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A study of the convergence of weak solutions of the nonstationary micropolar fluids, in bounded
domains of R

n, when the viscosities tend to zero, is established. In the limit, a fluid governed by
an Euler-like system is found.

1. Introduction

The aim of this work is to analyze the convergence of the evolution equations for the motion
of incompressible micropolar fluids, when the viscosities related to the physical properties of
the fluid tend to zero. The equations that describe the motion of a viscous incompressible
micropolar fluid express the balance of mass, momentum, and angular momentum. In a
bounded domain Ω ⊂ R

3 and in a time interval (0, T], 0 < T < +∞, this model is given
by the following system of differential equations:

(uν)t − ν1Δuν + uν · ∇uν +∇pν = 2μrrotwν + f, in Q, (1.1)

divuν = 0, in Q, (1.2)

(wν)t − ν2Δwν − ν3∇divwν + uν · ∇wν + 4μrwν = 2μrrotuν + g, in Q, (1.3)

with Q = Ω × (0, T], where the unknowns are uν,wν, and pν, which denote, respectively, the
velocity of the fluid, the microrotational velocity, and the hydrostatic pressure of the fluid, at
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a point (x, t). ν1, ν2, and ν3 are positive constants which satisfy ν1 = μ + μr, ν2 = ca + cd, ν3 =
c0+cd−ca,with c0+cd > ca,where μ, μr, c0, ca, cd represent viscosity coefficients. In particular,
μ is the usual Newtonian viscosity, μr is called the viscosity of microrotation and c0, ca, cd are
new viscosities related to the asymmetry of the stress tensor. The fields f and g are given and
denote external sources of linear and angular momentum, respectively.

With (1.1)–(1.3) the following initial and boundary conditions are prescribed

uν(x, 0) = 0, wν(x, 0) = 0, in Ω, (1.4)

uν(x, t) = 0, wν(x, t) = 0, on ∂Ω × [0, T], (1.5)

where, for the simplicity in this exposition, homogeneous boundary conditions have been
taken. The initial data is also assumed to be equal to zero due to the nature of the solutions of
the Euler-like system (1.6)–(1.10) below.

Theory of micropolar fluids was proposed by Eringen [1] and describes flows of fluids
whose particles undergo translations androtations as well. In this sense, micropolar fluids
permit to consider some physical phenomena that cannot be treated by the classical Navier-
Stokes equations for viscous incompressible fluids. Indeed, if μr = 0 in system (1.1)–(1.3),
the equations are decoupled and (1.1) reduces to the incompressible Navier-Stokes equations
(see [2]). For the derivation and physical discussion of system (1.1)–(1.3), see the references
[1, 3, 4].

There is extensive literature related to the solutions of micropolar fluids. In a hilbertian
context, in [4–6] and some references therein, results of existence, uniqueness and regularity
of weak solutions were found. On the other hand, in [7, 8], by using semigroups approach,
some recent results related to the initial value problem (1.1)–(1.5) with initial data in Lp-
spaces, including the stability of strong steady solutions, were performed.

This work is concerned with the behavior of the micropolar fluids, in a bounded
domain Ω ⊂ R

3, with boundary ∂Ω smooth enough, when the viscosities ν1, ν2, ν3 tend to
zero. We will prove that there is a subspace F0 of (L∞(0, T ;H3

0(Ω)))2 such that, for external
sources (f,g) in F0, the weak solutions of the micropolar fluid system (1.1)–(1.3) converge in
L2(Ω) × L2(Ω),when the viscosities ν1, ν2, ν3 in (1.1)–(1.3) tend to zero, to the solution (u,w)
of the following Euler-like system:

ut + u · ∇u +∇p = f, in Ω × [0, T], (1.6)

divu = 0, in Ω × [0, T], (1.7)

wt + u · ∇w = g, in Ω × [0, T], (1.8)

u(x, 0) = 0, w(x, 0) = 0, in Ω, (1.9)

u(x, t) = 0, w(x, t) = 0, on ∂Ω × [0, T]. (1.10)

As far as it is known, the analysis of convergence of the evolution equations for the motion of
incompressible micropolar fluids, when the viscosities tend to zero, in an open set Ω × (0, T)
with Ω being a bounded domain of R

3, is still unknown. In [9] a nonhomogeneous, viscous
incompressible asymmetric fluid in Ω = R

3 was considered, and the existence of a small
time interval where the fluid variables converge uniformly as the viscosities tend to zero
was proved. However, the results of [9] are not applicable in our case, that is, when Ω is
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a bounded domain of R
3. Indeed, the analysis of our situation is still more difficult. The

difficulties arise from the lack of smoothness of the weak solution. To overcome this difficulty
a penalization argument is needed. This argument generalizes the penalization method given
in [10], for the Navier-Stokes equations, to this case of micropolar fluids. In fact, if we take the
viscosity of microrotation μr = 0, our results imply the other ones in [10], where the analysis
of the convergence in an appropriate sense, of solutions of Navier-Stokes equations to the
solutions of the Euler equations on a small time interval, is given. It is worthwhile to remark
that [10] has been the unique work where the convergence of nonstationary Navier-Stokes
equations, with vanishing viscosity, to the Euler equations, in a bounded domain of R

3, has
been considered. In the whole space R

3, the authors of [11–13] analyzed the convergence,
as the viscosity tends to zero, of the Navier-Stokes equations to the solution of the Euler
equations on a small time interval. The two-dimensional case is more usual in the literature.
In fact, the book [14] presents a result where the fundamental argument involves the stream
formulation for the Navier-Stokes equations, which is not applicable in the three-dimensional
case.

This paper is organized as follows. In Section 2 the basic notation is stated and the
main results are formulated. In Section 3, the analysis of convergence of solutions of the initial
value problem (1.1)–(1.5), when the viscosities ν1, ν2, ν3 tend to zero, is done. This analysis is
based on the ideas of [10] for Navier-Stokes equations in bounded domains.

2. Statements and Notations

Let Ω be a bounded domain of R
3 with smooth enough boundary ∂Ω. We consider the usual

Sobolev spaces Hm(Ω) = {f ∈ L2(Ω) : ‖Dkf‖L2 < ∞, |k| ≤ m}, m ≥ 1, with norm denoted
by ‖ · ‖Hm . H1

0(Ω) is the closure C∞
0 (Ω) in the norm ‖ · ‖H1 . In order to distinguish the scalar-

value functions to vector-value functions, bold characters will be used; for instance, Hm =
(Hm(Ω))3 and so on. The solenoidal functional spaces H = {v ∈ L2(Ω)/divv = 0 in Ω, v ·
n = 0 on ∂Ω} and V = {v ∈ H1

0(Ω)/divv = 0 in Ω}, will be also used. Here the Helmholtz
decomposition of the space L2(Ω) = H ⊕G, where G = {ϕ : ϕ = ∇p, p ∈ H1(Ω)}, is recalled.
Throughout the paper, P denotes the orthogonal projection from L2 onto H. The norm in the
Lp-spaces will be denoted by ‖ · ‖p. In particular, the norm in L2 and its scalar product will be
denoted by ‖ · ‖ and (·, ·), respectively. Moreover 〈·, ·〉 will denote some duality products. We
remark that, in the rest of this paper, the letter C denotes inessential positive constants which
may vary from line to line.

In order to study the behavior of system (1.1)–(1.5), when the viscosities ν1, ν2, ν3 tend
to zero, the initial value problem (1.6)–(1.10) is required to study. An immediate question
related to the system (1.6)–(1.10) is to know about the existence of its solution. In the
following lemma a partial result about the existence and uniqueness of solution of problem
(1.6)–(1.10) is given. For that, let us consider the following functional space:

F0 =
{(

Φ + t2P(Φ · ∇Φ),Ψ + t2Φ · ∇Ψ
)
: Φ ∈ V ∩H3,Ψ ∈ H1

0 ∩H3
}
⊂
(
L∞

(
0, T ;H3

0

))2
.

(2.1)

Thus we have the following lemma.
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Lemma 2.1. Let (f,g) ∈ F0. Then there is a unique solution u ∈ L∞(0, T ;V ∩ H3), w ∈
L∞(0, T ;H1

0 ∩ H3), p ∈ L∞(0, T ;H2/R) of problem (1.6)–(1.10).

Proof. The proof follows by using the arguments of [10, Lemma 3.1]. Indeed, with (f,g) being
an element of F0, we consider (Φ,Ψ) ∈ V ∩H3 ×H1

0 ∩H3 and define

u(x, t) = t Φ(x) ∈ L∞
(
0, T ;V ∩H3

)
, w(x, t) = tΨ(x) ∈ L∞

(
0, T ;H1

0 ∩H3
)
. (2.2)

Note that the pair (u,w) satisfies conditions (1.4) and (1.5). Moreover, u · ∇u ∈ L∞(0, T ;L2)
and thus, u · ∇u = (I −P)(u · ∇u) +P(u · ∇u). Then, ut(x, t) = Φ(x) andwt(x, t) = Ψ(x). Hence

ut + u · ∇u +∇p = Φ + P(u · ∇u) = Φ + t2P(Φ · ∇Φ) = f,

wt + u · ∇w = Ψ + u · ∇w = Ψ + t2Φ · ∇Ψ = g,
(2.3)

with ∇p = −(I − P)(u · ∇u) ∈ L∞(0, T ;H1). Therefore the proof of the existence is finished.
In order to prove the uniqueness, we consider (u1,w1, p1) and (u2,w2, p2) two

solutions of (1.6)–(1.10) and define ũ = u1 − u2, w̃ = w1 − w2. Then, from (1.6) and (1.8),
we have

ũt + u1 · ∇ũ + ũ · ∇u2 +∇(
p1 − p2

)
= 0, (2.4)

w̃t + ũ · ∇w1 + u2 · ∇w̃ = 0. (2.5)

Taking the inner product of (2.4)with the function ũwe obtain

1
2
d

dt
‖ũ‖2 = −(ũ · ∇u2, ũ) ≤ C‖ũ‖2‖∇u2‖∞. (2.6)

Since u2 ∈ H3(Ω) and H2(Ω) ⊂ L∞(Ω), we get

d

dt
‖ũ‖2 − C1‖ũ‖2 ≤ 0 =⇒ d

dt

(
exp−C1t‖ũ‖2

)
≤ 0. (2.7)

Integrating the last inequality from 0 to t, t ≤ T, we have exp−C1t‖ũ‖2 ≤ 0, which implies
‖ũ‖ = 0. Consequently u1 = u2.

Similarly, by taking the inner product of (2.5) with the function w̃ we find

1
2
d

dt
‖w̃‖2 = −(ũ · ∇w1, w̃) = 0. (2.8)

Then, by integrating the last equality from 0 to t, we have ‖w̃‖ = 0 and thus w1 = w2.

In the next theorem our main result is stated.
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Theorem 2.2. Let (f,g) be in F0. Then one has the following.

(1) Existence

There is a weak solution (uν,wν) of problem (1.1)–(1.5) verifying

uν ∈ L∞(0, T ;H) ∩ L2(0, T ;V), wν ∈ L∞
(
0, T ;L2

)
∩ L2

(
0, T ;H1

0

)
, (2.9)

where uν and wν are dependent on ν1, ν2, ν3.

(2) Convergence

If (u,w) is the unique solution of problem (1.6)–(1.10) given by Lemma 2.1, then

‖uν − u‖L2(0,T ;H) = O
(
(ν1 + ν2 + ν3)1/2

)
,

‖wν −w‖L2(0,T ;L2) = O
(
(ν1 + ν2 + ν3)1/2

)
.

(2.10)

Moreover, if ν3 < ν1 < ν2 < kν1 for some constant k, as ν1, ν2, ν3 → 0 one has

uν −→ u weakly in L2(0, T ;V), wν −→ w weakly in L2
(
0, T ;H1

0

)
. (2.11)

Remark 2.3. (1) Due to that we are interested in the convergence of system (1.1)–(1.5) when
ν1, ν2, ν3 go to zero, the assumptions in item (2) of Theorem 2.2 are verified. Moreover, since
ν1 = μ+μr, if μr = 0, system (1.1)–(1.5) decouples and therefore, if ν1 tends to zero, the known
results for the Navier-Stokes equations are recovered.

(2) Note that although in Theorem 2.2 the external sources f and g are assumed in the
class F0, the case of constant external sources is covered.

3. Vanishing Viscosity: Proof of Theorem 2.2

The aim of this section is to prove Theorem 2.2. For this the following auxiliary result is
needed.

Lemma 3.1. Let u ∈ H1
0, and for real constants ξ, ε > 0 consider the operator Bξ defined by Bξu =

(ξ + ε‖∇u‖2)∇u. Then for all u,v ∈ H1
0, the following inequality holds

(
Bξu − Bξv,∇(u − v)

) ≥ ξ ‖∇(u − v)‖2 + ε

2
‖∇v‖2‖∇(u − v)‖2. (3.1)
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Proof. Using the equality 2(u,v − u) = ‖u‖2 − ‖v‖2 + ‖u − v‖2 and the definition of Bξu, we
obtain

(
Bξu − Bξv,∇(u − v)

)
=
(
ξ + ε‖∇v‖2

)
‖∇(u − v)‖2 + ε

(
‖∇u‖2 − ‖∇v‖2

)
(∇u,∇(u − v))

=
(
ξ + ε‖∇v‖2

)
‖∇(u − v)‖2 + ε

2

(
‖∇u‖2 − ‖∇v‖2

)2

+
ε

2

(
‖∇u‖2 − ‖∇v‖2

)
‖∇(u − v)‖2

≥ ξ ‖∇(u − v)‖2 + ε

2
‖∇v‖2‖∇(u − v)‖2.

(3.2)

Hence the proof of lemma is finished.

The next theorem is crucial in the proof of our main result.

Theorem 3.2. Let (f,g) be in F0 and ν = min{ν1, ν2, ν3}. Then, for each ε with 0 < ε < ν there is a
unique solution (uνε,wνε) ∈ L4(0, T ;V) ∩ L∞(0, T ;H) × L4(0, T ;H1

0) ∩ L∞(0, T ;L2) of the problem

(uνε)t −
(
ν1 + ε‖∇uνε‖2

)
Δuνε + uνε · ∇uνε +∇pνε = 2μrrotwνε + f, in Q, (3.3)

divuνε = 0, in Q, (3.4)

(wνε)t−
(
ν2+ε‖∇wνε‖2

)
Δwνε−ν3∇divwνε+uνε · ∇wνε+4μrwνε=2μrrotuνε+g, in Q,

(3.5)

uνε(x, 0) = wνε(x, 0) = 0, in Ω, (3.6)

uνε(x, t) = wνε(x, t) = 0, on ∂Ω × [0, T]. (3.7)

Proof. In order to prove the existence of solutions of system (3.3)–(3.7), the Galerkin method
is used. Let Vk the subspace of V spanned by {Φ1(x), . . . ,Φk(x)}, and Hk be the subspace of
H1

0 spanned by {Ψ1(x), . . . ,Ψk(x)}. For each k ≥ 1, the following approximations uk
νε andwk

νε,
of uνε andwνε, are defined:

uk
νε(x, t) =

k∑
i=1

cik(t)Φi(x), wk
νε(x, t) =

k∑
i=1

dik(t)Ψi(x), (3.8)
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for t ∈ (0, T), where the coefficients cik(t) and dik(t) are calculated such that uk
νε andwk

νε solve
the following system:

((
uk
νε

)
t
,Φi

)
+
(
ν1 + ε

∥∥∥∇uk
νε

∥∥∥
2
)(

∇uk
νε,∇Φi

)
+
(
uk
νε · ∇uk

νε,Φ
i
)

= 2μr

(
rotwk

νε,Φ
i
)
+
(
f,Φi

)
,

((
wk

νε

)
t
,Ψi

)
+
(
ν2 + ε

∥∥∥∇wk
νε

∥∥∥
2
)(

∇wk
νε,∇Ψi

)
+ ν3

(
divwk

νε,divΨ
i
)

+
(
uk
νε · ∇wk

νε,Ψ
i
)
+ 4μr

(
wk

νε,Ψ
i
)
= 2μr

(
rotuk

νε,Ψ
i
)
+
(
g,Ψi

)
,

(3.9)

for all Φi ∈ Vk and Ψi ∈ Hk.
Then, by multiplying (3.9) by cik and dik, respectively, summing over i from 0 to k and

taking into account (3.8), we have

1
2
d

dt

∥∥∥uk
νε

∥∥∥
2
+ ν1

∥∥∥∇uk
νε

∥∥∥
2
+ ε

∥∥∥∇uk
νε

∥∥∥
4
= 2μr

(
rotwk

νε,u
k
νε

)
+
(
f,uk

νε

)
,

1
2
d

dt

∥∥∥wk
νε

∥∥∥
2
+ ν2

∥∥∥∇wk
νε

∥∥∥
2
+ ε

∥∥∥∇wk
νε

∥∥∥
4
+ ν3

∥∥∥divwk
νε

∥∥∥
2
+ 4μr

∥∥∥wk
νε

∥∥∥
2

= 2μr

(
rotuk

νε,w
k
νε

)
+
(
g,wk

νε

)
.

(3.10)

Now, by applying Hölder’s and Young’s inequalities we get

2μr

((
rotwk

νε,u
k
νε

)
+
(
rotuk

νε,w
k
νε

))
≤ ν1

2

∥∥∥∇uk
νε

∥∥∥
2
+ C

∥∥∥wk
νε

∥∥∥
2
,

(
f,uk

νε

)
+
(
g,wk

νε

)
≤ C

(
‖f‖2 + ‖g‖2 +

∥∥∥uk
νε

∥∥∥
2
+
∥∥∥wk

νε

∥∥∥
2
)
.

(3.11)

Then, summing (3.10), with the help of last inequalities, we obtain

1
2
d

dt

(∥∥∥uk
νε

∥∥∥
2
+
∥∥∥wk

νε

∥∥∥
2
)
+
ν1
2

∥∥∥∇uk
νε

∥∥∥
2
+ ν2

∥∥∥∇wk
νε

∥∥∥
2
+ ε

(∥∥∥∇uk
νε

∥∥∥
4
+
∥∥∥∇wk

νε

∥∥∥
4
)

≤ C

(∥∥∥uk
νε

∥∥∥
2
+
∥∥∥wk

νε

∥∥∥
2
)
+ C

(
‖f‖2 + ‖g‖2

)
,

(3.12)
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and hence, by integrating (3.12) from 0 to t, t ∈ (0, T],we find

∥∥∥uk
νε(t)

∥∥∥
2
+
∥∥∥wk

νε(t)
∥∥∥
2
+
∫ t

0

(
ν1

∥∥∥∇uk
νε

∥∥∥
2
+ 2ν2

∥∥∥∇wk
νε

∥∥∥
2
)
ds

+ 2ε
∫ t

0

(∥∥∥∇uk
νε

∥∥∥
4
+
∥∥∥∇wk

νε

∥∥∥
4
)
ds

≤ C

∫ t

0

(∥∥∥uk
νε

∥∥∥
2
+
∥∥∥wk

νε

∥∥∥
2
)
ds + C

∫ t

0

(
‖f‖2 + ‖g‖2

)
ds.

(3.13)

Applying Gronwall’s inequality in (3.13)we get

∥∥∥uk
νε(t)

∥∥∥
2
+
∥∥∥wk

νε(t)
∥∥∥
2
+
∫ t

0

(
ν1
∥∥∥∇uk

νε

∥∥∥
2
+ 2ν2

∥∥∥∇wk
νε

∥∥∥
2
)
ds

+ 2ε
∫ t

0

(∥∥∥∇uk
νε

∥∥∥
4
+
∥∥∥∇wk

νε

∥∥∥
4
)
ds ≤ CTeCT ≤ C.

(3.14)

Thus, from (3.14) we conclude that there is uνε,wνε such that as k → ∞

uk
νε −→ uνε weakly-∗ in L∞(0, T ;H) and weakly in L2(0, T ;V),

wk
νε −→ wνε weakly-∗ in L∞

(
0, T ;L2

)
and weakly in L2

(
0, T ;H1

0

)
.

(3.15)

Now, since V ⊂ L6 and H1
0 ⊂ L6, from (3.14) we have that uk

νε,w
k
νε ∈ L4(0, T ;L6);

consequently (uk
νε)t ∈ L4/3(0, T ;V∗) and (wk

νε)t ∈ L4/3(0, T ;H−1), with V∗ and H−1 being the
topological duals of V and H1

0, respectively. Therefore

(
uk
νε

)
t
−→ (uνε)t weakly in L4/3(0, T ;V∗),

(
wk

νε

)
t
−→ (wνε)t weakly in L4/3

(
0, T ;H−1

)
.

(3.16)

Since V ⊂ H is compact and H ⊂ V∗ is continuous, as well as V ⊂ L2 is compact and L2 ⊂ H−1

is continuous, then as k → ∞, we obtain

uk
νε −→ uνε in L2(0, T ;H), wk

νε −→ wνε in L2
(
0, T ;L2

)
. (3.17)
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In order to pass to the limit in (3.9)we take into account (3.15) and (3.17). Indeed, the
convergence in the linear terms follows directly. Moreover, as in [2, page 289], we can prove
that as k → ∞

∫T

0

∣∣∣
(
uk
νε · ∇uk

νε − uνε · ∇uνε,Φi
)
φ(t)

∣∣∣dt −→ 0,

∫T

0

∣∣∣
(
uk
νε · ∇wk

νε − uνε · ∇wνε,Ψi
)
φ(t)

∣∣∣dt −→ 0,

(3.18)

for all Φi ∈ Vk,Ψi ∈ Hk and all φ ∈ C∞
0 (0, T). Finally, from (3.15)we have

(
∇uk

νε,∇Φi
)
−→

(
∇uνε,∇Φi

)
,

(
∇wk

νε,∇Ψi
)
−→

(
∇wνε,∇Ψi

)
, as k −→ ∞, (3.19)

and hence, by taking∇Φi = ∇uk
νε, ∇Ψi = ∇wk

νε in (3.19), and then,∇Φi = ∇uνε, ∇Ψi = ∇wνε,
as k → ∞we get

∥∥∥∇uk
νε

∥∥∥
2 −→

(
∇uνε,∇uk

νε

)
−→ ‖∇uνε‖2,

∥∥∥∇wk
νε

∥∥∥
2 −→

(
∇wνε,∇wk

νε

)
−→ ‖∇wνε‖2.

(3.20)

Moreover, as

(∥∥∥∇uk
νε

∥∥∥
2∇uk

νε − ‖∇uνε‖2∇uνε,∇Φi

)
=
(∥∥∥∇uk

νε

∥∥∥
2 − ‖∇uνε‖2

)(
∇uk

νε,∇Φi
)

+ ‖∇uνε‖2
(
∇uk

νε − ∇uνε,∇Φi
)
,

(∥∥∥∇wk
νε

∥∥∥
2∇wk

νε − ‖∇wνε‖2∇wνε,∇Ψi

)
=
(∥∥∥∇wk

νε

∥∥∥
2 − ‖∇wνε‖2

)(
∇wk

νε,∇Ψi
)

+ ‖∇wνε‖2
(
∇wk

νε − ∇wνε,∇Ψi
)
,

(3.21)

we conclude that

∫T

0

(∥∥∥∇uk
νε

∥∥∥
2∇uk

νε − ‖∇uνε‖2∇uνε,∇Φi

)
φ(t)dt −→ 0,

∫T

0

(∥∥∥∇wk
νε

∥∥∥
2∇wk

νε − ‖∇wνε‖2∇wνε,∇Ψi

)
φ(t)dt −→ 0.

(3.22)
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Now the uniqueness of solution will be analyzed. Let (u1
νε,w

1
νε, p

1
νε) and (u2

νε,w
2
νε, p

2
νε)

be two solutions of (3.3)–(3.7). We denote ũνε = u1
νε −u2

νε, w̃νε = w1
νε −w2

νε, and p̃νε = p1νε −p2νε.
Then we have

(ũνε)t −
(
ν1 + ε

∥∥∥∇u1
νε

∥∥∥
2
)
Δu1

νε +
(
ν1 + ε

∥∥∥∇u2
νε

∥∥∥
2
)
Δu2

νε + ũνε · ∇u1
νε

+∇p̃νε + u2
νε · ∇ũνε = 2μrrot w̃νε,

(3.23)

div ũνε = 0, (3.24)

(w̃νε)t −
(
ν2 + ε

∥∥∥∇w1
νε

∥∥∥
2
)
Δw1

νε +
(
ν2 + ε

∥∥∥∇w2
νε

∥∥∥
2
)
Δw2

νε − ν3∇div w̃νε

+ ũνε · ∇w1
νε + u2

νε · ∇w̃νε + 4μrw̃νε = 2μrrot ũνε.

(3.25)

Taking the inner product of (3.23) with ũνε, of (3.25)with w̃νε, by using (3.24), we obtain

1
2
d

dt
‖ũνε‖2 +

(
Bν1u

1
νε,∇ũνε

)
−
(
Bν1u

2
νε,∇ũνε

)
= −

(
ũνε · ∇u1

νε, ũνε

)

+ 2μr(rot w̃νε, ũνε),

1
2
d

dt
‖w̃νε‖2 +

(
Bν2w

1
νε,∇w̃νε

)
−
(
Bν2w

2
νε,∇w̃νε

)
≤ −

(
ũνε · ∇w1

νε, w̃νε

)

+ 2μr |(rot ũνε, w̃νε)|.

(3.26)

Hence, by using Lemma 3.1 we get

1
2
d

dt
‖ũνε‖2 + ν1‖∇ũνε‖2 + ε

2

∥∥∥∇u2
νε

∥∥∥
2
‖∇ũνε‖2 ≤

∣∣∣
(
ũνε · ∇u1

νε, ũνε

)∣∣∣

+ 2μr |(rot w̃νε, ũνε)|,
1
2
d

dt
‖w̃νε‖2 + ν2‖∇w̃νε‖2 + ε

2

∥∥∥∇w2
νε

∥∥∥
2
‖∇w̃νε‖2 ≤

∣∣∣
(
ũνε · ∇w1

νε, w̃νε

)∣∣∣

+ 2μr |(rot ũνε, w̃νε)|.

(3.27)

Consequently

1
2
d

dt
‖ũνε‖2 + ν1‖∇ũνε‖2 ≤

∣∣∣
(
ũνε · ∇u1

νε, ũνε

)∣∣∣ + 2μr |(rot w̃νε, ũνε)|,

1
2
d

dt
‖w̃νε‖2 + ν2‖∇w̃νε‖2 ≤

∣∣∣
(
ũνε · ∇w1

νε, w̃νε

)∣∣∣ + 2μr |(rot ũνε, w̃νε)|.
(3.28)
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Now, by using Hölder’s and Young’s inequalities we have

∣∣∣
(
ũνε · ∇u1

νε, ũνε

)∣∣∣ ≤ ‖ũνε‖3‖∇ũνε‖
∥∥∥u1

νε

∥∥∥
6

≤ C‖ũνε‖1/2‖∇ũνε‖3/2
∥∥∥∇u1

νε

∥∥∥

≤ C‖ũνε‖2
∥∥∥∇u1

νε

∥∥∥
4
+
ν1
4
‖∇ũνε‖2,

∣∣∣
(
ũνε · ∇w1

νε, w̃νε

)∣∣∣ ≤ C‖ũνε‖1/2‖∇ũνε‖1/2‖∇w̃νε‖
∥∥∥∇w1

νε

∥∥∥

≤ C‖ũνε‖‖∇ũνε‖
∥∥∥∇w1

νε

∥∥∥
2
+ ν2‖∇w̃νε‖2

≤ C‖ũνε‖2
∥∥∥∇w1

νε

∥∥∥
4
+
ν1
4
‖∇ũνε‖2 + ν2‖∇w̃νε‖2,

2μr |(rot w̃νε, ũνε)| ≤ C‖w̃νε‖‖∇ũνε‖ ≤ C‖w̃νε‖2 + ν1
4
‖∇ũνε‖2,

2μr |(rot ũνε, w̃νε)| ≤ C‖w̃νε‖2 + ν1
4
‖∇ũνε‖2.

(3.29)

Then, by summing (3.28), and taking into account the last inequalities, we obtain

1
2
d

dt

(
‖ũνε‖2 + ‖w̃νε‖2

)
≤ C‖w̃νε‖2 + C

(∥∥∥∇u1
νε

∥∥∥
4
+
∥∥∥∇w1

νε

∥∥∥
4
)
‖ũνε‖2

≤ CM(t)
(
‖ũνε‖2 + ‖w̃νε‖2

)
,

(3.30)

where M(t) = 1 + ‖∇u2
νε(t)‖4 + ‖∇w2

νε(t)‖4.
Since M(t) ∈ L1(0, T), by integrating (3.30) from 0 to t, and then applying Gronwall’s

inequality, we conclude that

‖ũνε‖2 + ‖w̃νε‖2 ≤ 0, (3.31)

which implies ũνε = 0 and w̃νε = 0. Consequently the uniqueness of solution is proved.

Proposition 3.3. Under the assumptions of Lemma 2.1 and Theorem 3.2, if (uνε,wνε) and (u,w) are
the solutions of problems (3.3)–(3.7) and (1.6)–(1.10), respectively, then

‖uνε − u‖L∞(0,T ;H) = O
(
(ν1 + ε + ν2 + ν3)1/2

)
,

ν1/21 ‖∇(uνε − u)‖L2(0,T ;L2) = O
(
(ν1 + ε + ν2 + ν3)1/2

)
,

‖wνε −w‖L∞(0,T ;L2) = O
(
(ν1 + ε + ν2 + ν3)1/2

)
,

ν1/22 ‖∇(wνε −w)‖L2(0,T ;L2) = O
(
(ν1 + ε + ν2 + ν3)1/2

)
.

(3.32)
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Proof. Considering the differences between (1.6) and (3.3), as well as between (1.8) and (3.5)
and then by taking the inner product with v = uνε − u and z = wνε −w, respectively, we have

1
2
d

dt
‖v‖2 +

(
ν1 + ε‖∇uνε‖2

)
(∇uνε,∇v) + (v · ∇u,v) = 2μr(rotwνε,v),

1
2
d

dt
‖z‖2 +

(
ν2 + ε‖∇wνε‖2

)
(∇wνε,∇z) + ν3(divwνε,div z) + (v · ∇w, z)

+ 4μr(wνε, z) = 2μr(rotuνε, z).

(3.33)

Recalling the notation Bξϕ̃ = (ξ + ε‖∇ϕ̃‖2)∇ϕ̃we get

1
2
d

dt
‖v‖2 + (Bν1uνε − Bν1u,∇v)

= −(Bν1u,∇v) − (v · ∇u,v) + 2μr(rot z,v) + 2μr(rotw,v),
(3.34)

1
2
d

dt
‖z‖2 + (Bν2wνε − Bν2w,∇z) + ν3‖div z‖2 + 4μr‖z‖2

= −(Bν2w,∇z) − ν3(divw,div z) − 4μr(w, z) − (v · ∇w, z)

+ 2μr(rot v, z) + 2μr(rotu, z).

(3.35)

Using Hölder’s and Young’s inequalities we bound the right hand of (3.34) and (3.35) as
follows:

(Bν1u,∇v) ≤ ν1 + ε‖∇u‖2
2

(
‖∇u‖2 + ‖∇v‖2

)
, (3.36)

(v · ∇u,v) ≤ C‖∇u‖L∞‖v‖2 ≤ C‖v‖2, (3.37)

2μr(rot z,v) ≤ Cν1‖∇v‖ ‖z‖ ≤ ν21
8
‖∇v‖2 + C‖z‖2, (3.38)

2μr(rotw,v) ≤ ν21‖∇w‖2 + C‖v‖2, (3.39)

(Bν2w,∇z) ≤ ν2 + ε‖∇w‖2
2

(
‖∇w‖2 + ‖∇z‖2

)
, (3.40)

ν3(divw,div z) ≤ Cν3‖∇w‖2 + ν3‖div z‖2, (3.41)

4μr(w, z) ≤ ν21‖w‖2 + C‖z‖2, (3.42)

(v · ∇w, z) ≤ C
(
‖v‖2 + ‖z‖2

)
, (3.43)

2μr(rot v, z) ≤
ν21
8
‖∇v‖2 + C‖z‖2, (3.44)

2μr(rotu, z) ≤ ν21‖∇u‖2 + C‖z‖2. (3.45)
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Carrying (3.36)–(3.39) in (3.34) and (3.40)–(3.45) in (3.35), we have

1
2
d

dt
‖v‖2 + (Bν1uνε − Bν1u,∇v) ≤ ν1 + ε‖∇u‖2

2

(
‖∇u‖2 + ‖∇v‖2

)
+ C‖v‖2

+
ν1
8
‖∇v‖2 + C‖z‖2 + ν1‖∇w‖2,

1
2
d

dt
‖z‖2 + (Bν2wνε − Bν2w,∇z) ≤ ν2 + ε‖∇w‖2

2

(
‖∇w‖2 + ‖∇z‖2

)
+ Cν3‖∇w‖2

+ ν1‖w‖2 + C
(
‖v‖2 + ‖z‖2

)
+
ν1
8
‖∇v‖2 + Cν1‖∇u‖2.

(3.46)

Now, by using the equality 2(u,v − u) = ‖u‖2 − ‖v‖2 + ‖u − v‖2, the definition of Bξϕ
and Lemma 3.1, from (3.46)we get

1
2
d

dt

(
‖v‖2 + ‖z‖2

)
+
ν1
4
‖∇v‖2 + ν2

2
‖∇z‖2

≤ ν1 + ε‖∇u‖2
2

‖∇u‖2 + ν2 + ε‖∇w‖2
2

‖∇w‖2 + C
(
‖v‖2 + ‖z‖2

)
+ C(ν1 + ν3),

(3.47)

which implies

d

dt

(
‖v‖2 + ‖z‖2

)
+ ν1‖∇v‖2 + ν2‖∇z‖2 ≤ C(ε + ν1 + ν2 + ν3) + C

(
‖v‖2 + ‖z‖2

)
. (3.48)

Since v(0) = 0 and z(0) = 0, by integrating (3.48) from 0 to t, t ∈ [0, T], and then
applying Gronwall’s inequality, we obtain

‖v(t)‖2 + ‖z(t)‖2 +
∫ t

0

(
ν1‖∇v(s)‖2 + ν2‖∇z(s)‖2

)
ds ≤ C(ε + ν1 + ν2 + ν3)T exp(CT), (3.49)

and hence the proof of estimates (3.32) is concluded.

Proposition 3.4. Under the assumptions of Theorem 3.2 and considering ν3 < ν2, then as ε → 0 the
solution (uνε,wνε) of (3.3)–(3.7) verifies the following convergences:

uνε −→ uν in L2(0, T ;H), wνε −→ wν in L2
(
0, T ;L2

)
, (3.50)

where (uν,wν) is a solution of problem (1.1)–(1.3).
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Proof. Let uνε,wνε be as in Theorem 3.2. Then from (3.14) we have

‖uνε‖2L∞(0,T ;H) + ν1‖uνε‖2L2(0,T ;V ) + ε‖uνε‖4L4(0,T ;V ) ≤ C,

‖wνε‖2L∞(0,T ;L2) + ν2‖wνε‖2L2(0,T ;H1
0 )
+ ε‖wνε‖4L4(0,T ;H1

0 )
≤ C,

(3.51)

where C is a constant which does not depend on ν1, ν2, ν3, and ε.
Then, since V ⊂ L6 and H1

0 ⊂ L6, we have that uνε,wνε ∈ L4(0, T ;L6). Consequently
(uνε)t ∈ L4/3(0, T ;V∗) and (wνε)t ∈ L4/3(0, T ;H−1), withV∗ andH−1 being the topological dual
of V and H1

0, respectively.
Now, since |(u · ∇w, z)| ≤ ‖u‖3‖∇w‖‖z‖6 ≤ C‖u‖1/2‖u‖1/2V ‖∇w‖‖∇z‖, from (3.3) and

(3.5) we obtain

‖(uνε)t‖V ∗ ≤ C
(
ν1‖uνε‖V + ε‖uνε‖3V + ‖uνε‖1/2‖uνε‖3/2V + ν1‖wνε‖ + ‖f‖

)
,

‖(wνε)t‖H−1 ≤ C
(
ν2‖wνε‖H1

0
+ ε‖wνε‖3H1

0
+ ν3‖wνε‖H1

0
+ ‖uνε‖3/2‖uνε‖3/2V

)

+ C

(
‖wνε‖3/2H1

0
+ ν1‖wνε‖ + ν1‖uνε‖ + ‖g‖

)
.

(3.52)

Then, by using (
∑n

i=1 |ai|)4/3 ≤ C
∑n

i=1 |ai|4/3 and (3.51), from the last inequalities we get

‖(uνε)t‖4/3V ∗ ≤ C
(
ν4/31 ‖uνε‖4/3V + ε4/3‖uνε‖4V + ‖uνε‖2V + ν4/31 + ‖f‖4/3

)
,

‖(wνε)t‖4/3H−1 ≤ C

(
ν4/32 ‖wνε‖4/3H1

0
+ ε4/3‖wνε‖4H1

0
+ ν4/33 ‖wνε‖4/3H1

0

)

+ C
(
‖uνε‖2V + ‖wνε‖2H1

0
+ ν4/31 + ‖g‖4/3

)
.

(3.53)

Integrating the last inequalities from 0 to T we conclude

∫T

0
‖(uνε)t‖4/3V ∗ dt ≤ C

(
ν4/31

∫T

0
‖uνε‖4/3V dt + ν4/31 T +

∫T

0
‖f‖4/3dt

)

+ C
(
ε4/3‖uνε‖4L4(0,T ;V ) + ‖uνε‖2L2(0,T ;V )

)
,

∫T

0
‖(wνε)t‖4/3H−1dt ≤ C

((
ν4/32 + ν4/33

)∫T

0
‖wνε‖4/3H1

0
dt + ν4/31 T +

∫T

0
‖g‖4/3dt

)

+ C
(
ε4/3‖wνε‖4L4(0,T ;H1

0 )
+ ‖uνε‖2L2(0,T ;V ) + ‖wνε‖2L2(0,T ;H1

0 )

)
.

(3.54)
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Using Hölder’s inequality and (3.51), since ν3 < ν2 we obtain

ν4/31

∫T

0
‖uνε‖4/3V dt ≤ Cν4/31 ‖uνε‖4/3L2(0,T ;V ) ≤ Cν2/31 ,

(
ν4/32 + ν4/33

)∫T

0
‖wνε‖4/3H1

0
dt ≤ ν4/32 C‖wνε‖4/3L2(0,T ;H1

0 )
≤ Cν2/32 .

(3.55)

Hence, from (3.54)–(3.55) and (3.51) we get

‖(uνε)t‖4/3L4/3(0,T ;V ∗) ≤ C
(
ν2/31 + ν4/31 + 1 + ε1/3 + ν−11

)
,

‖(wνε)t‖4/3L4/3(0,T ;H−1) ≤ C
(
ν2/32 + ν4/31 + 1 + ε1/3 + ν−11 + ν−12

)
.

(3.56)

Thus, since ε < ν1, from last two inequalities we have

‖(uνε)t‖L4/3(0,T ;V ∗) ≤ C
(
ν1/21 + ν1 + ν1/41 + ν−3/41 + 1

)
,

‖(wνε)t‖L4/3(0,T ;H−1) ≤ C
(
ν1/22 + ν1 + ν1/41 + ν−3/41 + ν−3/42 + 1

)
,

(3.57)

where the constant C is independent of ν1, ν2, ν3, and ε.
From (3.51) and (3.57), taking subsequences if necessary, we deduce that, as ε → 0

uνε ⇀ uν weak-∗ in L∞(0, T ;H),

ν1/21 uνε ⇀ ν1/21 uν weakly in L2(0, T ;V),

ε1/4uνε ⇀ 0 weakly in L4(0, T ;V),

(uνε)t ⇀ (uν)t weakly in L4/3(0, T ;V∗),

uνε(0) ⇀ uν(0) weakly in V∗.

(3.58)

Similarly, as ε → 0

wνε ⇀ wν weak-∗ in L∞
(
0, T ;L2

)
,

ν1/22 wνε ⇀ ν1/22 wν weakly in L2
(
0, T ;H1

0

)
,

ε1/4wνε ⇀ 0 weakly in L4
(
0, T ;H1

0

)
,

(wνε)t ⇀ (wν)t weakly in L4/3
(
0, T ;H−1

)
,

wνε(0) ⇀ wν(0) weakly in H−1.

(3.59)



16 Abstract and Applied Analysis

Since V ⊂ H is compact and H ⊂ V∗ is continuous, as well as V ⊂ L2 is compact and L2 ⊂ H−1

is continuous, then as ε → 0 we have

uνε −→ uν in L2(0, T ;H), wνε −→ wν in L2
(
0, T ;L2

)
. (3.60)

We can verify that (uν,wν) is a weak solution of (1.1)–(1.3). Indeed, we need to verify
that (uν,wν) satisfies the following variational system:

d

dt

(
uν, Φ̃

)
+ ν1

(
∇uν,∇Φ̃

)
+
(
uν · ∇uν, Φ̃

)
= 2μr

(
rotwν, Φ̃

)
+
(
f, Φ̃

)
,

d

dt

(
wν, Ψ̃

)
+ ν2

(
∇wν,∇Ψ̃

)
+ ν3

(
divwν,div Ψ̃

)
+
(
uν · ∇wν, Ψ̃

)
+ 4μr

(
wν, Ψ̃

)

= 2μr

(
rotuν, Ψ̃

)
+
(
g, Ψ̃

)
,

(3.61)

for all Φ̃ ∈ V, Ψ̃ ∈ H1
0.

Note that the before convergence results enable us to pass to the limit in the linear
terms of (3.3)–(3.7), obtaining the linear term in (3.61). Furthermore, through standard
arguments one can obtain

(
uνε · ∇uνε, Φ̃

)
−→

(
uν · ∇uν, Φ̃

)
,

(
uνε · ∇wνε, Ψ̃

)
−→

(
wν · ∇wν, Ψ̃

)
. (3.62)

Moreover it is not difficult to check that

(
uν(x, 0), Φ̃

)
= 0, ∀Φ̃ ∈ V,

(
wν(x, 0), Ψ̃

)
= 0, ∀Ψ̃ ∈ H1

0. (3.63)

Finally, it is clear that for all Φ̃ ∈ V, Ψ̃ ∈ H1
0, as ε → 0 it holds

(
ε‖∇uνε‖2

)(
∇uνε,∇Φ̃

)
−→ 0,

(
ε‖∇wνε‖2

)(
∇wνε,∇Ψ̃

)
−→ 0. (3.64)

Proof of the Theorem 2.2. The existence of a solution of (1.1)–(1.5) is given by using
Proposition 3.4 as the limit (uν,wν) of the sequence (uνε,wνε).

Now the second part of the Theorem 2.2 will be proved. Let (u,w) be solution of
problem (1.6)–(1.10). From (3.58)-(3.59) we have

∇(uνε − u) ⇀ ∇(uν − u) weakly in L2
(
0, T ;L2

)
,

∇(wνε −w) ⇀ ∇(wν −w) weakly in L2
(
0, T ;L2

)
.

(3.65)
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Consequently

ν1/21 ‖∇(uν − u)‖L2(0,T ;L2) ≤ lim inf
ε→ 0

ν1/21 ‖∇(uνε − u)‖L2(0,T ;L2),

ν1/22 ‖∇(wν −w)‖L2(0,T ;L2) ≤ lim inf
ε→ 0

ν1/22 ‖∇(wνε −w)‖L2(0,T ;L2).
(3.66)

Hence, from the last inequalities and taking into account (3.32) we conclude that

ν1/21 ‖∇(uν − u)‖L2(0,T ;L2) ≤ C(ν1 + ν2 + ν3)1/2,

ν1/22 ‖∇(wν −w)‖L2(0,T ;L2) ≤ C(ν1 + ν2 + ν3)1/2.
(3.67)

Therefore, since max{ν1, ν2, ν3} < 1, with the additional condition ν3 < ν1 < ν2 < kν1 for some
positive constant k, from (3.67) we get

‖∇(uν − u)‖L2(0,T ;L2) ≤ M1, ‖∇(wν −w)‖L2(0,T ;L2) ≤ M2, (3.68)

withM1,M2 positive constants independent of ν1, ν2, ν3. Moreover, by using (3.32)we obtain

‖uν − u‖L2(0,T ;H) ≤ ‖uνε − uν‖L2(0,T ;H) + ‖uνε − u‖L2(0,T ;H)

≤ ‖uνε − uν‖L2(0,T ;H) + C(ν1 + ν2 + ν3 + ε)1/2,

‖wν −w‖L2(0,T ;L2) ≤ ‖wνε −wν‖L2(0,T ;L2) + ‖wνε −w‖L2(0,T ;L2)

≤ ‖wνε −wν‖L2(0,T ;L2) + C(ν1 + ν2 + ν3 + ε)1/2.

(3.69)

Thus, by taking into account (3.60), as ε → 0 we find

‖uν − u‖L2(0,T ;H) ≤ C(ν1 + ν2 + ν3)1/2,

‖wν −w‖L2(0,T ;L2) ≤ C(ν1 + ν2 + ν3)1/2,
(3.70)

with the constant C independent of ν1, ν2, ν3.Hence, the proof of theorem is finished.

Acknowledgment

The first and third authors were partially supported by Fondecyt-Chile, Grant 1040205,
7060025.



18 Abstract and Applied Analysis

References

[1] A. C. Eringen, “Theory of micropolar fluids,” Journal of Mathematics and Mechanics, vol. 16, pp. 1–18,
1966.

[2] R. Temam, Navier-Stokes Equations, vol. 2, North-Holland, Amsterdam, The Netherlands, 2nd edition,
1979.

[3] D. W. Condiff and J. S. Dahler, “Fluid mechanical aspects of antisymmetric stress,” The Physics of
Fluids, vol. 7, pp. 842–854, 1964.

[4] G. Lukaszewicz, Micropolar Fluids. Theory and application, Modeling and Simulation in Science,
Engineering and Technology, Birkhäuser, Boston, Mass, USA, 1999.
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1969.


