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We study the permanence and extinction of a generalized Gause-type predator-prey system with
periodic coefficients. We provide a sufficient and necessary condition to guarantee the predator
and prey species to be permanent and a sufficient condition for the existence of a periodic solution.
In addition we prove that when the predator population tends to extinction, the prey population
keeps oscillating above a positive population level.

1. Introduction

Permanence of a dynamical system has always been a hot issue in the past few decades.
The concept of permanence has been introduced and investigated by several authors, each
using his own terminology: “cooperativity” in the earlier papers of Schuster et al. [1], and
Hofbauer [2], “permanent coexistence” by Hutson and Vickers [3], “uniform persistence” in
Butler et al. [4], and “ecological stability” by Svirezhev and Logofet [5–7] (for more detailed
statements of the concept see [8]).

Many important results have been found in recent years [1–37]. Some authors (see
[21, 28, 31, 33]) have considered the following two species periodic Lotka-Volterra predator-
prey system

ẋ1(t) = x1(t)(b1(t) − a11(t)x1(t)) − a12(t)x1(t)x2(t),

ẋ2(t) = x2(t)(−b2(t) − a22(t)x2(t)) + a21(t)x1(t)x2(t),
(1.1)
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where bi(t) and aij(t) (i, j = 1, 2) are periodic functions on R with common period ω > 0
and aij(t) ≥ 0 for all t ∈ R. They have established sufficient and necessary conditions for
the existence of positive ω-periodic solutions of the system by using different methods,
respectively. Teng [31] has given sufficient and necessary conditions for the uniform
persistence of the system.

Cui [16] has considered the permanence of the following Lotka-Volterra predator-prey
model with periodic coefficients:

ẋ = x
(
a(t) − b(t)x − c(t)y

p(t) + x

)
,

ẏ = y
(
−d(t) + e(t)x

p(t) + x
− f(t)y

)
.

(1.2)

He provided a sufficient and necessary condition to guarantee the predator and prey species
to be permanent. In Theorems 2.2 and 2.3 he set a precondition that f(t)/≡ 0. This restricts
the application of the theorems more or less, since many researchers often neglect the logistic
term in the predator equation when the population level of the predator is relatively low
and the competition between predators can be ignored, and it proved to be an unnecessary
precondition in our paper. However, the researchmethods in his work inspiredme, andmany
proofs, especially in the first half of this paper, are analogous to [16].

In this paper we consider the permanence of the following generalized Gause-type
predator-prey system,

ẋ = x
(
f(t, x) − g(t, x)y),

ẏ = y
(
γ(t)g(t, x)x − μ(t) − h(t)y),

(1.3)

where f(t + ω, x) = f(t, x), g(t + ω, x) = g(t, x) for all t and γ(·), μ(·), h(·) are all
periodic continuous functions with common period ω > 0; γ(·), μ(·) are positive, and h(·)
is nonnegative. We emphasize that our model includes the case when h(t) ≡ 0.

In the absence of predators, system (1.3) becomes

ẋ = xf(t, x), (1.4)

where f is a real-valued function defined on

R2
+0 =

{
(t, x) ∈ R2 : t ≥ 0, x ≥ 0

}
. (1.5)
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Vance and Coddington [35] have studied system (1.4) and proved the existence of a
unique periodic solution under some assumptions. Apart from the assumptionwementioned
above that f(·, x) is ω-periodic, the other assumptions with a mild modification are as
follows.

(A1) Function f is continuous and differentiable with respect to x on R2
+0, and ∂f/∂x is

continuous on R2
+0.

(A2) There are continuous functions p and λ with p(x) > 0 for x > 0 and λ(t) ≥ 0 for
t ≥ 0, such that

∂f

∂x
≤ −p(x)λ(t) for t ≥ 0, x ≥ 0,

∫∞

0
λ(s)ds = ∞.

(1.6)

(A3) There exist constants β ≥ 0 and K > 0, such that

(i) f(t,K) ≤ β for t ≥ 0,

(ii)
∫ t+ω
t f(s,K)ds ≤ 0 for t ≥ 0.

(A4) There exist constants α ≥ 0 and 0 < δ ≤ K, such that

(i) f(t, δ) ≥ −α for t ≥ 0,

(ii)
∫ t+ω
t f(s, δ)ds > 0 for t ≥ 0.

In addition, we assume that the ω-periodic function g(·, x) satisfies the following.

(A5) Function g(t, x) is continuous with respect to t, and G(t, x) := xg(t, x) is strictly
monotonely increasing with respect to x,

(A6) g(t, x) is nonnegative and is positive when x > 0,

(A7) g(t, x) is bounded on R2
+0, that is there is a constant Mg such that g(t, x) ≤ Mg for

(t, x) ∈ R2
+0.

Traditionally G(t, x) represents a grazing rate. Usually when the amount of prey
increases, the grazing rate increases and eventually tends to a maximal value as the prey
population tends to infinity. But here we do not emphasize that G(t, x) is bounded because
its unnecessary theoretically. Assumption (A5)means that there is a higher capture rate when
there is a larger amount of prey. g(t, x) is directly proportional to the mean possibility density
for each individual prey being captured, and (A6), (A7) suggest that there is a possibility, but
its not definitely for each individual prey being captured. In ecology G(t, x) is called the
functional response or grazing function, for example, the Holling-type grazing function:

Rmx
n

α + xn
, n ≥ 1, (1.7)

where Rm, α > 0 or the generalized form

Rm(t)xn

α(t) + xn
, n ≥ 1, (1.8)
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where Rm(t), α(t) > 0; the Ivlev grazing function

Rm

(
1 − e−λx

)
, (1.9)

where Rm, λ > 0. Obviously all of these functions satisfy (A5)–(A7).
In this paper we will establish sufficient and necessary conditions for the permanence

of system (1.3). In the next section we state our main results. These results are proved in
Section 3. Two applications are given in Section 4.

2. Main Results

Throughout this paper, we will assume that all the functions f(·, x), g(·, x), γ(·), μ(·), and
h(·) are continuous and periodic with common period ω > 0. For any continuous ω-periodic
function u(t) defined on R, we denote

u(t) =
1
ω

∫ω
0
u(t)dt, uM = max

t∈[0,ω]
u(t), uL = min

t∈[0,ω]
u(t). (2.1)

In order to describe our main results, we first introduce a lemma.

Lemma 2.1 (see [35]). Suppose that f satisfies (A1)–(A4). Then system (1.4) possesses a unique
ω-periodic positive solution x∗(t) which is globally asymptotically stable with respect to the positive
x-axis.

Theorem 2.2. Suppose that f satisfies (A1)–(A4), g satisfies (A5)–(A7). Then system (1.3) is
permanent provided that

γ(t)g(t, x∗(t))x∗(t) − μ(t) > 0, (2.2)

where x∗(t) is the unique periodic solution of (1.4) given by Lemma 2.1.

Theorem 2.3. Suppose that f satisfies (A1)–(A4), g satisfies (A5)–(A7), and

γ(t)g(t, x∗(t))x∗(t) − μ(t) ≤ 0, (2.3)

then

(i) lim
t→∞

y(t) = 0,

(ii) lim
t→∞

inf x(t) > 0,

for any solution (x(t), y(t)) of system (1.3) with positive initial conditions, where x∗(t) is the unique
periodic solution of (1.4) given by Lemma 2.1.

By Theorems 2.2 and 2.3, we have the following corollary.
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Corollary 2.4. Suppose that f satisfies (A1)–(A4), g satisfies (A5)–(A7). Then system (1.3) is
permanent if and only if (2.2) holds.

Lemma 2.5 (see Theorem 15.5 in [30, 37]). Consider a periodic system

ẋ = F(t, x), F(t +ω, x) = F(t, x), ω > 0, (2.4)

where F(t, x) ∈ C(R ×R2, R2) satisfies a local Lipschitz condition. If all solutions of the above system
exist in the future and one of them is bounded, then there exists a periodic solution of period ω.

By Theorem 2.2 and Lemma 2.5, we have the following corollary (see proof in
Section 3).

Corollary 2.6. Suppose f satisfies (A1)–(A4), g satisfies (A5)–(A7), and condition (2.2) holds. If in
addition g(t, x) satisfies a local Lipschitz condition with respect to x, then system (1.3) has a positive
ω-periodic solution.

3. Proof of Our Main Results

Lemma 3.1 (see [31]). If a(t), b(t) are ω-periodic functions, b(t) ≥ 0, for all t ∈ R and b(t) > 0,
then

u̇ = u(a(t) − b(t)u) (3.1)

has a unique nonnegativeω-periodic solution u∗ which is globally asymptotically stable with respect to
the positive u-axis. Moreover, if a(t) > 0, then u∗(t) > 0, for all t ∈ R and if a(t) ≤ 0, then u∗(t) = 0.

Lemma 3.2. Suppose that f satisfies (A1)–(A4), then there exists an ε0 > 0, such that for any 0 <
ε ≤ ε0, system

ẋ = x
(
f(t, x) − ε) (3.2)

possesses an ω-periodic positive solution x∗
ε(t) which is globally asymptotically stable with respect to

the positive x-axis.

Proof. It suffices to show that if f satisfies (A1)–(A4), then there exists an ε0 > 0 such that
for any 0 < ε ≤ ε0, f̃ = f − ε satisfies (A1)–(A4). Obviously f̃ satisfies (A1)–(A3). Taking
ε0 = (1/2ω)

∫ω
0 f(s, δ)ds, its easy to see f̃ satisfies (A4).

From a comparison theorem (see Theorem 1.1 [37]) and Lemma 2.1, we have the
following lemma.

Lemma 3.3. Suppose that f satisfies (A1)–(A4), x(t) is a solution of system (1.4), and x∗(t) is the
periodic solution of system (1.4) given by Lemma 2.1. Let v(t) be a right maximal (right minimal)
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solution of a scalar differential equation v̇ = w(t, v) on [t0,+∞) ⊂ [0,+∞), where w(t, v) is
continuous and satisfies w(t, x) ≤ (≥) xf(t, x) for all (t, x) ∈ R2

+0. Then the following conclusions
hold.

(i) If v(t0) ≤ (≥) x(t0), then v(t) ≤ (≥)x(t) for t ≥ t0.
(ii) For all ε > 0 there exist a τ ≥ t0 such that v(t) < x∗(t) + ε(v(t) > x∗(t) − ε) for t ≥ τ .

Proposition 3.4. Under assumptions (A1)–(A7), there existMx andMy, such that

lim
t→∞

sup x(t) ≤Mx, lim
t→∞

sup y(t) ≤My (3.3)

for all solutions (x(t), y(t)) of system (1.3) with positive initial values.

Proof. Obviously, R2
+ = {(x, y) : x ≥ 0, y ≥ 0} is a positively invariant set of system (1.3).

Given any solution (x(t), y(t)) of (1.3)with positive initial values, from system (1.3)we have

ẋ ≤ xf(t, x). (3.4)

The following equation

v̇ = vf(t, v), (3.5)

has a globally asymptotically stable positive ω-periodic solution v∗(t) by Lemma 2.1. By
Lemma 3.3, there exists T1 > 0, such that

x(t) < v∗(t) + 1, for t > T1. (3.6)

LetMx = max0≤t≤ω{v∗(t) + 1}. We have

lim
t→∞

sup x(t) ≤Mx. (3.7)

By (1.3),

γMẋ + ẏ = γMxf(t, x) −
(
γM − γ(t)

)
g(t, x)xy − μ(t)y − h(t)y2

≤ γMxf(t, x) − μ(t)y

≤ γMxf(t, x) − μLy

= γMx
(
f(t, x) + μL

)
− μL

(
γMx + y

)
.

(3.8)

Denote w(t) = γMx(t) + y(t). Then we have

ẇ + μLw ≤ γMx
(
f(t, x) + μL

)
. (3.9)
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Since x(t) ≤ max0≤t≤ω{v∗(t) + 1}, for t ≥ T1, there is a constant B > 0, such that

γMx
(
f(t, x) + μL

)
≤ B for t ≥ T1, (3.10)

by the continuity of f . It follows that

ẇ + μLw ≤ B, for t ≥ T1. (3.11)

Notice that μL > 0. It’s easy to show that there is an A > 0, such that

lim
t→∞

sup w(t) ≤ A. (3.12)

By the notationw = γMx+y, takingMx = A/γM andMy = A, Proposition 3.4 is proved.

Proposition 3.5. Under assumption (A1)–(A7), there exists a positive constant ηx, such that

lim
t→∞

sup x(t) ≥ ηx, (3.13)

for all solutions (x(t), y(t)) of (1.3) with positive initial values.

Proof. Suppose that (3.13) is not true. Then there is a sequence {zm} ⊂ R2
+, such that

lim
t→∞

sup x(t, zm) <
1
m
, m = 1, 2, . . . , (3.14)

where (x(t, zm), y(t, zm)) is the solution of (1.3)with (x(0, zm), y(0, zm)) = zm. By assumption
(A5), we can choose sufficiently small positive numbers εx < 1 and εy < 1, such that

(
γ(t)g(t, εx)εx − μ(t)

)
< 0, (3.15)

φε(t) > 0, (3.16)

where

φε(t) = f(t, εx) −Mgεy exp(αω), α = max
0≤t≤ω

(
μ(t) + γ(t)g(t, εx)εx + h(t)εy

)
. (3.17)

By (3.14), for the given εx > 0, there exists a positive integerN0, such that

lim
t→∞

sup x(t, zm) <
1
m

< εx, m > N0. (3.18)
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For the rest of this proof, we assume thatm > N0. Equation (3.18) implies there exists τ (m)
1 > 0,

such that

x(t, zm) < εx, t ≥ τ (m)
1 , (3.19)

and further

ẏ(t, zm) ≤ y(t, zm)
(
γ(t)g(t, εx)εx − μ(t) − h(t)y(t, zm)

)
, for t ≥ τ (m)

1 . (3.20)

By (3.15), and Lemma 3.1, any solution v(t) of the following equation,

v̇ = v
(
γ(t)g(t, εx)εx − μ(t) − h(t)v

)
(3.21)

with positive initial conditions satisfies

lim
t→∞

v(t) = 0. (3.22)

Hence,

lim
t→∞

y(t, zm) = 0 (3.23)

by Lemma 3.3. So there is a τ (m)
2 > τ

(m)
1 , such that

y(t, zm) < εy, for t ≥ τ (m)
2 . (3.24)

It follows that

ẋ(t, zm) ≥ x(t, zm)
(
f(t, x(t, zm)) − g(t, εx)εy

)
, t ≥ τ (m)

2 . (3.25)

By (3.16), the equation

ẋ = x
(
f(t, x(t, zm)) − g(t, εx)εy

)
(3.26)

has an ω-periodic positive solution x∗(t)which is globally asymptotically stable. Hence,

x(t, zm) >
x∗(t)
2

, (3.27)

for sufficiently large t > 0 and m > N0, which is a contradiction with (3.14). This completes
the proof of Proposition 3.5.
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Proposition 3.6. Under assumption (A1)–(A7), there exists a positive constant γx, such that

lim
t→∞

inf x(t) ≥ γx (3.28)

for all solutions (x(t), y(t)) of system (1.3) with positive initial values.

Proof. Suppose that (3.28) is not true, then there exists a sequence {zm} ⊂ R2
+ such that

lim
t→∞

inf x(t, zm) <
ηx

2m2
, m = 1, 2, . . . . (3.29)

On the other hand, by Proposition 3.5, we have

lim
t→∞

sup x(t, zm) > ηx, m = 1, 2, . . . . (3.30)

Hence, there are time sequences {s(m)
q } and {t(m)

q } satisfying

0 < s(m)
1 < t

(m)
1 < s

(m)
2 < t

(m)
2 < · · · < s(m)

q < t
(m)
q < · · · ,

s
(m)
q −→ ∞, t

(m)
q −→ ∞, as q −→ ∞,

x
(
t
(m)
q , zm

)
=
ηx

m2
< x(t, zm) <

ηx
m

= x
(
s
(m)
q , zm

)
, t ∈

(
s
(m)
q , t

(m)
q

)
.

(3.31)

By Proposition 3.4, for a given positive integerm, there is a T (m) > 0, such that

x(t, zm) ≤Mx, y(t, zm) ≤My, for t ≥ T (m)
1 . (3.32)

Because of s(M)
q → ∞ as q → ∞, there is a positive integer K(m) such that s(m)

q > T
(m)
1 since

q ≥ K(m), and hence

ẋ ≥ x(t, zm)
(
f(t,Mx) −MgMy

)
:= ζ(t)x(t, zm) (3.33)

for q ≥ K(m). Integrating (3.33) from s
(m)
q to t(m)

q yields

x
(
t
(m)
q , zm

)
≥ x
(
s
(m)
q , zm

)
exp

∫ t(m)
q

s
(m)
q

ζ(t)dt (3.34)

or

−
∫ t(m)

q

s
(m)
q

ζ(t)dt ≥ lnm, for q ≥ K(m). (3.35)
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If ζ(t) ≥ 0, it leads to a contradiction. Otherwise, ζ(t) < 0, we have

t
(m)
q − s(m)

q −→ ∞, as m −→ ∞, q ≥ K(m), (3.36)

since ζ(t) is bounded. By (3.15) and (3.16), there are constants P > 0 andN0 > 0, such that

ηx
m

< εx, t
(m)
q − s(m)

q > 2P, (3.37)

My exp
∫P
0

(
γ(t)g(t, εx)εx − μ(t) − h(t)εy

)
dt < εy,

∫P
0
φε(t)dt > 0 (3.38)

form ≥N0, q ≥ K(m), and a ≥ P . Equation (3.37) implies

x(t, zm) < εx, t ∈
[
s
(m)
q , t

(m)
q

]
(3.39)

for m ≥ N0, q ≥ K(m). For the positive εy satisfying (3.16) and (3.38), we have the following
two cases:

(i) y(t, zm) ≥ εy for all t ∈ [s(m)
q , s

(m)
q + P];

(ii) there exists τ (m)
q1 ∈ [s(m)

q , s
(m)
q + P], such that y(τ (m)

q1 , zm) < εy.

If (i) holds, by (3.38) and (3.39) we have

εy ≤ y
(
s
(m)
q + P, zm

)

≤ y
(
s
(m)
q , zm

)
exp

∫s(m)
q +P

s
(m)
q

(
γ(t)g(t, εx)εx − μ(t) − h(t)εy

)
dt

≤My exp
∫P
0

(
γ(t)g(t, εx)εx − μ(t) − h(t)εy

)
dt

< εy.

(3.40)

This is a contradiction.
If (ii) holds, we now claim that

y(t, zm) ≤ εy exp(αω), t ∈
(
τ
(m)
q1 , t

(m)
q

]
. (3.41)

Otherwise, there exists τ (m)
q2 ∈ (τ (m)

q1 , t
(m)
q ] such that

y
(
τ
(m)
q2 , zm

)
> εy exp(αω). (3.42)
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By the continuity of y(t, zm), there must exist τ (m)
q3 ∈ (τ (m)

q1 , τ
(m)
q2 ) such that

y
(
τ
(m)
q3 , zm

)
= εy,

y(t, zm) > εy, for t ∈
(
τ
(m)
q3 , τ

(m)
q2

)
.

(3.43)

Denote P (m) as the nonnegative integer, such that τ (m)
q2 ∈ (τ (m)

q3 + P (m)ω, τ
(m)
q3 + (P (m) + 1)ω]. By

(3.15), we have

εy exp(αω) < y
(
τ
(m)
q2 , zm

)

< y
(
τ
(m)
q3 , zm

)
exp

∫ τ (m)
q2

τ
(m)
q3

(
γ(t)g(t, εx)εx − μ(t) − h(t)εy

)
dt

= εy exp

⎧⎨
⎩
∫ τ (m)

q3 +P (m)ω

τ
(m)
q3

+
∫ τ (m)

q2

τ
(m)
q3 +P (m)ω

⎫⎬
⎭
(
γ(t)g(t, εx)εx − μ(t) − h(t)εy

)
dt

< εy exp(αω).

(3.44)

This contradiction establishes that (3.41) is true, particularly (3.41) holds for t ∈ [s(m)
q +P, t(m)

q ].
By (3.31) and (3.38), we have

ηx

m2
= x
(
t
(m)
q , zm

)

≥ x
(
s
(m)
q + P, zm

)
exp

∫ t(m)
q

s
(m)
q +P

(
f(t, εx) −Mgεy exp(αω)

)
dt

= x
(
s
(m)
q + P, zm

)
exp

∫ τ (m)
q

s
(m)
q +P

φε(t)dt

>
ηx

m2
,

(3.45)

which is also a contradiction. This completes the proof of Proposition 3.6.

Proposition 3.7. Suppose f satisfies (A1)–(A4), g satisfies (A5)–(A7), and (2.2) holds. Then there
exists a positive constant ηy such that

lim
t→∞

sup y(t) > ηy (3.46)

for all solutions (x(t), y(t)) of (1.3) with positive initial values.
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Proof. By assumption (A5) and (2.2)we can choose a constant ε1 > 0 such that

ψε1(t) > 0, (3.47)

where

ψε1(t) = γ(t)g(t, x
∗(t) − ε1)(x∗(t) − ε1) − μ(t) − h(t)ε1. (3.48)

Consider the following equation with positive parameter α:

ẋ = x
(
f(t, x) − 2Mgα

)
. (3.49)

By Lemma 3.2, (3.49) has a unique positive ω-periodic solution x∗
α(t) which is globally

asymptotically stable since α < ε0/(2Mg). Let xα(t) be the solution of (3.49) with initial
condition xα(0) = x∗(0) in which x∗(t) is the unique periodic solution of (1.4) given by
Lemma 2.1. Hence, for the above ε1, there exists sufficiently large T2 > T1, such that

|xα(t) − x∗
α(t)| <

ε1
4
, for t ≥ T2. (3.50)

By the continuity of the solution in the parameter, we have xα(t) → x∗(t) uniformly in
[T2, T2 +ω] as α → 0. Hence, for ε1 > 0 there exists α0 > 0, such that

|xα(t) − x∗(t)| < ε1
4
, for t ∈ [T2, T2 +ω], 0 < α < α0. (3.51)

So, we have

|x∗
α(t) − x∗(t)| < ε1

2
, t ∈ [T2, T2 +ω]. (3.52)

Notice that xα(t) and x∗(t) are all ω-periodic, hence

|x∗
α(t) − x∗(t)| < ε1

2
, t ≥ 0, 0 < α < α0. (3.53)

Choosing a constant α1 (0 < α1 < α0, 2α1 < ε1), we have

x∗
α1(t) ≥ x∗(t) − ε1

2
, t ≥ 0. (3.54)

Suppose that (3.46) is not true. Then there exists z ∈ R2
+, such that

lim
t→∞

sup y(t, z) < α1, (3.55)
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where (x(t, z), y(t, z)) is the solution of (1.3)with (x(0, z), y(0, z)) = z. So, there exist T3 ≥ T2,
such that

y(t, z) < 2α1 < ε1, t ≥ T3 (3.56)

and hence

ẋ ≥ x(t, z)(f(t, x) − 2Mgα1
)
. (3.57)

Let u(t) be the solution of (3.49)with α = α1 and u(T3) = x(T3, z), then

x(t, z) ≥ u(t), t ≥ T3. (3.58)

By the global asymptotic stability of x∗
α1(t), for the given ε = ε1/2, there exists T4 ≥ T3, such

that

∣∣u(t) − x∗
α1(t)

∣∣ < ε1
2
, t ≥ T4. (3.59)

Hence

x(t, z) ≥ u(t) > x∗
α1(t) −

ε1
2
, t ≥ T4 (3.60)

and hence

x(t, z) > x∗(t) − ε1, t ≥ T4 (3.61)

from (3.54). This implies

ẏ(t, z) ≥ y(t, z)(γ(t)g(t, x∗(t) − ε1)(x∗ − ε1) − μ(t) − h(t)ε1
)
= ψε1y(t, z), t ≥ T4. (3.62)

Integrating the above inequality from T4 to t yields

y(t, z) ≥ y(T4, z) exp
∫ t
T4

ψε1(t)dt. (3.63)

y(t, z) → ∞ as t → ∞ from (3.47) which is a contradiction. This completes the proof of
Proposition 3.7.

Proposition 3.8. Suppose f satisfies (A1)–(A4), g satisfies (A5)–(A7), and (2.2) holds. Then there
exists a positive constant γy, such that

lim
t→∞

inf y(t) ≥ γy (3.64)

for all solutions (x(t), y(t)) of (1.3) with positive initial values.
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Proof. Otherwise, there exists a sequence {zm} ⊂ R2
+, such that

lim
t→∞

inf y(t, zm) <
ηy

(m + 1)2
, m = 1, 2, . . . . (3.65)

However

lim
t→∞

sup y(t, zm) > ηy, m = 1, 2, . . . , (3.66)

from Proposition 3.7. Hence there are two time sequence {s(m)
q } and {t(m)

q } satisfying the
following conditions:

0 < s(m)
1 < t

(m)
1 < s

(m)
2 < t

(m)
1 < · · · < s(m)

q < t
(m)
q < · · · ,

s
(m)
q −→ ∞, t

(m)
q −→ ∞, as q −→ ∞,

y
(
t
(m)
q , zm

)
=

ηy

(m + 1)2
< y(t, zm) <

ηy

m + 1
= y

(
s
(m)
q , zm

)
, t ∈

(
s
(m)
q , t

(m)
q

)
.

(3.67)

By Proposition 3.4, for a given integerm > 0 there is a T (m)
1 > 0, such that

y(t, zm) ≤My, for t ≥ T (m)
1 . (3.68)

Because of s(m)
q → ∞ as q → ∞, there is a positive integer K(m), such that s(m)

q > T
(m)
1 as

q ≥ K(m), and hence

ẏ(t, zm) ≥ y(t, zm)
(−μ(t) − h(t)My

)
(3.69)

for q ≥ K(m) and t ∈ [s(m)
q , t

(m)
q ]. Integrating the above inequality from s(m) to t(m)

q , we have

y
(
t
(m)
q , zm

)
≥ y

(
s
(m)
q , zm

)
exp

∫ t(m)
q

s
(m)
q

(−μ(t) − h(t)My

)
dt (3.70)

or

∫ t(m)
q

s
(m)
q

(
μ(t) + h(t)My

)
dt ≥ ln(m + 1), q ≥ K(m). (3.71)

Because of the boundedness of the function μ(t) + h(t)My, we know that

t
(m)
q − s(m)

q −→ ∞, as m −→ ∞, q ≥ K(m). (3.72)
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By (3.47), there is a constant P > 0 and a positive integerN0 such that

ηy

m + 1
< α1 < ε1, t

(m)
q − s(m)

q > 2P, (3.73)

∫q
0
ψε1(t)dt > 0 (3.74)

form ≥N0, q ≥ K(m) and a ≥ P . Further,

y(t, zm) < α1 < ε1, t ∈
[
s
(m)
q , t

(m)
q

]
, m ≥N0, q ≥ K(m). (3.75)

In addition,

ẋ(t, zm) ≥ x(t, zm)
(
f(t, x(t, zm)) −Mgα1

)
. (3.76)

Let u(t) be the solution of (3.49)with α = α1 and u(s
(m)
q ) = x(s(m)

q , zm). Then

x(t, zm) ≥ u(t), t ∈
[
s
(m)
q , t

(m)
q

]
(3.77)

by Lemma 3.3. Further, by Propositions 3.4 and 3.6, we can choose K(m)
1 > K(m) such that

γx ≤ x
(
s
(m)
q , zm

)
≤Mx (3.78)

for q ≥ K
(m)
1 . For α = α1, (3.49) has a unique positive ω-periodic solution x∗

α1(t) which is
globally asymptotically stable. In addition, by the periodicity of (3.49), the periodic solution
xα1(t) is uniformly asymptotically stable with respect to the compact set Ω = {x : γx ≤ x ≤
Mx}. Hence, for the given ε1 in Proposition 3.7, there exists T0 > P which is independent of
m and q, such that

u(t) ≥ x∗
α1(t) −

ε1
2
, t ≥ T0 + s(m)

q . (3.79)

Thus

u(t) ≥ x∗(t) − ε1, t ≥ T0 + s(m)
q (3.80)

from (3.54). By (3.72), there exists a positive integer N1 ≥ N0 such that t(m)
q > s

(m)
q + 2T0 >

s
(m)
q + 2P form ≥ K(m)

1 and q ≥ K(m)
1 . So we have

x(t, zm) ≥ x∗(t) − ε1, t ∈
[
s
(m)
q + T0, t

(m)
q

]
(3.81)
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sincem ≥N1 and q ≥ K(m)
1 . Hence,

ẏ(t, zm) ≥ ψε1(t)y(t, zm), t ∈
[
s
(m)
q + T0, t

(m)
q

]
(3.82)

from (3.75) and (3.81). Integrationg the above inequality from s
(m)
q + T0 to t

(m)
q yields

y
(
t
(m)
q , zm

)
≥ y

(
s
(m)
q + T0, zm

)
exp

∫ t(m)
q

s
(m)
q +T0

ψε1(t)dt, (3.83)

and hence

ηy

(m + 1)2
≥ ηy

(m + 1)2
exp

∫ t(m)
q

s
(m)
q +T0

ψε1(t)dt >
ηy

(m + 1)2
(3.84)

from (3.74). This is a contradiction. This completes the proof of Proposition 3.8. The result of
Theorem 2.2 follows from Propositions 3.4–3.8.

Proof of Theorem 2.3. Suppose x∗(t) is the periodic solution of (1.4). For any solution
(x(t), y(t)) of (1.3)with a positive initial value, there are two possible cases:

(i) for all t ≥ 0, x(t) > x∗(t);

(ii) there is a T̂ > 0, such that x(T̂) ≤ x∗(t).

Now, in the above two cases, we prove limt→ 0y(t) = 0, respectively.
(i) Suppose v(t) is a solution of (1.4) with v(0) = x(0). Comparing (1.3) and (1.4) we

have v(t) ≥ x(t) ≥ x∗(t) and limt→ 0(v(t) − x∗(t)) = 0. Hence

lim
t→∞

(x(t) − x∗(t)) = 0. (3.85)

From system (1.3), for all t0 ∈ [0,∞), we have

x(t0 +ω) − x(t0) =
∫ t0+ω
t0

x(s)f(s, x(s))ds −
∫ t0+ω
t0

x(s)g(s, x)y ds

x∗(t0 +ω) − x∗(t0) =
∫ t0+ω
t0

x∗(s)f(s, x∗)ds = 0.

(3.86)
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So

x(t0 +ω) − x(t0) =
∫ t0+ω
t0

[
xf(s, x) − x∗f(s, x∗)

]
ds −

∫ t0+ω
t0

xg(s, x)y ds

=
∫ t0+ω
t0

{
(x − x∗)f(s, x) + x∗[f(s, x) − f(s, x∗)

]}
ds −

∫ t0+ω
t0

xg(s, x)y ds

=
∫ t0+ω
t0

(x − x∗)
[
f(s, x) + x∗ ∂f

∂x
(s, x∗ + θ(x − x∗))

]
ds −

∫ t0+ω
t0

xg(s, x)y ds,

(3.87)

where 0 < θ < 1. By the boundedness of x, x∗, and the continuity of f and ∂f/∂x, there must
exist a constant A > 0, such that

∣∣∣∣f(s, x) + x∗ ∂f
∂x

(s, x∗ + θ(x − x∗))
∣∣∣∣ ≤ A. (3.88)

For all ε > 0, by (3.85), there exists a T0 > 0, such that 0 < x(t) − x∗(t) < ε, for all t ≥ T0. Hence

∫ t0+ω
t0

xg(s, x)y ds ≤ −x(t0 +ω) + x(t0) +Aωε

= −[x(t0 +ω) − x∗(t0 +ω)] + [x(t0) − x∗(t0)] +Aωε

< 0 + ε +Aωε

= (Aω + 1)ε

(3.89)

for t0 ≥ T0. Denote GL = min0≤t≤ωx∗(t)g(t, x∗(t)), yLt0 = mint0≤t≤t0+ωy(t). Then

0 < GL

∫ t0+ω
t0

y ds ≤
∫ t0+ω
t0

xg(s, x)y ds ≤ (Aω + 1)ε. (3.90)

Hence

0 < yLt0 ≤
1
ω

∫ t0+ω
t0

y(s)ds ≤
(

A

GL
+

1(
ωGL

)
)
ε. (3.91)

This implies

lim
t0 →∞

yLt0 = lim
t0 →∞

∫ t0+ω
t0

y(s)ds = 0. (3.92)
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On the other hand,

y(t) = y(t0) exp
∫ t0+ω
t0

[
γ(s)x(s)g(s, x(s)) − μ(s) − h(s)y(s)]ds. (3.93)

By the boundedness of x, y, g, and the continuity of γ , μ, and h, there exists a C > 0 such that

∣∣γ(t)g(t, x)x − μ(t) − h(t)y(t)∣∣ ≤ C, t ≥ 0. (3.94)

Hence

∣∣∣∣ln y(t)
y(t0)

∣∣∣∣ ≤ C
∫ t0+ω
t0

ds = Cω, for t ∈ [0, ω]. (3.95)

For all t, s ∈ [0, ω], we have

∣∣∣∣ln y(t)
y(s)

∣∣∣∣ =
∣∣∣∣ln y(t)

y(t0)
− ln

y(s)
y(t0)

∣∣∣∣ ≤ 2Cω. (3.96)

It follows that

exp(−2Cω) ≤ y(t)
y(s)

≤ exp(2Cω), |t − s| ≤ ω. (3.97)

Considering (3.92), we have

lim
t→∞

y(t) = 0. (3.98)

(ii)Consider the second case.We claim that once there is a T̂ > 0 such that x(T̂) ≤ x∗(T̂),
then

x(t) < x∗(t), ∀t > T̂ . (3.99)

Otherwise, suppose T̃ = mint>T̂{t : x(t) = x∗(t)}. Then

ẋ
(
T̃
)
= x′

(
T̃ − 0

)
= lim

t→ T̃−0

x(t) − x
(
T̃
)

t − T̃
= lim

t→ T̃−0

x(t) − x∗
(
T̃
)

t − T̃
≥ lim

t→ T̃−0

x∗(t) − x∗
(
T̃
)

t − T̃
= ẋ∗

(
T̃
)
.

(3.100)

This is a contradiction since from (1.3) and (1.4) we know ẋ(t) < ẋ∗(t) at the same point
(t, x) ∈ R2

+. So (3.99) holds.
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Now we show for all ε > 0, there is a T (1) > T̂ ≥ 0 such that

y
(
T (1)

)
< ε. (3.101)

Otherwise, suppose for all t ≥ T̂ , y(t) ≥ ε. Then

ẋ ≤ x(f(t, x) − g(t, x)ε), t ≥ T̂ . (3.102)

Suppose v(t) is a solution of (1.4) with v(T̂) = x(T̂). Then by Lemma 2.1 we have v(t) →
x∗(t) (t → ∞), where x∗(t) denotes the periodic solution of (1.4). Since ẋ(T̂) < v̇(T̂), there
exists a σ > 0 such that x(t) < v(t) for t ∈ (T̂ , T̂ + σ]. Denote δ(t) = v(t) − x(t). From (3.99)we
know δ(t) > 0, for t ≥ T̂ . We show that there is an ε1 > 0 such that limt→∞ inf δ(t) ≥ ε1. In fact,

v̇ − ẋ = vf(t, v) − (xf(t, x) − g(t, x)ε)

= v
(
f(t, v) − f(t, x)) + f(t, x)(v − x) + xg(t, x)ε

=
(
v
∂f

∂x
(t, x + θ(v − x)) + f(t, x)

)
(v − x) + xg(t, x)ε

(3.103)

where 0 < θ < 1. By the boundedness of x, v, and the continuity of f and ∂f/∂x, there exists
an L > 0, such that |v(∂f/∂x)(t, x + θ(v − x)) + f(t, x)| < L. Hence

δ̇ > −Lδ + xg(t, x)ε. (3.104)

Choosing T (0) > T̂ , such that v(t) ≥ x∗(t)/2 for t ≥ T (0), and letting

ε1 = min
{
max
0≤t≤σ

δ(t), min
0≤t≤;ω

(
x∗(t)
4

)
,
min0≤t≤ωg(t, x∗(t)/4 )x∗(t)ε

4L

}
. (3.105)

Then whenever δ(t) ≤ ε1 for t ≥ T (0), we have x(t) = v(t) − δ(t) ≥ x∗(t)/2 − x∗(t)/4 = x∗(t)/4.
By assumption (A6), δ̇(t) > −Lε1 + g(t, x∗(t)/4)x∗(t)/4 ≥ 0, and this implies limt→∞ inf δ(t) >
ε1. Choosing T ′ > T̂ , such that v(t) < x∗(t) + ε1/2 and δ(t) ≥ ε1 for t ≥ T ′, we have

x(t) ≤ v(t) − ε1 ≤
(
x∗(t) +

ε1
2

)
− ε1 = x∗(t) − ε1

2
, for t ≥ T ′. (3.106)

Hence, there exists an ε0 > 0 such that

γ(t)g(t, x(t))x(t) − μ(t) − h(t)ε ≤ γ(t)g
(
t, x∗(t) − ε1

2

)(
x∗(t) − ε1

2

)
− μ(t) ≤ −ε0 < 0 (3.107)
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for t ≥ T ′, by (2.3) and assumption (A5). So

ε ≤ y(t) ≤ y(T ′) exp
∫ t
T ′

[
γ(s)g(s, x(s))x(s) − μ(s) − h(s)ε]ds −→ 0 (t −→ ∞). (3.108)

This is a contradiction and it implies that (3.101) holds.
Second, we show that

y(t) ≤ ε exp(M(ε)ω), for t ≥ T (1), (3.109)

where

M(ε) = max
0≤t≤ω

{
γ(t)g(t, x∗)(t)x∗(t) + μ(t) + h(t)ε

}
. (3.110)

Otherwise, there exists T (2) > T (1), such that

y
(
T (2)

)
> ε exp(M(ε)ω). (3.111)

By the continuity of y(t), there must exist T (3) ∈ (T (1), T (2)) such that y(T (3)) = ε and y(t) > ε
for t ∈ (T (3), T (2)]. Let P1 be the nonnegative integer, such that T (2) ∈ (T (3) + P1ω, T (3) + (P1 +
1)ω], and by (2.3), (A6) and (3.99), we have

ε exp(M(ε)ω) < y
(
T (2)

)

< y
(
T (3)

)
exp

∫T (2)

T (3)

[
γ(s)g(s, x(s))x(s) − μ(s) − h(s)ε]ds

= ε exp

{∫T (3)+P1ω

T (3)
+
∫T(2)
T (3)+P1ω

}[
γ(s)g(s, x)x − μ(s) − h(s)ε]ds

< ε exp

{∫T (3)+P1ω

T (3)
+
∫T(2)
T (3)+P1ω

}[
γ(s)g(s, x∗)x∗ − μ(s) − h(s)ε]ds

≤ ε exp
{∫T (2)

T(3)+P1ω

[
γ(s)g(s, x∗)x∗ − μ(s) − h(s)ε]ds

}

≤ ε exp
{∫T (2)

T(3)+P1ω

[
γ(s)g(s, x∗)x∗ +

∣∣μ(s)∣∣ + h(s)ε]ds
}

< ε exp(M(ε)ω),

(3.112)

which is a contradiction. This completes the proof of conclusion (i) of Theorem 2.3.
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Now we prove the second conclusion. Since (i) holds and g(t, x) is bounded, there is
a t1 > 0 and an ε > 0, such that g(t, x)y < ε ≤ ε0 for t ≥ t1. Then we have

ẋ ≥ x(f(t, x) − ε), for t ≥ t1. (3.113)

The following auxiliary equation,

v̇ = v
(
f(t, v) − ε) (3.114)

has a globally asymptotically stable positive ω-periodic solution x∗
ε(t) by Lemma 3.2. So by

Lemma 3.3, we have

lim
t→∞

inf x(t) ≥ x∗
ε(t). (3.115)

This completes the proof of conclusion (ii) of Theorem 2.3.

Proof of Corollary 2.6. We claim that once g(t, x) satisfies a local Lipschitz condition with
respect to x, then the function

F
(
t, x, y

)
=

(
x
(
f(t, x) − g(t, x)y)

y
(
γ(t)g(t, x)x − μ(t) − h(t)y)

)
(3.116)

satisfies a local Lipschitz condition with respect to x and y. Considering assumptions (A1)–
(A7), this is clearly the case. So the uniqueness of solutions of system (1.3) is guaranteed,
and by Lemma 2.5 we know that there exsits an ω-periodic solution Z∗(t) = (x∗(t), y∗(t)).
From the proof of Theorem 15.5 in [37], the initial value of the periodic solution is the fix
point of the mapping T : z0 → z(ω; 0, z0) which is the limit point of a subsequence of the
sequence {Tnz0}∞1 , where z0 = (x0, y0) is the initial value of a bounded solution of system
(1.3). Taking any positive x0 and y0, by Theorem 2.2 we know the solution started from this
point is bounded and the limit of any subsequence of the sequence {Tnz0}∞1 is positive. So
the periodic solution (x∗(t), y∗(t)) is positive.

4. Examples

Example 4.1. Suppose f(t, x) = 1 − (2 + cos t)x, g(t, x) = 2xy/(2 + sin t + x2), γ(t) = 0.5,
μ(t) = (1/10) − (1/20) sin t, h(t) = 1. The corresponding system is

ẋ = x
(
1 − (2 + cos t)x − 2xy

2 + sin t + x2

)
,

ẏ = y

(
x2

2 + sin t + x2
− 1
10

− 1
20

sin t

)
.

(4.1)
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Figure 1: (a) Simulation results of Example 4.1 with initial values x(0) = 0.3, y(0) = 0.5. (b) Simulation
results of Example 4.2 with initial values x(0) = 0.3, y(0) = 0.6.

We know that the periodic solution of system (3.1) is

x∗(t) =
1 − exp

(− ∫ω0 a(s)ds)∫ω
0 b(t − s) exp

(− ∫ω0 a(t − τ)dτ)ds
. (4.2)
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Using this formula we can compute the periodic solution of (4.1) in absence of predators

x∗(t) = 2
1 − e−2π

(4e2π + cos(t)e2π + sin(t)e2π − 4 − cos(t) − sin(t))e−2π

≈ 2
(4 + cos(t) + sin(t))

,

γ(t)g(t, x∗(t))x∗(t) − μ(t) = 1
2π

∫2π

0

(
(x∗)2

2 + sin t + (x∗)2
− 1
10

− 1
20

sin t

)
dt ≈ 0.05313 > 0.

(4.3)

System (4.1) is permanent.

Example 4.2. Taking f(t, x), g(t, x) and γ(t) the same as in Example 4.1, and μ(t) = (1/5) −
(1/10) sin t, we can compute

γ(t)g(t, x∗(t))x∗(t) − μ(t) = 1
2π

∫2π

0

(
(x∗)2

2 + sin t + (x∗)2
− 1
5
− 1
10

sin t

)
dt ≈ −0.04687 < 0.

(4.4)

In this circumstance the predator population tends to extinction and the prey
population keeps oscillating.

Simulation results of the two examples are shown in Figure 1.
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