∞
k=1 βk

nbkzk+β−1

⎫
⎬

⎭ ≥ 0. (3.11)

The above required condition (3.11) must hold for all values of z in �. Upon choosing the
values of z on the positive real axis where 0 ≤ z = r < 1, we must have

1 − α −
∑∞

k=2(k − α)βknakrk−1 −
∑∞

k=1(k + α)βknbkrk−1

1 −
∑∞

k=2 βk
nakrk−1 +

∑∞
k=1 βk

nbkrk−1
≥ 0. (3.12)

If the condition (3.10) does not hold, then the numerator in (3.12) is negative for r sufficiently
close to 1. Hence there exist z0 = r0 in (0, 1) for which the quotient in (3.12) is negative. This

contradicts the required condition for fβ
n ∈ H(n, λ, α) and so the proof is complete.

3.2. Distortion Bounds and Extreme Points

In this section, first we will obtain distortion bounds for functions in H(n, β, α).

Theorem 3.3. Let fβ
n ∈ H(n, β, α). Then for |z| = r < 1, we have

∣∣∣fn(z)β
∣∣∣ ≤ (1 + |b1|)rβ +

1
β2n

(
1 − α

2 − α
− 1 + α

2 − α
β|b1|

)
rβ+1,

∣∣∣fn(z)β
∣∣∣ ≥ (1 − |b1|)rβ −

1
β2n

(
1 − α

2 − α
− 1 + α

2 − α
β|b1|

)
rβ+1.

(3.13)
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Proof. We only prove the right-hand inequality. The proof for the left-hand inequality is

similar and will be omitted. Let fβ
n ∈ H(n, β, α). Taking the absolute value of fβ

n , we obtain

∣∣∣fn(z)β
∣∣∣ =

∣∣∣∣∣z
β +

∞∑

k=2

akz
k+β−1 + (−1)n

∞∑

k=1

bkzk+β−1

∣∣∣∣∣

≤ (1 + |b1|)rβ +
∞∑

k=2

(|ak | + |bk|)rk+β−1

≤ (1 + |b1|)rβ + rβ+1
∞∑

k=2

(|ak | + |bk|)

≤ (1 + |b1|)rβ +
1 − α

(2 − α)β2n

(
∞∑

k=2

(2 − α)β2n

1 − α
|ak| +

(2 − α)β2n

1 − α
|bk|
)
rβ+1

≤ (1 + |b1|)rβ +
1 − α

(2 − α)β2n

(
∞∑

k=2

(k − α)βkn

1 − α
|ak | +

(k + α)βkn

1 − α
|bk|
)
rβ+1

≤ (1 + |b1|)rβ +
1 − α

(2 − α)β2n

(
1 − 1 + α

1 − α
β|b1|

)
rβ+1,

(3.14)

for |b1| < 1. This shows that the bounds given in Theorem 3.3 are sharp.

The following covering result follows from the left-hand inequality in Theorem 3.3.

Corollary 3.4. If function f
β
n = hβ + gβ, where hβ and gβ are given by (2.7), is in H(n, β, α), then

{
w : |w| <

β2n+1 − 1 −
(
β2n − 1

)
α

β2n(2 − α)
− 2n+1 + 1
2n(2 − α)

|b1|
}

⊂ fn(�). (3.15)

Next we determine the extreme points of closed convex hulls of H(n, β, α) denoted by
clco H(n, β, α).

Theorem 3.5. Let fβ
n = hβ + gβ, where hβ and gβ are given by (2.7). Then f

β
n ∈ H(n, β, α) if and

only if

fn(z)β =
∞∑

k=1

(
Xkhk(z) + Ykgnk(z)

)
, (3.16)

where h1(z)β = zβ, hk(z)β = zβ − (1−α)/((k−α)kn)zk+β−1 (k = 2, 3, . . .), gnk(z)
β = zβ+(−1)n(1−

α)/((k + α)kn)zk+β−1 (k = 1, 2, 3, ..), and
∑∞

k=1(Xk + Yk) = 1, Xk ≥ 0, Yk ≥ 0. In particular, the

extreme points of H(n, β, α) are {hk} and {gnk}.
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Proof. For functions fβ
n = hβ + gβ, where hβ and gβ are given by (3.16), we have

fn(z)β =
∞∑

k=1

(
Xkhk(z) + Ykgnk (z)

)

=
∞∑

k=1

(Xk + Yk)zβ −
∞∑

k=2

1 − α

(k − α)kn
Xkz

k+β−1 + (−1)n
∞∑

k=1

1 − α

(k + α)kn
Ykzk+β−1.

(3.17)

Then

∞∑

k=2

(k − α)βkn

1 − α
|ak| +

∞∑

k=1

(k + α)βkn

1 − α
|bk| =

∞∑

k=2

Xk +
∞∑

k=1

Yk = 1 −X1 ≤ 1, (3.18)

and so f
β
n ∈ clco H(n, β, α).

Conversely, suppose that fβ
n ∈ clco H(n, β, α). Setting

Xk =
(k − α)βkn

1 − α
|ak| 0 ≤ Xk ≤ 1 (k = 2, 3, . . .),

Yk =
(k + α)βkn

1 − α
|bk| 0 ≤ Yk ≤ 1 (k = 1, 2, 3, . . .),

(3.19)

and X1 = 1 −
∑∞

k=2 Xk −
∑∞

k=1 Yk; therefore, f
β
n can be written as

fn(z)β = zβ −
∞∑

k=2

β|ak |zk+β−1 + (−1)n
∞∑

k=1

β|bk|zk+β−1

= zβ −
∞∑

k=2

(1 − α)Xk

(k − α)kn
zk+β−1 + (−1)n

∞∑

k=1

(1 − α)Yk

(k + α)kn
zk+β−1

= zβ +
∞∑

k=2

(
hk(z)β − zβ

)
Xk +

∞∑

k=1

(
gnk (z)

β − zβ
)
Yk

=
∞∑

k=2

hk(z)βXk +
∞∑

k=1

gnk(z)
βYk + zβ

(
1 −

∞∑

k=2

Xk −
∞∑

k=1

Yk

)

=
∞∑

k=1

(
hk(z)βXk + gnk (z)

βYk

)
, as required.

(3.20)

3.3. Convolution and Convex Combination

In this section, we show that the class H(n, β, α) is invariant under convolution and convex
combination of its member.
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For harmonic functions fn(z)β = zβ−
∑∞

k=2 |ak|zk+β−1+(−1)n
∑∞

k=1 |bk|zk+β−1 andFn(z)β =

zβ −
∑∞

k=2 |Ak|zk+β−1 + (−1)n
∑∞

k=1 |Bk|zk+β−1.
The convolution of fβ

n and F
β
n is given by

(
f
β
n ∗ Fβ

n

)
(z) = fn(z)β ∗ Fn(z)β = zβ −

∞∑

k=2

|ak ||Ak|zk+β−1 + (−1)n
∞∑

k=1

|bk||Bk|zk+β−1. (3.21)

Theorem 3.6. For 0 ≤ λ ≤ α < 1, let fβ
n ∈ H(n, β, α) and F

β
n ∈ H(n, β, β). Then f

β
n ∗ F

β
n ∈

H(n, β, α) ⊂ H(n, β, λ).

Proof. Let the functions fn(z)
β = zβ −

∑∞
k=2 |ak|zk+β−1 + (−1)n

∑∞
k=1 |bk|zk+β−1 be in the class

H(n, β, α) and let the functions Fn(z)β = zβ −
∑∞

k=2 |Ak|zk+β−1 + (−1)n
∑∞

k=1 |Bk|zk+β−1 be in the

class H(n, β, λ). Then the convolution f
β
n ∗ F

β
n is given by (3.21). We wish to show that the

coefficients of fβ
n ∗F

β
n satisfy the required condition given in Theorem 3.2. For Fβ

n ∈ H(n, β, λ),

we note that |Ak| ≤ 1 and |Bk | ≤ 1. Now, for the convolution function f
β
n ∗ Fβ

n , we obtain

∞∑

k=2

(
k − β

)
βkn

1 − β
|ak||Ak| +

∞∑

k=1

(
k + β

)
βkn

1 − β
|bk||Bk |

≤
∞∑

k=2

(
k − β

)
βkn

1 − β
|ak| +

∞∑

k=1

(
k + β

)
βkn

1 − β
|bk|

≤
∞∑

k=2

(k − α)βkn

1 − α
|ak | +

∞∑

k=1

(k + α)βkn

1 − α
|bk| ≤ 1,

(3.22)

since 0 ≤ λ ≤ α < 1 and f
β
n ∈ H(n, β, α). Therefore, fβ

n ∗ Fβ
n ∈ H(n, β, α) ⊂ H(n, β, λ).

We now examine the convex combination of H(n, β, α).

Let the functions fnj (z)
β be defined, for j = 1, 2, . . ., by

fnj(z)
β = zβ −

∞∑

k=2

∣∣ak,j

∣∣zk+β−1 + (−1)n
∞∑

k=1

∣∣bk,j
∣∣zk+β−1. (3.23)

Theorem 3.7. Let the functions fnj (z)
β defined by (3.23) be in the class H(n, β, α) for every j =

1, 2, . . . , m. Then the functions tj(z)β defined by

tj(z)β =
m∑

j=1

cjfnj (z)
(
0 ≤ cj ≤ 1

)
(3.24)

are also in the classH(n, β, α) where
∑m

j=1 cj = 1.
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Proof. According to the definition of tβ, we can write

t(z)β = zβ −
∞∑

k=2

⎛

⎝
m∑

j=1

cjak,j

⎞

⎠zk+β−1 + (−1)n
∞∑

k=1

⎛

⎝
m∑

j=1

cjbn,j

⎞

⎠zk+β−1. (3.25)

Further, since fnj (z)
β are in H(n, β, α) for every (j = 1, 2, . . .), then by (3.1) we have

∞∑

k=1

⎧
⎨

⎩

⎡

⎣(k − α)

⎛

⎝
m∑

j=1

cj
∣∣ak,j

∣∣
⎞

⎠ + (k + α)

⎛

⎝
m∑

j=1

cj
∣∣bk,j

∣∣
⎞

⎠

⎤

⎦βkn

⎫
⎬

⎭

=
m∑

j=1

cj

(
∞∑

k=1

[
(k − α)

∣∣an,j

∣∣ + (k + α)
∣∣bn,j

∣∣]βkn

)

≤
m∑

j=1

cj2(1 − α) ≤ 2(1 − α).

(3.26)

Hence the theorem follows.

Corollary 3.8. The classH(n, β, α) is close under convex linear combination.

Proof. Let the functions fnj (z)
β(j = 1, 2) defined by (3.23) be in the class MH(n, λ, α). Then

the function Ψ(z)β defined by

Ψ(z)β = μfn1(z)
β +

(
1 − μ

)
fn2(z)

β (
0 ≤ μ ≤ 1

)
(3.27)

is in the class MH(n, λ, α). Also, by taking m = 2, t1 = μ, and t2 = (1 − μ) in Theorem 3.7, we
have the above corollary.
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