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We consider the Friedrichs self-adjoint extension for a differential operator A of the form A =
A0 + q(x)·, which is defined on a bounded domain Ω ⊂ R

n, n ≥ 1 (for n = 1 we assume that
Ω = (a, b) is a finite interval). HereA0 = A0(x,D) is a formally self-adjoint and a uniformly elliptic
differential operator of order 2m with bounded smooth coefficients and a potential q(x) is a real-
valued integrable function satisfying the generalized Kato condition. Under these assumptions for
the coefficients of A and for positive λ large enough we obtain the existence of Green’s function
for the operator A + λI and its estimates up to the boundary of Ω. These estimates allow us
to prove the absolute and uniform convergence up to the boundary of Ω of Fourier series in
eigenfunctions of this operator. In particular, these results can be applied for the basis of the
Fourier method which is usually used in practice for solving some equations of mathematical
physics.

1. Introduction

LetΩ be a bounded domain in R
n (n ≥ 1)with smooth boundary. We consider onΩ an elliptic

differential operator of the form

A = A0(x,D) + q(x)·, (1.1)

where

A0(x,D) =
∑

|α|≤2m
aα(x)Dα

(1.2)
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is a formally self-adjoint differential operator of order 2m,m = 1, 2, . . .. Here Dα = Dα1
1 ·Dα2

2 ·
· · · ·Dαn

n with Dj = −i(∂/∂xj). The coefficients aα(x) of the operator A0 are assumed to be the
complex-valued (in general) bounded smooth functions on the domainΩ for all |α| ≤ 2m such
that aα(x) are real valued for |α| = 2m and this operator A0 satisfies the uniform ellipticity
condition

∑

|α|=2m
aα(x)ξα ≥ ν|ξ|2m (1.3)

with some constant ν > 0, for all x ∈ Ω and all ξ ∈ R
n. We assume that the potential q(x) is a

real-valued L1(Ω)-function satisfying the generalized Kato condition, that is,

sup
x∈Ω

∫

Ω

∣∣q
(
y
)∣∣ωn

(∣∣x − y
∣∣)dy < ∞, (1.4)

where function ωn(t) for t > 0 is defined by

ωn(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t2m−n, 2m < n,

1 +
∣∣log t

∣∣, 2m = n,

1, 2m > n.

(1.5)

For s > 0 we denote by Ws
2 (Ω) the L2-based Sobolev space, where s indicates the

“degree” of the smoothness; by
◦
W

s

2(Ω)we denote the closure of C∞
0 (Ω) inWs

2 (Ω). We denote
also by Bs

2,p(Ω), 1 ≤ p ≤ ∞, Besov space (where s indicates the smoothness) with the same

notation for
◦
B
s

2,p(Ω) as for Sobolev space. The definition of Sobolev and Besov spaces as well
as the embedding theorems for these spaces can be found in [1, 2].

Due to (1.4)-(1.5) the function |q(x)|1/2 satisfies all conditions of Theorem 7.3 of [3]
with s = m and therefore for any δ > 0 we have the following inequality:

∣∣∣
(
qf, f

)
L2(Ω)

∣∣∣ ≤
∥∥∥
∣∣q
∣∣1/2f

∥∥∥
2

L2(Ω)
≤ C0Nδ

(∣∣q
∣∣1/2
)∥∥f
∥∥2
Wm

2 (Ω) + CδN1

(∣∣q
∣∣1/2
)∥∥f
∥∥2
L2(Ω), (1.6)

where the constant C0 depends only on m and n, the constant Cδ depends only on m, n and
δ, and the value Nδ(|q|1/2) is defined by

Nδ

(∣∣q
∣∣1/2
)
:= sup

x∈Ω

∫

y∈Ω,|x−y|<δ

∣∣q
(
y
)∣∣ωn

(∣∣x − y
∣∣)dy, (1.7)

where ωn is as in (1.5).
Since the domain Ω is bounded then Nδ(|q|1/2) tends to 0 as δ → 0. It immediately

implies that there is a constant C > 0 such that

(
Af, f

)
L2(Ω) ≥

ν

2
∥∥f
∥∥2
Wm

2 (Ω) − C
∥∥f
∥∥2
L2(Ω) (1.8)
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for all f ∈ C∞
0 (Ω). Since Aμ = A + μI is positive for sufficiently large μ it has a positive

self-adjoint Friedrichs extension (Aμ)F such that

D
((

Aμ

)
F

)
⊂

◦
W

m

2 (Ω). (1.9)

We define the Friedrichs extension of A = Aμ − μI to be AF = (Aμ)F − μI such that

D(AF) ⊂
◦
W

m

2 (Ω). (1.10)

The domain of AF is given by

D(AF) =
{
f ∈

◦
W

m

2 (Ω) | Af ∈ L2(Ω)
}
. (1.11)

It is also well known that this extension has a purely discrete spectrum {λk}∞k=1 of finite
multiplicity having the only one accumulation point at infinity (λk → +∞) and a complete
orthonormal system {uk(x)}∞k=1 of eigenfunctions in L2(Ω).

To each function f ∈ L2(Ω)we can assign the formal series

f =
∞∑

k=1

fkuk(x), (1.12)

where fk = (f, uk)L2(Ω) are the Fourier coefficients of f with respect to the system {uk(x)}∞k=1.
The study of elliptic differential operators with smooth coefficients on a bounded

domain Ω ⊂ R
n with smooth boundary has a long history. We restrict the bibliographical

remarks to the works that are of interest from the viewpoint of the present article.
The estimates for the Green’s function and convergence of spectral expansions of a

general elliptic differential operator of order 2m with smooth coefficients on a bounded
domain have been studied by many authors. We refer to a four-volume monograph of
Hörmander [4, 5], the works of Alimov [6–9], Gårding [10], Krasovskiı̆ [11, 12], Schechter
[3] and others. We mention also the papers [13–15] of the author of the present which deal
with the operators whose coefficients may have local singularities of specific order on an
arbitrary smooth surface whose dimension is strictly less than that of the original domain.
As to elliptic operators of order 2m whose coefficients may have singularities in Lp, similar
results have been mainly obtained for the Schrödinger operators −Δ+q(x) on R

3 with q from
L2 or in any dimensions but with q which may have given singularity at one point. For such
results, see Alimov and Joó [16], Ashurov [17], Ashurov and Faiziev [18], Khalmukhamedov
[19, 20], Serov [21, 22], Serov and Buzurnyuk [23], and others. Some survey of resent results
concerning Lp theory of elliptic differential operators of order 2m can be found in the articles
of Davies [24, 25].

The aim of this paper is to prove the following results.

Theorem 1.1. Suppose that q satisfies condition (1.4), then there exist constants C > 0, δ > 0 and
λ0 > 0 such that for all λ ≥ λ0 the Green functionG(x, y, λ) of the operatorAF+λI exists and satisfies
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the following estimates:

(1) 2m < n,

|G(x, y, λ)| ≤ C|x − y|2m−ne−δ|x−y|λ
1/2m

,

(2) 2m = n,

|G(x, y, λ)| ≤ C(1 + | log(|x − y|λ1/2m)|)e−δ|x−y|λ1/2m,
(3) 2m > n,

|G(x, y, λ)| ≤ Cλ(n−2m)/2me−δ|x−y|λ
1/2m

for all x, y ∈ Ω and λ ≥ λ0.

Without loss of generality, in the following theorem we assume that AF is positive.

Theorem 1.2. The Fourier series (1.12) converges absolutely and uniformly on the domainΩ for any
function f from the domain of the operator Aσ

F for σ > n/4m.

One of the main results of the present paper is Theorem 1.1 which concerns the
estimates up to the boundary of the domain Ω for the Green’s function of an elliptic
differential operator of order 2m with singular potential from the generalized Kato space. In
all previous publications, as far as we know, the estimates for the Green function are proved
on an arbitrary compact subset from the domain Ω and for the case when the coefficients of
operator are either smooth or have some special type of singularities.

Another main result of this paper is Theorem 1.2. It gives some sufficient conditions
which provide the absolute convergence up to the boundary of Ω of Fourier series in
eigenfunctions for functions from the domain of some power of this operator. In addition
to Theorem 1.2, we would like to take into consideration Theorem 3.7 (see Section 3 of the
paper) which is the generalization of the well-known result of Peetre (see [26]) to the
operators with singular coefficients. It can be mentioned also here that in the scale of the
spaces associated with some powers of our operator the results of Theorems 1.2 and 3.7 are
sharp (see, e.g., [14]).

This paper is organized such that Theorem 1.1 is proved in Section 2 and Theorem 1.2
in Section 3. Some additional theorems about the absolute convergence of Fourier series are
also proved in Section 3.

2. Green’s Function

In this section we obtain the estimates for the Green’s function of the operator AF + λI when
λ is positive and sufficiently large.

Definition 2.1. For λ > 0 and y ∈ Ω, a locally integrable function F(·, y, λ) on Ω is called a
fundamental solution for an operator A + λI if and only if

(A + λI)F
(
x, y, λ

)
= δ
(
x − y

)
. (2.1)

Equation (2.1) holds in the sense of distributions, that is,

∫

Ω
F
(
x, y, λ

)(
A′

0 + q(x) + λI
)
ϕ(x) dx = ϕ

(
y
)

(2.2)
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for all ϕ ∈ C∞
0 (Ω), where

A′
0· =

∑

|α|≤2m
(−1)|α|Dα(aα(x)·) (2.3)

is the transpose of A0.
We will use the following result.

Proposition 2.2. There exists λ0 > 0 such that for any λ ≥ λ0, the differential operator A0 + λI has
a fundamental solution F0(x, y, λ). Furthermore, for any multi-index α, 0 ≤ |α| ≤ 2m − 1, there are
constants C0 > 0, δ > 0 such that the following estimates hold:

(1) 2m < n + |α|,
|DαF0(x, y, λ)| ≤ C0|x − y|2m−n−|α|e−δ|x−y|λ

1/2m
,

(2) 2m = n + |α|,
|DαF0(x, y, λ)| ≤ C0(1 + | log(|x − y|λ1/2m)|)e−δ|x−y|λ1/2m,

(3) 2m > n + |α|,
|DαF0(x, y, λ)| ≤ C0λ

(n+|α|−2m)/2me−δ|x−y|λ
1/2m

,

for all x, y ∈ Ω and λ ≥ λ0.

The proof of Proposition 2.2 can be found in [6].
Wewill look for the fundamental solution F(x, y, λ) of the operatorA0(x,D)+q(x)+λI,

for λ positive and large enough, as a solution of the integral equation

F
(
x, y, λ

)
= F0

(
x, y, λ

) −
∫

Ω
F0(x, u, λ)q(u)F

(
u, y, λ

)
du, (2.4)

where F0(x, y, λ) is the fundamental solution of the operator A0 + λI. By Proposition 2.2,
F0(·, y, λ) exists and belongs (at least) to L1(Ω) uniformly with respect to y from Ω.

We need the following lemma, which may have interest of its own right.

Lemma 2.3. Assume that q satisfies condition (1.4), then there is λ0 > 0 such that for all λ ≥ λ0
the fundamental solution F(x, y, λ) exists as a solution of the integral equation (2.4) and satisfies
the following estimates:

(1) 2m < n,

|F(x, y, λ)| ≤ C|x − y|2m−ne−(δ/2)|x−y|λ
1/2m

,

(2) 2m = n,

|F(x, y, λ)| ≤ C(1 + | log(|x − y|λ1/2m)|)e−(δ/2)|x−y|λ1/2m,
(3) 2m > n,

|F(x, y, λ)| ≤ Cλ(n−2m)/2me−(δ/2)|x−y|λ
1/2m

,

with some positive constant C, where δ is as in Proposition 2.2 and x, y ∈ Ω.
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Proof. We solve the integral equation (2.4) by iterations. For any j ≥ 1, we denote

Fj

(
x, y, λ

)
= −
∫

Ω
F0(x, u, λ)q(u)Fj−1

(
u, y, λ

)
du. (2.5)

Wewill prove by induction that there is λ0 > 0 such that for all λ ≥ λ0 and for each j = 0, 1, 2, . . .

∣∣Fj

(
x, y, λ

)∣∣ ≤ C0

2j
Vn

(∣∣x − y
∣∣)e−(δ/2)|x−y|λ

1/2m
, (2.6)

where x, y ∈ Ω, C0 is as in the Proposition 2.2 and Vn is defined as

Vn

(∣∣x − y
∣∣) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣x − y
∣∣2m−n

, 2m < n,

1 +
∣∣log
(∣∣x − y

∣∣λ1/2m
)∣∣, 2m = n,

λ(n−2m)/2m, 2m > n.

(2.7)

It is clear that for j = 0 estimate (2.6) holds. And it is also clear that (2.6) holds for the case
when 2m > n for each j = 1, 2, . . . , by choosing λ0 large enough.

In the case 2m ≤ n (considering two possibilities |x − u| ≥ |u − y| and |x − u| ≤ |u − y|)
in order to prove (2.6) it is enough to prove that there exists λ0 > 0 such that

C0

∫

Ω
Vn(|x − u|)∣∣q(u)∣∣e−(δ/2)|x−u|λ1/2mdu ≤ 1

2
(2.8)

for all x, y ∈ Ω and λ ≥ λ0, where constant C0 is as in Proposition 2.2.
Indeed, since for 2m < nwe have

C0

∫

Ω
Vn(|x − u|)∣∣q(u)∣∣e−(δ/2)|x−u|λ1/2mdu = C0

∫

Ω
ωn(|x − u|)∣∣q(u)∣∣e−(δ/2)|x−u|λ1/2mdu, (2.9)

whereωn is as in (1.4), then we can estimate the left-hand side of (2.8) as follows. If |q(u)| > R
then the integrals in the latter equality tend to zero as R → ∞. The reason is due to that
condition (1.4) the measure of the set {u ∈ Ω : |q(u)| > R} tends to zero as R → ∞. If
|q(u)| < R then this integral can be estimated by

R

∫

Ω
Vn(|x − u|)e−(δ/2)|x−u|λ1/2mdu ≤ C

R

λ
, (2.10)

where some positive constant C depends only on δ and dimension n.
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In the case n = 2m (considering two possibility |x − y| ≤ λ−1/2m and |x − y| ≥ λ−1/2m) it
can be proved that

C0

∫

Ω
Vn(|x − u|)∣∣q(u)∣∣e−(δ/2)|x−u|λ1/2mdu

≤ C′
0

(∫

Ω
ωn(|x − u|)∣∣q(u)∣∣e−(δ/2)|x−u|λ1/2mdu + logλ

∫

Ω

∣∣q(u)
∣∣e−(δ/2)|x−u|λ

1/2m
du

)
.

(2.11)

Then, instead of estimate (2.10)we obtain

R

∫

Ω
Vn(|x − u|)e−(δ/2)|x−u|λ1/2mdu ≤ C

R log λ
λ

. (2.12)

Combining these two facts (including (2.10) and (2.12)), (2.8) and choosing
appropriately R (with respect to λ) we may conclude that inequality (2.6) is proved. Since
the solution F(x, y, λ) of the integral equation (2.4) is given by the series

F
(
x, y, λ

)
=

∞∑

j=0

Fj

(
x, y, λ

)
(2.13)

the estimates (2.6) prove also Lemma 2.3.

As a consequence of Lemma 2.3 and Proposition 2.2 we can obtain the estimates for the
derivatives of order |α| ≤ 2m − 1 of the fundamental solution F(x, y, λ). For the derivatives of
F(x, y, λ) we use the following representation:

Dα
xF
(
x, y, λ

)
= Dα

xF0
(
x, y, λ

) −
∫

Ω
Dα

xF0(x, u, λ)q(u)F
(
u, y, λ

)
du. (2.14)

The following corollary holds.

Corollary 2.4. Assume that q satisfies the condition (1.4), then for the derivatives of the fundamental
solution F(x, y, λ) of order |α| ≤ 2m − 1 the following estimates hold:

(1) 2m < n + |α|,
|Dα

xF(x, y, λ)| ≤ C|x − y|2m−n−|α|e−(δ/2)|x−y|λ
1/2m

,

(2) 2m = n + |α|,
|Dα

xF(x, y, λ)| ≤ C(1 + | log(|x − y|λ1/2m)|)e−(δ/2)|x−y|λ1/2m,
(3) 2m > n + |α|,

|Dα
xF(x, y, λ)| ≤ Cλ(n+|α|−2m)/2me−(δ/2)|x−y|λ

1/2m
,

for some constant C > 0, for all x, y ∈ Ω and λ ≥ λ0 (where λ0 and δ are as in Lemma 2.3).
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The proof of the corollary follows immediately from the integral representation for
the derivatives of F(x, y, λ), estimates for the derivatives of F0(x, y, λ) in Proposition 2.2,
estimates for F(x, y, λ) in Lemma 2.3, and estimates for the kernels with weak singularities.

Let us note that the fundamental solution F(·, y, λ), which was obtained in Lemma 2.3,
belongs (at least) to L1(Ω) uniformly with respect to y from Ω.

Now we are in the position to introduce the Green’s function of the operator AF + λI.
If λ is sufficiently large then the operator AF + λI is positive and its inverse

(AF + λI)−1 : L2(Ω) −→ L2(Ω) (2.15)

is a bounded operator. It is also an integral operator with kernel denoted by G(x, y, λ). If we
use for this integral operator the symbol Ĝ(λ) then we have

(AF + λI)Ĝ(λ) = I, Ĝ(λ)(AF + λI) = I, G
(
x, y, λ

)
= G(y, x, λ). (2.16)

Definition 2.5. The kernelG(x, y, λ) of the integral operator Ĝ(λ) is called the Green’s function
of the operator AF + λI.

Proof of Theorem 1.1. For τ > 0, letΩτ andΩτ/2 be compact sets, each of them having a smooth
boundary, with Ωτ ⊂ Ωτ/2 ⊂ Ω such that

d(Ωτ , ∂Ω) = τ, d
(
Ωτ/2, ∂Ω

)
=

τ

2
,

d
(
Ωτ , ∂Ωτ/2

)
=

τ

2
.

(2.17)

Here d(X,Y ) denotes the distance between the sets X and Y .
Let F(x, y, λ) be a fundamental solution of the operator AF + λI for x, y ∈ Ω and λ

sufficiently large. We choose the function χ ∈ C∞
0 (Ω) such that

χ(x) =

⎧
⎨

⎩
1, x ∈ Ωτ ,

0, x ∈ Ω \Ωτ/2,
(2.18)

and set

E
(
x, y, λ

)
= χ(x)F

(
x, y, λ

)
. (2.19)

By this equation the function E(x, y, λ) is well defined for all x, y ∈ Ω. Clearly, E(x, y, λ) =
F(x, y, λ) for x ∈ Ωτ , y ∈ Ω. We will show that E(x, y, λ) is a parametrix forAF +λI. To prove
this, let us introduce the function

Q
(
x, y, λ

)
:= G

(
x, y, λ

) − E
(
x, y, λ

)
(2.20)



Abstract and Applied Analysis 9

and corresponding integral operator with kernel Q(x, y, λ)

Q̂(λ) := Ĝ(λ) − Ê(λ), (2.21)

where Ê(λ) and Ĝ(λ) are integral operators in L2(Ω) with kernels E(x, y, λ) and G(x, y, λ),
respectively. Then it follows from (2.20) that

(AF + λI)Ê(λ) = I + P̂1(λ), (2.22)

where

P̂1(λ) = −(AF + λI)Q̂(λ), (2.23)

Q̂(λ) = −Ĝ(λ)P̂1(λ). (2.24)

If we denote by P1(x, y, λ) the kernel of the integral operator P̂1(λ), then it follows from (2.24)
that for any f ∈ L2(Ω),

Q̂(λ)f(x) = −
∫

Ω

(∫

Ω
G(x, u, λ)P1

(
u, y, λ

)
du

)
f
(
y
)
dy (2.25)

and the kernel Q(x, y, λ) (see (2.20)) has the form

Q
(
x, y, λ

)
= −
∫

Ω
G(x, u, λ)P1

(
u, y, λ

)
du, (2.26)

where x, y ∈ Ω. As a matter of fact we cannot characterize and estimate the kernel P1(x, y, λ)
from (2.22)—(2.24). That is why we will proceed a little bit differently, as follows. Equality
(2.19) implies that in the sense of distributions the following representation holds:

(Ax(x,D) + λI)E
(
x, y, λ

)
= χ(x)δ

(
x − y

)
+ P
(
x, y, λ

)
, (2.27)

where x ∈ Ω (y ∈ Ω is considered here as a parameter) and λ sufficiently large. The function
P(x, y, λ) in (2.27)will be of the form

P
(
x, y, λ

)
=
∑

α>0

Dαχ(x)
α!

A
(α)
0 (x,D)F

(
x, y, λ

)
(2.28)

with the differential operator A(α)
0 (x,D) having the symbol A(α)

0 (x,−iξ) = ∂α
ξ
A0(x,−iξ). It is

the polynomial in ξ ∈ R
n of order ≤ 2m − 1 and therefore the differential operators A(α)

0 (x,D)
are of order ≤ 2m − 1. This fact allows us to estimate the function P(x, y, λ) (in comparison
with P1). Indeed, by the choice of χ, Dαχ/= 0 only on the set Ωτ/2 \ Ωτ and therefore the
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representation (2.28) and Corollary 2.4 imply that the following estimate holds:

∣∣P
(
x, y, λ

)∣∣ ≤ C
∣∣x − y

∣∣1−ne−(δ/2)|x−y|λ
1/2m (2.29)

for all x, y ∈ Ω and with δ > 0 as in Corollary 2.4.

Now we need the following lemma.

Lemma 2.6. For all x, y ∈ Ω

χ
(
y
)
G
(
x, y, λ

)
= χ(x)F

(
x, y, λ

) −
∫

Ω
G(x, u, λ)P

(
u, y, λ

)
du, (2.30)

where P is as in (2.28) and χ is defined as in (2.19).

Proof. We can rewrite (2.27) in the operator form as

(AF + λI)Ê(λ) = χI + P̂(λ) (2.31)

or (using (2.20))

P̂(λ) =
(
1 − χ

)
I − (AF + λI)Q̂(λ). (2.32)

The latter equation implies

Q̂(λ) = Ĝ(λ)
((
1 − χ

)
I
) − Ĝ(λ)P̂(λ), (2.33)

and therefore (using (2.20) again)

Ĝ(λ)
(
χI
)
= Ê(λ) − Ĝ(λ)P̂(λ). (2.34)

But this is equivalent to (2.30). Thus, this lemma is proved.

In order to finish the proof of Theorem 1.1 let us introduce new functions F̃ and G̃
which are obtained from F and G multiplying by

e(δ/4)|x−y|λ
1/2m

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣x − y
∣∣n−2m, 2m < n,

(
1 +
∣∣log
(∣∣x − y

∣∣λ1/2m
)∣∣)−1, 2m = n,

λ(2m−n)/2m, 2m > n,

(2.35)
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respectively, where δ is as in Corollary 2.4. Then (2.30) (see Lemma 2.6) and estimate (2.29)
formally yield the following estimate (for simplicity let us consider here only the case 2m < n,
the cases 2m ≥ n can be considered similarly)

sup
x,y∈Ω

∣∣∣χ
(
y
)
G̃
(
x, y, λ

)∣∣∣ ≤ sup
x,y∈Ω

∣∣∣F̃
(
x, y, λ

)∣∣∣ + sup
x,y∈Ω

∣∣∣G̃
(
x, y, λ

)∣∣∣

× sup
x,y∈Ω

(∣∣x − y
∣∣n−2m

∫

Ω
|x − u|2m−n∣∣u − y

∣∣1−ne−(δ/4)|u−y|λ
1/2m

du

)
.

(2.36)

Considering two possibilities |x−u| ≤ |u−y| and |x−u| ≥ |u−y| the value in the latter brackets
can be estimated from above by

C

∫

Ω

∣∣u − y
∣∣1−ne−(δ/4)|u−y|λ

1/2m
du ≤ C

λ1/2m
. (2.37)

This estimate allows us to get from (2.36) that

sup
x,y∈Ω

∣∣∣G̃
(
x, y, λ

)∣∣∣ ≤ sup
x,y∈Ω

∣∣∣F̃
(
x, y, λ

)∣∣∣ +
C

λ1/2m
sup
x,y∈Ω

∣∣∣G̃
(
x, y, λ

)∣∣∣. (2.38)

Since

sup
x,y∈Ω

∣∣∣F̃
(
x, y, λ

)∣∣∣ < ∞, (2.39)

then for λ large enough (2.38) yields

sup
x,y∈Ω

∣∣∣G̃
(
x, y, λ

)∣∣∣ < ∞. (2.40)

Thus, Theorem 1.1 is completely proved.

3. Convergence of Fourier Series

Without loss of generality, we assume in this section that AF is positive. Then by the J. von
Neumann spectral theorem forAF +μI, where μ ≥ λ0 with λ0 as in Theorem 1.1, the following
representation holds:

(
AF + μI

)σ =
∫∞

0

(
λ + μ

)σ
dEλ, (3.1)
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where σ is real and {Eλ}∞λ=0 is the spectral resolution corresponding to the self-adjoint
operator AF . The domain of the operator (3.1) is defined by

D
(
Aσ

F

)
=
{
f ∈ L2(Ω) :

∫∞

0
λ2σd

(
Eλf, f

)
L2(Ω) < ∞

}
. (3.2)

In our case (in the case of pure discrete spectrum), the spectral projector Eλ has the form

Eλf(x) =
∑

λk<λ

fkuk(x), (3.3)

where fk = (f, uk)L2(Ω) are the Fourier coefficients of f with respect to the system {uk(x)}∞k=1.
Hence relations (3.1) and (3.2) become

Aσ
Ff(x) =

∞∑

k=1

λσkfkuk(x), (3.4)

D
(
Aσ

F

)
=

{
f ∈ L2(Ω) :

∞∑

k=1

λ2σk
∣∣fk
∣∣2 < ∞

}
. (3.5)

In addition, we need a special representation of the negative fractional powers of AF . If we
assume that 0 < τ < 1 then using well-known properties of Euler beta-function, one can
obtain

(
AF + μI

)−τ =
sin τπ

π

∫∞

0
t−τ Ĝ

(
μ + t

)
dt, (3.6)

where Ĝ(μ + t) is the integral operator with kernel G(x, y, μ + t) from Section 2. This
representation shows that operator (3.6) is also integral with kernel denoted by Gτ(x, y, μ).
Using Theorem 1.1 of present work and well-known technique (see, e.g., [6]) it is not so
difficult to prove the following estimates

∣∣Gτ

(
x, y, μ

)∣∣ ≤ Ce−(δ/2)|x−y|μ
1/2m

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣x − y
∣∣2mτ−n

, 2mτ < n,

1 +
∣∣log
∣∣x − y

∣∣∣∣, 2mτ = n,

1, 2mτ > n,

(3.7)

where x, y ∈ Ω, δ is as in Theorem 1.1 and the constant C > 0 depends on Ω.
The following main lemma holds.

Lemma 3.1. For any function f ∈ L2(Ω) and for σ > n/4m

∥∥∥
(
AF + μI

)−σ
f
∥∥∥
L∞(Ω)

≤ Cμn/4m−σ∥∥f
∥∥
L2(Ω), (3.8)

where μ ≥ λ0 with λ0 as in Theorem 1.1.
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Proof. For any σ > n/4m, we write

σ = τ1 + τ + · · · + τm, 0 < τj < 1, j = 1, 2, . . . , m (3.9)

and represent the operator (AF + μI)−σ as the product

(
AF + μI

)−σ =
(
AF + μI

)−τ1 · (AF + μI
)−τ2 · . . . · (AF + μI

)−τm . (3.10)

Then, by applying the estimates (3.7) and Lemma 1 in [3], we arrive at (3.8). This completes
the proof.

Corollary 3.2. Assume that σ > n/4m. There is a constant C > 0 depending only on Ω, such that
the estimate

∞∑

k=1

|uk(x)|2
(
λk + μ

)2σ ≤ Cμn/2m−2σ (3.11)

holds uniformly in x ∈ Ω and μ ≥ λ0.

Proof. By the spectral theorem and relation (3.4), we can rewrite inequality (3.8) in the form

∣∣∣∣∣

∞∑

k=1

(
λk + μ

)−σ
fkuk(x)

∣∣∣∣∣ ≤ Cμn/4m−σ
( ∞∑

k=1

∣∣fk
∣∣2
)1/2

, (3.12)

where fk are the Fourier coefficients of f with respect to the system {uk(x)}∞k=1. Now
inequality (3.11) follows by duality. The proof is complete.

Remark 3.3. The inequality (3.11) has an independent interest since it gives the ”bundle”
estimate of the eigenfunctions in the form

∑

λ≤λk<2λ
|uk(x)|2 ≤ Cλn/2m (3.13)

which holds uniformly in x ∈ Ω and λ large enough. Indeed, from (3.12)we have

∑

2λ≤λk+μ<3λ

|uk(x)|2
(
λk + μ

)2σ ≤ Cμ(n/2m)−2σ (3.14)

uniformly in x ∈ Ω. If we chose now μ = λ ≥ λ0 then one can immediately obtain (3.13).

Now we are ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Using the representation (3.4), the inequality (3.11), and the Cauchy-
Schwarz-Bunyakovsk 2 inequality, we obtain

∞∑

k=1

∣∣fkuk(x)
∣∣ ≤
( ∞∑

k=1

∣∣fk
∣∣2(λk + μ

)2σ
)1/2( ∞∑

k=1

|uk(x)|2
(
λk + μ

)−2σ
)1/2

≤ Cμn/4m−σ
( ∞∑

k=1

|uk(x)|2
(
λk + μ

)2σ
)1/2

≤ C

( ∞∑

k=1

∣∣fk
∣∣2λ2σk

)1/2
(3.15)

uniformly in x ∈ Ω and for any fixed μ ≥ λ0. Now the desired assertion follows from (3.5).
Theorem 1.2 is completely proved.

The estimate (3.13) allows us to obtain a bit more precise result than in Theorem 1.2.
Namely, the following corollary holds.

Corollary 3.4. Assume that the function f satisfies the condition

∞∑

l=0

⎛

⎝
∑

2l≤λk<2l+1

∣∣fk
∣∣2λn/2mk

⎞

⎠
1/2

< ∞, (3.16)

where fk = (f, uk)L2(Ω) are the Fourier coefficients of f with respect to the system {uk(x)}∞k=1, then
the Fourier series (1.12) converges absolutely and uniformly on Ω.

Let us assume now that the potential q(x) satisfies the conditions

q(x) ∈ L2(Ω), 4m > n,

q(x) ∈ Lp(Ω), p > 2, 4m = n,

q(x) ∈ Ln/2m(Ω), 4m < n,

(3.17)

then it is not so difficult to see that for the case 4m ≥ n conditions (3.17) imply the condition
(1.4). For the case 4m < n this condition (3.17) for q must be considered in addition to the
condition (1.4). The following result is valid.

Theorem 3.5. Suppose that the potential q(x) satisfies conditions (3.17), then for any function f ∈
◦
W

2m

2 (Ω),

lim
λ→+∞

∥∥f − Eλf
∥∥
W2m

2 (Ω) = 0, (3.18)

where Eλ isgiven by (3.3).
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Proof. Using the Sobolev embedding theoremwe easily conclude that conditions (3.17) imply
the following inclusion:

◦
W

2m

2 (Ω) ⊂ D(AF). (3.19)

And for any f(x) ∈
◦
W

2m

2 (Ω) the following inequality holds:

∥∥AFf
∥∥
L2(Ω) ≤ C

∥∥f
∥∥
W2m

2 (Ω). (3.20)

Moreover, we may assert that the operator AF + μI is invertible for μ large enough. Indeed,
since the function

h(x) :=
(
(A0)F + μI + q(x)

)
f(x), f(x) ∈

◦
W

2m

2 (Ω), (3.21)

belongs to L2(Ω), we have the representation for f(x)

f(x) = −((A0)F + μI
)−1(

qf
)
(x) + (

(
A0)F + μI

)−1(h)(x), (3.22)

where (A0)F+μI denotes the Friedrichs self-adjoint extension forA0+μI in L2(Ω). Using again
the Sobolev embedding theorem and conditions (3.17) we may conclude that the functions
h and qf belong to L2(Ω). The results of [6] yield that the operator (A0)F + μI is invertible
with small norm for its inverse operator (if μ is large enough). This fact and the latter equality
imply that for μ large enough the operatorAF +μI is also invertible and for any h(x) ∈ L2(Ω)
we have the following inequality:

∥∥∥
(
AF + μI

)−1
h
∥∥∥
W2m

2 (Ω)
≤ C‖h‖L2(Ω). (3.23)

Now let f(x) ∈
◦
W

2m

2 (Ω). Then (3.23) implies

∥∥f − Eλf
∥∥
W2m

2 (Ω) =
∥∥∥(AF + μI)−1((AF + μI)f − Eλ(AF + μI)f)

∥∥∥
W2m

2 (Ω)

≤ C‖h − Eλh‖L2(Ω) −→ 0, λ −→ +∞,

(3.24)

where h(x) = (AF + μI)f(x) belongs to L2(Ω) and the convergence to zero in the last term
follows from the J. von Neumann spectral theorem. The proof is complete.

The Sobolev embedding theorem gives the immediate corollary.
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Corollary 3.6. Let 4m > n. Then for any f(x) ∈
◦
W

s

2(Ω) with s > n/2

lim
λ→+∞

Eλf(x) = f(x) (3.25)

holds uniformly in x ∈ Ω.

The next theorem gives us some sufficient conditions which provide the absolute
and uniform convergence of Fourier series (1.12) in the classical Besov and Sobolev spaces.
Following [2], we use the symbol B̃s

2,p(Ω) = {f : f ∈ Bs
2,p(R

n), supp f ⊂ Ω}.

Theorem 3.7. Assume that the potential q(x) belongs to Sobolev spaceW2ml
2 (Ω), where l = [n/4m]

is an entire part of n/4m, then for any function f from Besov space B̃n/2
2,1 (Ω) the Fourier series (1.12)

converges absolutely and uniformly on the domain Ω.

Proof. Using the Sobolev embedding theorem and the following representation:

Al+1
F f(x) =

l+1∑

r=0

Cr,l(A0)rF
(
ql+1−r(x)f(x)

)
, (3.26)

where Cr,l are some constants, we can conclude that the condition for the potential q(x)
implies the following inclusion:

◦
W

2m(l+1)

2 (Ω) ⊂ D
(
Al+1

F

)
. (3.27)

Then using the results of [2] (see Theorem 4.3.2/1) we may conclude that

B̃
2m(l+1)
2,2 (Ω) ⊂

◦
W

2m(l+1)

2 (Ω) ⊂ D
(
A

(l+1)
F

)
. (3.28)

Consequently, by Theorem 4.3.2/2 of [2] and by Peetre’s method of real interpolation (see,
e.g., [2]), we have

B̃n/2
2,1 (Ω) =

(
L2(Ω), B̃2m(l+1)

2,2 (Ω)
)

n/4m(l+1),1
⊂
(
L2(Ω), D

(
A

(l+1)
F

))

n/4m(l+1),1
. (3.29)

But the latter space is the interpolation space Dn/4m,1 of Peetre (see [26]) for the elliptic
differential operator of order 2m. Since estimate (3.13) for the spectral function holds in
our case, we can apply the results of [26] and conclude that the proof of this theorem is
complete.

Remark 3.8. If n is even then the statement of this theorem holds for any function f(x) from

Besov space
◦
B
n/2

2,1 (Ω) due to the equality (see Theorem 4.3.2/1 of [2])

B̃n/2
2,1 (Ω) =

◦
B
n/2

2,1 (Ω). (3.30)
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And the Sobolev embedding theorem for Besov spaces (see, e.g., [2]) implies that this the-

orem also holds for any function f(x) from Sobolev space
◦
W

s

2(Ω) with s > n/2 and arbitrary
integer n.
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