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We will consider a pole assignment problem for a class of linear neutral functional differential
equations in Banach spaces.Wewill think of the neutral system studied as that of involving no time
delays and reduce the study of adjoint semigroups and spectral properties of neutral equations to
those of Cauchy problems. Under the assumption that both the control and eigenspace of pole are
finite dimensional, we establish the rank conditions for finite pole assignability.

1. Introduction

Consider the linear system on some Banach space X

dy(t)
dt

= Ay(t), t ≥ 0, y(0) = x ∈ X, (1.1)

where A is the infinitesimal generator of a C0-semigroup etA, t ≥ 0. A mild solution of (1.1) is
defined as y(t) = etAx ∈ X for any t ≥ 0. The null solution of (1.1) is said to be (exponentially)
stable if, for any initial x ∈ X, the corresponding mild solution, is y(t) → 0 as t → ∞. It may
be shown that the null solution is stable if and only if there exist positive numbers α ≥ 1, μ > 0
such that, for all t ≥ 0, ‖etA‖ ≤ αe−μt. If the null solution of system (1.1) is unstable,then it is
important to consider stabilizability problem of its linear control system

dy(t)
dt

= Ay(t) +Mu(t), t ≥ 0, y(0) = x ∈ X, (1.2)
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whereM is a bounded linear operator from some Banach spaceU of control parameters into
X. The mild solution of (1.2) is well defined for every locally integrable control function u(t),
t ≥ 0, and is given by the form

y(t) = etAx +
∫ t

0
e(t−s)AMu(s)ds, t ≥ 0. (1.3)

System (1.2) is said to be feedback (exponentially) stabilizable if there exists a bounded linear
operator K from X intoU such that the system

dy(t)
dt

= (A +MK)y(t), t ≥ 0, y(0) = x ∈ X, (1.4)

is exponentially stable.
Stability and feedback stabilization problems of the above systems and relevant

nonlinear extensions, which play an important role in control theory and related topics,
have been studied extensively by many researchers over the last two decades. The reader
is referred to, for instance, the monograph of Luo et al.in [1] for a comprehensive statement
about this topic and its applications.

If we incorporate extra structure intoA, the stability and stabilizability problemwould
become complicated. One of the most important situations is to perturb A appropriately
by a time-delay term so as that a strongly continuous family of bounded linear operators
G(t) satisfying proper quasisemigroup properties completely describes the dynamics of the
system studied. This idea therefore leads to the consideration of a class of linear time-delay
systems

dy(t)
dt

= Ay(t) +
∫0

−r
dη(θ)y(θ + t), t ≥ 0,

(1.5)

where r > 0, A generates a C0-semigroup etA, t ≥ 0, and η is the Stieltjes measures given by

η(τ) = −
m∑
i=1

χ(−∞,−ri](τ)Ai −
∫0

τ

A0(θ)dθ, τ ∈ [−r, 0]. (1.6)

Here Ai, i = 1, . . . , m, and A0(θ), θ ∈ [−r, 0], are properly defined linear, bounded operators
from X into X (cf., Wu [2]).

To our knowledge, very little paper has been done on feedback stabilization of
infinite-dimensional control systems with memory. The only papers in this area are those
by Yamamoto [3], Nakagiri and Yamamoto [4], Da Prato and Lunardi [5], and Jeong [6],
all of which are devoted to retarded systems. In [4], the rank condition for exponential
stabilizability in terms of eigenvectors and controllers was established.
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In the present paper, we will study the finite pole assignability problem for a class of
neutral linear control system

d

dt

[
y(t) −

∫0

−r
dζ(θ)y(θ + t)

]
= Ay(t) +

∫0

−r
dη(θ)y(θ + t) +Mu(t), t ≥ 0,

y(0) = φ0, y0(·) = φ1(·),
(1.7)

where φ = (φ0, φ1) is some initial datum to be identified later. Generally speaking, for
neutral systems as above it is quite difficult to study stabilizability problem and there are
few satisfactory results in this respect. The reason is that, as pointed out in the study by
Salamon in [7], it is generally required a memory feedback involving derivative terms for
the purposes of stabilization of (1.7) even in finite-dimensional cases. Thus we shall study in
this work a weaker concept, finite pole assignability, for (1.7) by means of state feedback law
which does not necessarily contain derivative terms. To this end, the whole paper is divided
into five sections. After reviewing some useful notions and notations, we will establish in
Section 2 a semigroup theory which enables us to reduce the neutral systems (1.7) to a class
of control systems involving no delays in an appropriate infinite-dimensional space. In order
to formulate systems (1.7) in the L2 product space setting, we restrict ourselves to the case
that the neutral delay term on the left-hand side of (1.7) does not involve discrete delays.
The associated semigroup is well defined by a solution state (y(t), yt), where yt denotes a
t-segment of solutions, a situation which is different from that in-Burns et al. in [8]. The
infinitesimal generator of this semigroup is explicitly described and its relationship with
neutral resolvent operators is explored. In Section 3, we will establish an adjoint theory
which will play an important role in the study of the usual controllability and stabilizability.
Sections 4 and 5 are devoted to the investigation of spectral properties and pole assignability,
respectively. Under suitable conditions such as the finite dimensionality of spectral modes,
we will establish useful criteria of finite pole assignability.

The real and complex number vector spaces are denoted by R
n and C

n, n ≥ 1,
respectively. Also, R+ denotes the set of all nonnegative numbers. For any λ ∈ C

1, the symbols
Reλ and Imλ denote the real and imaginary parts of complex number λ, respectively. Let X
andU be complex, separable Banach spaces and X∗,U∗ their adjoint spaces with norms ‖ · ‖X
and ‖ · ‖U and the dual pairings 〈·, ·〉X,X∗ and 〈·, ·〉U,U∗ , respectively. We use L(U,X) to denote
the space consisting of all bounded linear operators T from U into X with domain U. When
X = U, L(X,X) is denoted by L(X). Each operator norm is simply denoted by ‖ · ‖ when
there is no danger of confusion. For any operator T , we employD(T) to denote the domain of
T , and the symbols Ker T and Im T will be used to denote the kernel and image of operator
T , respectively. For any fixed constant r > 0, we denote by L2

r = L2([−r, 0];X) the space of
all X-valued equivalence classes of measurable functions which are squarely integrable on
[−r, 0]. Let X denote the Banach space X × L2

r with the norm

‖φ‖X =
√
‖φ0‖2X + ‖φ1‖2L2

r
, ∀φ =

(
φ0, φ1

) ∈ X. (1.8)

Let W1,2([−r, 0];X) denote the Sobolev space of X-valued functions x(t) on [−r, 0] such that
x(t) and its distributional derivative belong to L2([−r, 0];X).
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2. Neutral Control Systems

Consider the following neutral linear functional differential equation on the Banach space X:

d

dt

[
y(t) −

∫0

−r
dζ(θ)y(θ + t)

]
= Ay(t) +

∫0

−r
dη(θ)y(θ + t), t ≥ 0,

y(0) = φ0, y0(·) = φ1(·), φ =
(
φ0, φ1

) ∈ X,
(2.1)

whereA generates aC0-semigroup etA, t ≥ 0, y0(θ) = y(θ), θ ∈ [−r, 0], and η, ζ are the Stieltjes
measures given by

η(τ) = −
m∑
i=1

χ(−∞,−ri](τ)Ai −
∫0

τ

A0(θ)dθ, τ ∈ [−r, 0],

ζ(τ) = −
∫0

τ

B0(θ)dθ, τ ∈ [−r, 0].
(2.2)

Here 0 < r1 < r2 < · · · < rm ≤ r, Ai ∈ L(X), i = 1, . . . , m, A0(·) ∈ L2([−r, 0];L(X)), and
B0(·) ∈ L2([−r, 0];L(X)). Unless otherwise specified, we always use

∫0
−r dη(θ)y(t + θ) : y ∈

L2([−r, T];X) → X, T ≥ 0, to denote the bounded, linear extension of the mapping

∫0

−r
dη(θ)y(t + θ) =

m∑
i=1

Aiy(t − ri) +
∫0

−r
A0(θ)y(t + θ)dθ, y ∈ C([−r, T];X), (2.3)

for any t ≥ 0, and the same remark applies to
∫0
−r dζ(θ)y(t+ θ) : y ∈ L2([−r, T];X) → X in an

obvious way.
We also wish to consider the hereditary neutral controlled system of (2.1) on X:

d

dt

[
y(t) −

∫0

−r
dζ(θ)y(θ + t)

]
= Ay(t) +

∫0

−r
dη(θ)y(θ + t) +Mu(t), t ≥ 0,

y(0) = φ0, y0(·) = φ1(·), φ =
(
φ0, φ1

) ∈ X, u ∈ L2([0,∞);U),

(2.4)

whereM ∈ L(U,X). A mild solution y(t, φ, u) of (2.4) is defined as the unique solution of the
following integral equation on the Banach space X,

y
(
t, φ, u

)
=

∫0

−r
dζ(θ)y

(
t + θ, φ, u

)
+ etA

[
φ0 −

∫0

−r
dζ(θ)φ1(θ)

]

+
∫ t

0
e(t−s)A

[∫0

−r
dη(θ)y

(
s + θ, φ, u

)
+
∫0

−r
Adζ(θ)y

(
s + θ, φ, u

)]
ds

+
∫ t

0
e(t−s)AMu(s)ds, ∀t > 0,

(2.5)

with y(0, φ, u) = φ0, y0(·, φ, u) = φ1(·), and φ = (φ0, φ1) ∈ X.
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To ensure the uniqueness and existence of mild solutions, we further assume that, for
each i, i = 1, . . . , m, and θ ∈ [−r, 0], Im(B0(θ)) ⊂ D(A) such that AB0(·) ∈ L2([−r, 0];L(X)).
Under these conditions, it has been shown in the study by Liu in [9] that there exists a unique
mild solution y(t, φ, u) for (2.4) with y(0, φ, u) = φ0 and y0(·, φ, u) = φ1(·).

Note that, for any φ ∈ X, the mild solution y(t, φ) is continuous for t > 0. To see this, it
suffices to notice that, for any s, t > 0,

∥∥∥∥∥
∫0

−r
dζ(θ)y(θ + s, φ)dθ −

∫0

−r
dζ(θ)y(θ + t, φ)dθ

∥∥∥∥∥
x

≤ ‖B0‖L2([−r,0];L(X))‖ys(·) − yt(·)‖L2([−r,0];X).

(2.6)

We define a mapping S(t) on X, t ≥ 0, by

S(t)φ =
(
y
(
t, φ

)
, yt

(·, φ)), t ≥ 0, (2.7)

where yt(·, φ) = y(t + ·, φ) for any t ≥ 0. It turns out that S(t), t ≥ 0, is a strongly continuous
semigroup onX.

Proposition 2.1. For any t ≥ s ≥ 0 and φ ∈ X, the following relation holds:

S(t − s)(y(s, φ), ys(·, φ)) =
(
y
(
t, φ

)
, yt

(·, φ)). (2.8)

That is,

S(t − s)S(s)φ = S(t)φ. (2.9)

Moreover, S(t) is a C0-semigroup of bounded linear operators on X.

Proof. The linearity of S(t) is obvious. Strong continuity of S(t) on X follows from the fact
that y(t, φ) → φ0 in X as t → 0+ by virtue of (2.5) and (2.6), and on the other hand, it is easy
to see that yt(·, φ) → φ1 in L2([−r, 0];X) as t → 0+. In order to show the semigroup property
(2.8), let t ≥ s and

Φ(s) = S(s)φ =
(
y
(
s, φ

)
, ys

(·, φ)) ∈ X. (2.10)
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Then from (2.5), it is easy to verify that

y(t − s,Φ(s)) −
∫0

−r
dζ(θ)y(t − s + θ,Φ(s))

= e(t−s)A
(
y
(
s, φ

) −
∫0

−r
dζ(θ)y

(
θ + s, φ

))

+
∫ t

s

e(t−u)A
[∫0

−r
dη(θ)y(u − s + θ,Φ(s)) +

∫0

−r
Adζ(θ)y(u − s + θ,Φ(s))

]
du

= e(t−s)A
[
esA

(
φ0 −

∫0

−r
dζ(θ)φ1(θ)

)

+
∫s

0
e(s−u)A

[∫0

−r
dη(θ)y

(
u + θ, φ

)
+
∫0

−r
Adζ(θ)y

(
u + θ, φ

)]
du

+
∫ t

s

e(t−u)A
[∫0

−r
dη(θ)y(u − s + θ,Φ(s)) +

∫0

−r
Adζ(θ)y(u − s + θ,Φ(s))

]]
du

= etA
(
φ0 −

∫0

−r
dζ(θ)φ1(θ)

)
+
∫s

0
e(t−u)A

[∫0

−r
dη(θ)y

(
u + θ, φ

)
+
∫0

−r
Adζ(θ)y

(
u + θ, φ

)]
du

+
∫ t

s

e(t−u)A
[∫0

−r
dη(θ)y(u − s + θ,Φ(s)) +

∫0

−r
Adζ(θ)y(u − s + θ,Φ(s))

]
du.

(2.11)

On the other hand, we have for t ≥ s that

y
(
t, φ

) −
∫0

−r
dζ(θ)y

(
t + θ, φ

)

= etA
(
φ0 −

∫0

−r
dζ(θ)φ1(θ)

)

+
∫s

0
e(t−u)A

[∫0

−r
dη(θ)y

(
u + θ, φ

)
+
∫0

−r
Adζ(θ)y

(
u + θ, φ

)]
du

+
∫ t

s

e(t−u)A
[∫0

−r
dη(θ)y

(
u + θ, φ

)
+
∫0

−r
Adζ(θ)y

(
u + θ, φ

)]
du.

(2.12)

Thus, by the uniqueness of solutions of (2.5)withM = 0, it implies that

y(t − s,Φ(s)) = y
(
t, φ

)
, for almost all t ≥ s. (2.13)

Hence, [S(t − s)S(s)φ]0 = [S(t)φ]0 for all t ≥ s, and so [S(t − s)S(s)φ]1 = [S(t)φ]1 in
L2
r([−r, 0];X). The semigroup property (2.8) is thus proved and the proof is complete.
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Let A be the infinitesimal generator of S(t) and denote S(t) simply by etA. The next
theorem explicitly describes the operator A.

Theorem 2.2. The infinitesimal generatorA of etA is described by

D(A) =
{
φ =

(
φ0, φ1

) ∈ X : φ1 ∈W1,2([−r, 0];X), φ0 = φ1(0) ∈ D(A)
}
,

Aφ =

(
Aφ0 +

∫0

−r
dζ(θ)φ′

1(θ) +
∫0

−r
dη(θ)φ1(θ), φ′

1(θ)

)
,

(2.14)

for any φ = (φ0, φ1) ∈ D(A).

Proof. We denote by Ã and D(Ã) the infinitesimal generator of etA and its domain,
respectively. Let φ = (φ0, φ1) ∈ D(Ã) and

Ãφ =
(
ψ0, ψ1

)
. (2.15)

Since the second coordinate of etAφ is the t-shift y(t + ·), it follows immediately that

y(θ) = φ1(θ) ∈W1,2([−r, 0];X), θ ∈ [−r, 0],

[7pt]
d+

dθ
y(θ) = φ′

1(θ) = ψ1(θ), in L2([−r, 0];X), θ ∈ [−r, 0],
(2.16)

where d+/dθ denotes the right-hand derivative. By redefining on the set of measure zero, we
can suppose that y(θ) = φ1(θ) is absolutely continuous from [−r, 0] to X by Theorem 2.2, p.
19, of [10]. Since y(0) = φ0, this implies that φ1(0) = φ0 and y(·) : [−r,∞) → X is strongly
continuous. Then the functions

∫0
−r dη(θ)y(t+θ) and

∫ t
0Adζ(θ)y(t+θ) are strongly continuous

in t ≥ 0 such that

lim
t→ 0+

1
t

∫ t

0
e(t−s)A

∫0

−r
dη(θ)y(s + θ)ds =

∫0

−r
dη(θ)φ1(θ),

lim
t→ 0+

1
t

∫ t

0
e(t−s)A

∫0

−r
Aζ(θ)y(s + θ)ds =

∫0

−r
Adζ(θ)φ1(θ).

(2.17)
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Applying (2.17) to the first coordinate of (2.15), we obtain that

ψ0 = lim
t→ 0+

1
t

(
y
(
t, φ

) − φ0
)

= lim
t→ 0+

1
t

{∫0

−r
dζ(θ)y

(
t + θ, φ

)
+ etA

(
φ0 −

∫0

−r
dζ(θ)φ1(θ)

)

+
∫ t

0
e(t−s)A

[∫0

−r
dη(θ)y

(
s + θ, φ

)
+
∫0

−r
Adζ(θ)y

(
s + θ, φ

)]
ds − φ0

}

= lim
t→ 0+

1
t

{[∫0

−r
dζ(θ)y

(
t + θ, φ

) −
∫0

−r
dζ(θ)φ1(θ)

]

−
[
etA

∫0

−r
dζ(θ)φ1(θ) −

∫0

−r
dζ(θ)φ1(θ)

]

+
∫ t

0
e(t−s)A

[∫0

−r
dη(θ)y

(
s + θ, φ

)
+
∫0

−r
Adζ(θ)y

(
s + θ, φ

)]
ds +

[
etAφ0 − φ0

]}

=
∫0

−r
dζ(θ)φ′

1(θ) −
∫0

−r
Adζ(θ)φ1(θ) +

∫0

−r
dη(θ)φ1(θ)

+
∫0

−r
Adζ(θ)φ1(θ) + lim

t→ 0+

1
t

[
etAφ0 − φ0

]

=
∫0

−r
dζ(θ)φ′

1(θ) +
∫0

−r
dη(θ)φ1(θ) + lim

t→ 0+

1
t

[
etAφ0 − φ0

]
.

(2.18)

Hence, limt→ 0+t
−1(etAφ0 − φ0) exists in X; that is, φ0 ∈ D(A), and

ψ0 = Aφ0 +
∫0

−r
dζ(θ)φ′

1(θ) +
∫0

−r
dη(θ)φ1(θ), (2.19)

which shows that

D
(
Ã

)
⊂ D(A), Aφ = Ãφ, for φ ∈ D

(
Ã

)
. (2.20)

Next we will show the reverse inclusion. Let φ = (φ0, φ1) ∈ D(A); then it is easy to see
that y(·, φ) ∈ W1,2([−r, T];X) for any T > 0, from which (2.17) follow. Combining this with
φ0 = φ1(0) ∈ D(A),we see that

lim
t→ 0+

1
t

(
y
(
t, φ

) − φ0
)
= Aφ0 +

∫0

−r
dζ(θ)φ′

1(θ) +
∫0

−r
dη(θ)φ1(θ). (2.21)
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Noting that

yt
(
θ, φ

) − φ1(θ)
t

− φ′
1(θ) =

y
(
t + θ, φ

) − y(θ, φ)
t

− y′(θ, φ)

=
(
1
t

)∫ t
0

(
y′(s + θ, φ) − y′(θ, φ))ds (2.22)

for θ ∈ [−r, 0], we obtain by using Hölder inequality that

∥∥∥∥1t (yt(·, φ) − φ1) − φ′
1

∥∥∥∥
2

L2
r

≤ 1
t

∫ t

0

[∫0

−r
‖y′(s + θ, φ) − y′(θ, φ)‖2Xdθ

]
ds. (2.23)

This implies that limt→ 0+t
−1(yt(·, φ) − φ1) exists in L2([−r, 0];X) and equals φ′

1. Therefore, we
prove that D(A) ⊂ D(Ã) and Aφ = Ãφ for φ ∈ D(A), and (2.14) are shown.

For each λ ∈ C
1, define the densely defined, closed linear operator Δ(λ,A, η, ζ) by

Δ
(
λ,A, η, ζ

)
= λI −A −

∫0

−r
eλθdη(θ) −

∫0

−r
λeλθdζ(θ). (2.24)

The neutral resolvent set ρ(A, η, ζ) is defined as the set of all values λ in C
1 for which the

operator Δ(λ,A, η, ζ) has a bounded inverse on X.

Proposition 2.3. For any λ ∈ C
1, the relation

(λI −A)
(
φ1(0), φ1

)
=

(
ψ0, ψ1

) ∈ X, (2.25)

is equivalent to

φ1(θ) = eλθφ1(0) +
∫0

θ

eλ(θ−τ)ψ1(τ)dτ ∈W1,2([−r, 0];X), (2.26)

Δ
(
λ,A, η, ζ

)
φ1(0) = ψ0 +

∫0

−r
dη(θ)

∫0

θ

eλ(θ−τ)ψ1(τ)dτ +
∫0

−r
λ dζ(θ)

∫0

θ

eλ(θ−τ)ψ1(τ)dτ

−
∫0

−r
dζ(θ)ψ1(θ)dθ.

(2.27)

In particular, the resolvent set ρ(A) is equal to ρ(A, η, ζ).
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Proof. Note that the relation (2.25) is equivalent to

ψ0 = λφ1(0) −Aφ1(0) −
∫0

−r
dη(θ)φ1(θ) −

∫0

−r
dζ(θ)φ′

1(θ), (2.28)

ψ1(θ) = λφ1(θ) −
dφ1(θ)
dθ

, θ ∈ [−r, 0]. (2.29)

The variation of constants formula for the ordinary differential equation (2.29) on [−r, 0]
shows that

φ1(θ) = eλθφ1(0) +
∫0

θ

eλ(θ−τ)ψ1(τ)dτ ∈W1,2([−r, 0];X). (2.30)

In order to show (2.27), note that, from (2.28), we have

(λI −A)φ1(0) = ψ0 +
∫0

−r
dζ(θ)φ′

1(θ) +
∫0

−r
dη(θ)φ1(θ). (2.31)

Substituting (2.30) into (2.31) immediately yields the desired (2.27). The equality of resolvent
sets ρ(A) and ρ(A, η, ζ) is easily seen according to the equivalence of (2.25) and (2.26), (2.27).
The proof is now complete.

3. Adjoint Systems

In the remainder of this work, unless otherwise specified, we always assume that X is
reflexive. As indicated in the study by Hale in [11], the adjoint theory of neutral linear
functional differential equations in C([−r, 0];X) is quite complicated. However, for the
control equation (2.4), it is possible to construct an elementary adjoint theory for S(t).

Let ψ∗ = (ψ∗
0 , ψ

∗
1) ∈ X∗ and define a “formal” transposed neutral system of (2.1) on X∗

by

d

dt

[
y(t) −

∫0

−r
dζ∗(θ)y(t + θ)

]
= A∗y(t) +

∫0

−r
dη∗(θ)y(t + θ), t > 0,

y(0) = ψ∗
0 , y0(t) = ψ∗

1(t), t ∈ [−r, 0),
(3.1)

where η∗(θ), ζ∗(θ) and A∗ denote the adjoint operators of η(θ), ζ(θ), and A, respectively. It is
well known that A∗ generates a C0-semigroup S∗(t) on X∗ which is the adjoint of S(t), t ≥ 0.
For any λ ∈ C

1, define

Δ
(
λ,A∗, η∗, ζ∗

)
= λI −A∗ −

∫0

−r
eλθdη∗(θ) −

∫0

−r
λeλθdζ∗(θ). (3.2)
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Proposition 3.1. For any λ ∈ C
1, the equation

(
λI −A∗

)(
φ∗
0, φ

∗
1

)
=

(
ψ∗
0 , ψ

∗
1(·)

)
(3.3)

is equivalent to

Δ
(
λ,A∗, η∗, ζ∗

)
φ∗
0 = ψ

∗
0 +

∫0

−r
eλθψ∗

1(θ)dθ, (3.4)

φ∗
1(θ) =

∫θ

−r
eλ(τ−θ)ψ∗

1(τ)dτ − B∗
0(θ)φ

∗
0 +

∫θ

−r
eλ(τ−θ)dη∗(τ)φ∗

0 +
∫θ

−r
λeλ(τ−θ)B∗

0(τ)dτφ
∗
0 (3.5)

almost everywhere for any ψ∗ = (ψ∗
0 , ψ

∗
1) ∈ X∗.

Proof. Note that (λI − A∗)−1 = ((λI − A)−1)∗, so we may calculate the adjoint operator of
(λI −A)−1. In view of (2.26), it is not difficult to see that, for any ψ = (ψ0, ψ1) ∈ X,

〈(
ψ0, ψ1

)
, ((λI −A)−1)∗

(
ψ∗
0 , ψ

∗
1

)〉
X,X∗

=
〈
(λI −A)−1

(
ψ0, ψ1

)
,
(
ψ∗
0 , ψ

∗
1

)〉
X,X∗

=
〈
φ1(0), ψ∗

0
〉
X,X∗ +

∫0

−r

〈
eλθφ1(0) −

∫θ

0
eλ(θ−τ)ψ1(τ)dτ, ψ∗

1(θ)

〉
X,X∗

dθ

=
〈
φ1(0), ψ∗

0
〉
X,X∗ +

∫0

−r

〈
eλθφ1(0), ψ∗

1(θ)
〉
X,X∗

dθ −
∫0

−r

∫θ

0

〈
eλ(θ−τ)ψ1(τ), ψ∗

1(θ)
〉
X,X∗

dτ dθ

=

〈
φ1(0), ψ∗

0 +
∫0

−r
eλθψ∗

1(θ)dθ

〉
X,X∗

+
∫0

−r

∫0

θ

〈
eλ(θ−τ)ψ1(τ), ψ∗

1(θ)
〉
X,X∗

dτ dθ.

(3.6)

We reformulate the expression in (3.6), starting with the last term:

∫0

−r

∫0

θ

〈
eλ(θ−τ)ψ1(τ), ψ∗

1(θ)
〉
X,X∗

dτ dθ =
∫0

−r

∫ τ

−r

〈
eλ(θ−τ)ψ1(τ), ψ∗

1(θ)
〉
X,X∗

dθ dτ

=
∫0

−r

〈
ψ1(τ),

∫ τ

−r
eλ(θ−τ)ψ∗

1(θ)dθ
〉
X,X∗

dτ.

(3.7)
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Letting κ∗ = ψ∗
0 +

∫0
−r e

λθψ∗
1(θ)dθ ∈ X∗ and applying Proposition 2.3 to such a φ = (φ1(0), φ1)

yield that

〈
φ1(0), ψ∗

0 +
∫0

−r
eλθψ∗

1(θ)dθ

〉
X,X∗

=
〈
φ1(0), κ∗

〉
X,X∗

=

〈
Δ
(
λ,A, η, ζ

)−1[
ψ0 −

∫0

−r
B0(θ)ψ1(θ)dθ +

∫0

−r
B0(τ)

∫0

τ

λeλ(τ−θ)ψ1(θ)dθdτ

+
∫0

−r
dη(τ)

∫0

τ

eλ(τ−θ)ψ1(θ)dθ

]
, κ∗

〉
X,X∗

=
〈
ψ0,

(
Δ
(
λ,A, η, ζ

)−1)∗
κ∗

〉
X,X∗

−
∫0

−r

〈
ψ1(θ), B∗

0(θ)
(
Δ
(
λ,A, η, ζ

)−1)∗
κ∗

〉
X,X∗

dθ

+
∫0

−r

〈
ψ1(θ),

∫θ

−r

(
eλ(τ−θ)dη∗(τ) + λeλ(τ−θ)B∗

0(τ)dτ
)(

Δ
(
λ,A, η, ζ

)−1)∗
κ∗

〉
X,X∗

dθ.

(3.8)

If we combine these equalities and use the fact that φ∗
0 = (Δ(λ,A, η, ζ)∗)−1κ∗, then we obtain

〈(
ψ0, ψ1

)
,
(
(λI −A)−1

)∗(
ψ∗
0 , ψ

∗
1

)〉
X,X∗

=
〈
ψ0, φ

∗
0
〉
X,X∗ −

∫0

−r

〈
ψ1(θ), B∗

0(θ)φ
∗
0
〉
X,X∗dθ

+
∫0

−r

〈
ψ1(θ),

∫θ

−r

(
eλ(τ−θ)dη∗(τ) + λeλ(τ−θ)B∗

0(τ)dτ
)
φ∗
0 +

∫θ

−r
eλ(τ−θ)ψ∗

1(τ)dτ

〉
X,X∗

dθ,

(3.9)

and this proves the desired result. The proof is now complete.

The following corollary which characterizes the infinitesimal generator A∗ of the
semigroup S∗(t) on X∗ is a direct result of Proposition 3.1.

Corollary 3.2. The infinitesimal generatorA∗ of S∗(t) is given by

D(A∗) =

{
φ∗ =

(
φ∗
0, φ

∗
1

) ∈ X∗ : φ∗
0 ∈ D(A∗), φ∗

1(θ) =
∫θ

−r
dη∗(τ)φ∗

0 − B∗
0(θ)φ

∗
0 − ϕ∗(θ),

a.e. θ ∈ [−r, 0] where ϕ∗(·) ∈W1,2([−r, 0];X∗)

}
,

(3.10)
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and moreover

A∗φ∗ =

(
A∗φ∗

0 + φ
∗
1(0+) + B

∗
0(0+)φ

∗
0,
d

dθ

[∫θ

−r
dη∗(τ)φ∗

0 − φ∗
1(θ) − B∗

0(θ)φ
∗
0

])
,

φ∗ =
(
φ∗
0, φ

∗
1

) ∈ D(A∗),

(3.11)

where φ∗
1(0+) + B

∗
0(0+)φ

∗
0 is given by the limit limθ→ 0+(φ∗

1(θ) + B
∗
0(θ)φ

∗
0).

Proof. Let λ = 0 in (3.4) and (3.5),then it follows that

(
−A∗ −

∫0

−r
dη∗(θ)

)
φ∗
0 = ψ

∗
0 +

∫0

−r
ψ∗
1(θ)dθ, (3.12)

φ∗
1(θ) =

∫θ
−r ψ

∗
1(τ)dτ − B∗

0(θ)φ
∗
0 +

∫θ
−r dη

∗(τ)φ∗
0, a.e. θ ∈ [−r, 0]. (3.13)

Since the term
∫θ
−r dη

∗(τ)φ∗
0 in (3.13) is left continuous at θ = 0, then the sum φ∗

1(θ)+B
∗
0(θ)φ

∗
0 is

also left continuous at θ = 0. Then we see from (3.13) that the limit limθ→ 0+(φ∗
1(θ) + B

∗
0(θ)φ

∗
0)

exists in X and

φ∗
1(0+) + B

∗
0(0+)φ

∗
0 =

∫0

−r
ψ∗
1(τ)dτ +

∫0

−r
dη∗(τ)φ∗

0. (3.14)

Substituting (3.14) into (3.12) yield

−ψ∗
0 = A∗φ∗

0 + φ
∗
1(0+) + B

∗
0(0+)φ

∗
0, (3.15)

and letting λ = 0 in (3.5) and further taking derivative with respect to θ ∈ [−r, 0] yields

−ψ∗
1(θ) =

d

dθ

[∫θ

−r
dη∗(τ)φ∗

0 − φ∗
1(θ) − B∗

0(θ)φ
∗
0

]
(3.16)

from which the desired results are easily obtained. The proof is now complete.

The adjoint neutral resolvent set ρ(A∗, η∗, ζ∗) is defined similarly as the set of all values λ
in C

1 for which the operator Δ(λ,A∗, η∗, ζ∗) has a bounded inverse on X∗. Then by applying
the adjoint version of Proposition 3.1, we see that ρ(A∗) = ρ(A∗, η∗, ζ∗).

4. Spectral Properties

In this section we investigate the spectral properties of operators A and A∗ by means of
Δ(λ,A, η, ζ) and Δ(λ,A∗, η∗, ζ∗) in preceding sections. In the remainder of this paper, we
denote Δ(λ,A, η, ζ) by Δ(λ). Also recall that the neutral spectrum σ(Δ(λ,A, η, ζ)), or simply
σ(Δ), is defined by σ(Δ) = C

1 \ ρ(A, η, ζ). The spectrum σ(Δ) of Δ(λ,A, η, ζ) can be divided
into three disjoint subsets in the following manner. The continuous spectrum σC(Δ) is the set



14 Abstract and Applied Analysis

of values of λ for which Δ(λ,A, η, ζ) has an unbounded inverse with dense domain in X. The
residual spectrum σR(Δ) is the set of values of λ for which Δ(λ,A, η, ζ) has an inverse whose
domain is not dense in X. The point spectrum σP (Δ) is the set of values of λ for which no
inverse of Δ(λ,A, η, ζ) exists. Define the subset σd(Δ) of σP (Δ) by

σd(Δ) = {λ : λ ∈ σP (Δ) and dim Ker Δ(λ) is finite}. (4.1)

Throughout this paper we suppose that σR(Δ) = ∅ and σd(Δ) is a denumerable nonempty
set. Further we suppose on σd(Δ) that, for each pair λ1, λ2 ∈ σd(Δ), there exists a continuous
rectifiable arcC ⊂ ρ(Δ) joining λ1 and λ2. This condition implies that for any finite set Λ
in σd(Δ) there exists a continuous rectifiable arcCΛ ⊂ ρ(Δ) which surrounds Λ inside and
contains no other points in σ(Δ).

We also denote Δ(λ,A∗, η∗, ζ∗) by Δ∗(λ) and define the spectrum sets σ(Δ∗), σP (Δ∗)
and σd(Δ∗), in a similar way to those for Δ(λ,A, η, ζ). The proposition below shows some
identical relations between the neutral point spectrum of A,A∗ and Δ, Δ∗.

Proposition 4.1. The neutral point spectrum of A (resp., A∗) satisfies that σP (A) = σP (Δ) (resp.,
σP (A∗) = σP (Δ∗)) and σd(A) = σd(Δ) (resp., σd(A∗) = σd(Δ∗)).

Proof. Recall that, by Proposition 2.3, for any λ ∈ C
1 the relation (λI − A)φ = ψ, φ ∈ D(A),

ψ ∈ X is equivalent to the relation Δ(λ)φ1(0) = Gλ(ψ), φ0 = φ1(0) ∈ D(A), where Gλ(ψ) is
given by

Gλ

(
ψ
)
= ψ0 +

∫0

−r
dη(θ)

∫0

θ

eλ(θ−τ)ψ1(τ)dτ

+
∫0

−r
λdζ(θ)

∫0

θ

λeλ(θ−τ)ψ1(τ)dτ −
∫0

−r
dζ(θ)ψ1(θ)dθ,

φ1(θ) = eλθφ1(0) +
∫0

θ

eλ(θ−τ)ψ1(τ)dτ, θ ∈ [−r, 0]

(4.2)

If we substitute ψ = 0 in the above equalities, we have that Ker(λI − A) = {0} is equivalent
to KerΔ(λ) = {0}, and hence Ker(λI − A)�= {0} if and only if KerΔ(λ)�= {0}. This concludes,
by definition, σP (A) = σP (Δ). It is easy to see that φ = (φ(0), φ) ∈ Ker(λI − A) if and only if
φ(0) ∈ KerΔ(λ) and φ(θ) = eλθφ1(0). By this equivalence it is easily seen that dim KerΔ(λ) =
dim Ker(λI − A). This shows σd(A) = σd(Δ). The other equalities σP (A∗) = σP (Δ∗) and
σd(A∗) = σd(Δ∗) can be proved similarly.

In what follows we omit the symbol I for the identity operator; for example, λ − A
denotes λI − A. For each isolated point λ ∈ σ(A), the spectral projection Pλ and the
quasinilpotent operator Qλ are defined, respectively, by

Pλ =
1

2πi

∫
γλ

(z −A)−1dz, Qλ =
1

2πi

∫
γλ

(z − λ)(z −A)−1dz, (4.3)
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where γλ is a small circle with center λ such that its interior and γλ contain no points of σ(A).
Let Nλ = PλX be the generalized eigenspace corresponding to the eigenvalue λ of A. It is
obvious that

Q
j

λ
=

1
2πi

∫
γλ

(z − λ)j(z −A)−1dz, j = 1, 2, . . .· (4.4)

Further, if λ is a pole of (z −A)−1 of order kλ, then we have

Qkλ
λ

= O, ImQλ ⊂ Nλ, (4.5)

Ker(λ −A) = Nλ ∩ KerQλ, (4.6)

where O is the null operator, and the direct sum decompositions of X

Nλ = Ker (λ −A)kλ , X = Nλ ⊕ Im (λ −A)kλ (4.7)

hold (cf. Chapter 3 in Kato [12], Chapter 8 in Tanabe [13]). The relations (4.3)–(4.7) hold for
A∗ and each isolated λ ∈ σ(A∗). In view of Proposition 2.3, we see that

Ker(λ −A) =
{(
φ0, e

λ·φ0

)
: Δ(λ)φ0 = 0

}
. (4.8)

Note that λ is a pole and each Ker(λ − A) and Nλ are finite dimensional if λ ∈ σd(Δ).
Let Λ ⊂ σd(A) be a finite set of isolated spectrum. Suppose that there exists a rectifiable
Jordan curve γΛ which surrounds Λ and separates Λ and C

1 \Λ. We define the projection PΛ
on Λ by

PΛ =
1

2πi

∫
γΛ

(z −A)−1dz. (4.9)

Then the following decomposition of X holds:

X = NΛ ⊕ RΛ, (4.10)

where

NΛ = PΛX, RΛ = (I − PΛ)X, (4.11)

and I is the identity operator on X.
Now we introduce the bounded operator Fλ : X∗ → L2([−r, 0];X∗) defined by

[
Fλφ

∗
0
]
(θ) =

[
−B∗

0(θ) +
∫θ

−r
eλ(τ−θ)dη∗(τ) +

∫θ

−r
λeλ(τ−θ)B∗

0(τ)dτ

]
φ∗
0, a.e. θ ∈ [−r, 0]

(4.12)
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for any λ ∈ C
1. Then by applying the adjoint version of Proposition 3.1, we have

Ker
(
λ −A∗

)
=

{(
φ∗
0, Fλφ

∗
0
)
: Δ∗

(
λ
)
φ∗
0 = 0

}
, (4.13)

where Δ∗(λ) = Δ(λ,A∗, η∗, ζ∗) and, if λ ∈ σd(A∗) = σd(Δ∗), then

dim Ker
(
λ −A∗

)
= dim KerΔ∗

(
λ
)
< ∞. (4.14)

Let λ ∈ σ(A) be an isolated point. Then, by Kato [12], λ ∈ σ(A∗) is also isolated and the
eigenspace Ker(λ − A∗) and the generalized eigenspace N∗

λ
= (Pλ)

∗X∗ = P ∗
λ
X∗ are well

defined, and

dim Ker(λ −A) = dim Ker
(
λ −A∗

)
≤ ∞, dim Nλ = dim N∗

λ
≤ ∞, (4.15)

where P ∗
λ
is the projection

P ∗
λ
=

1
2πi

∫
γ∨
λ

(z −A∗)−1dz (4.16)

and γ∨
λ
is the mirror image of γλ in (4.3). Hence, we have the following result.

Proposition 4.2. For each λ ∈ σd(Δ), one has λ ∈ σd(Δ∗) = σd(A∗) and

Ker
(
λ −A∗

)
=

{(
φ∗
0, Fλφ

∗
0

)
: φ∗

0 ∈ KerΔ∗
(
λ
)}
,

dim Ker
(
λ −A∗

)
= dim KerΔ∗

(
λ
)
< ∞,

dim N∗
λ

= dim Nλ < ∞.

(4.17)

5. Pole Assignment

In general, for system (2.1) we have no ideas whether or not the associated generator A in
Theorem 2.2 satisfies the spectral determined growth condition

sup{Re λ : λ ∈ σ(A)} = lim
t→∞

ln

∥∥etA∥∥
t

. (5.1)

Consequently, it is difficult for standard results, for example, those established by Hale [11],
to be applied to the mild solution y(·, φ) of (2.1). Instead of considering the stability and
stabilizability problem for the control system (2.4), we will study in this section the finite
pole assignment problem for (2.4) on the product space X.

We are concerned about the finite pole assignment problem of the control system (2.4):
under what conditions onM can we construct a feedback law such that any finite set in σd(Δ)
is shifted to any preassigned set in the complex plane?
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To this end, first note that, by means of A, we can reformulate system (2.4) into the
space X as a control system without delay:

dY (t)
dt

= AY (t) +Mu(t), t ≥ 0, Y (0) = φ =
(
φ0, φ1

) ∈ X, u ∈ L2([0,∞);U),
(5.2)

where M : U → X is defined byMu = (Mu, 0), u ∈ U.

Definition 5.1. Let Λ0 = {λ1, . . . , λl} ⊂ σd(Δ) and Λ1 = {μ1, . . . , μl} be finite sets in the complex
plane. The control system (5.2) is said to be pole assignablewith respect to (Λ0,Λ1) if and only
if there exists a bounded linear operator K ∈ L(X, U) such that

σ(A +MK) = (σ(A) \Λ0) ∪Λ1. (5.3)

We remark that the operator K has the form

Kφ = K0φ0 +
∫0

−r
K1(θ)φ1(θ)dθ, φ =

(
φ0, φ1

) ∈ X, (5.4)

where K0 ∈ L(X,U) and K1 ∈ L2([−r, 0];L(X,U)).
We will show three results which are important in the subsequent finite pole

assignability.

Proposition 5.2. For arbitrary λ ∈ C
1, the following relations are equivalent:

(i) Im(λ −A) + ImM = X;

(ii) ImΔ(λ) + ImM = X.

Proof. Relation (i) holds if and only if, for any ψ ∈ X, there exist φ = (φ0, φ1) ∈ D(A) with
φ0 = φ1(0) ∈ D(A) and u ∈ U such that

(λ −A)φ +Mu = ψ. (5.5)

This is equivalent, in view of Proposition 2.3, to

λφ1(0) −Aφ1(0) −
∫0
−r dζ(θ)φ

′
1(θ) −

∫0
−r dη(θ)φ1(θ) +Mu = ψ0, φ1(0) ∈ D(A), (5.6)

λφ1(θ) − d

dθ
φ1(θ) = ψ1(θ), θ ∈ [−r, 0]. (5.7)
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We solve the differential equation (5.7) to obtain

φ1(θ) = eλθφ1(0) +
∫0

θ

eλ(θ−τ)ψ1(τ)dτ, θ ∈ [−r, 0]. (5.8)

Substituting (5.8) into (5.6) and using Fubini’s theorem, we have

Δ(λ)φ1(0) +Mu = ψ0 +
∫0

−r
dη(θ)

∫0

θ

eλ(θ−τ)ψ1(τ)dτ +
∫0

−r
dζ(θ)ψ1(θ)

+
∫0

−r
dζ(θ)

∫0

θ

λeλ(θ−τ)ψ1(τ)dτ, φ1(0) ∈ D(A).

(5.9)

Also, condition (ii) holds if and only if, for any ϕ0 ∈ X, there exist κ0 ∈ D(A) and u ∈ U such
that

Δ(λ)κ0 +Mu = ϕ0. (5.10)

Assume that (i) holds and let ϕ0 ∈ X be an arbitrarily given vector. If we put ψ = (ψ0, ψ1) =
(ϕ0, 0) ∈ X, then by virtue of (5.9) there exist φ = (φ1(0), φ1) ∈ D(A) and u ∈ U such that

Δ(λ)φ1(0) +Mu = ϕ0, φ =
(
φ1(0), eλ·φ1(0)

)
. (5.11)

By setting κ0 = φ1(0), we have (5.10) so that (ii) is valid. Next, we will show the implication
(ii)⇒ (i). To this end, assume that (ii) is valid and let ψ = (ψ0, ψ1) ∈ X. If we put

ϕ0 = ψ0 +
∫0

−r
dη(θ)

∫0

θ

eλ(θ−τ)ψ1(τ)dτ +
∫0

−r
dζ(θ)

∫0

θ

λeλ(θ−τ)ψ1(τ)dτ +
∫0

−r
dζ(θ)ψ1(θ),

(5.12)

then by virtue of (5.10) we have

Δ(λ)κ0 +Mu = ϕ0 (5.13)

for some κ0 ∈ D(A) and u ∈ U. For such a vector κ0, we define φ1(θ) by

φ1(θ) = eλθκ0 +
∫0

θ

eλ(θ−τ)ψ1(τ)dτ, θ ∈ [−r, 0]. (5.14)

Then the function φ1(θ) satisfies φ1(0) = κ0 ∈ D(A), φ = (φ1(0), φ1(·)) ∈ D(A) satisfies (5.6)
and (5.7), and relation (i) is therefore proved to be valid.
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Proposition 5.3. For λ ∈ C
1, the following relations are equivalent:

(i) Ker(λ −A∗) ∩ KerM∗ = {0};
(ii) KerΔ∗(λ) ∩ KerM∗ = {0};
(iii) Im(λ −A) + Im M = X, that is, Im(λ −A) + ImM is dense inX
(iv) ImΔ(λ) + ImM = X, that is, ImΔ(λ) + ImM is dense in X.

Proof. We first show the equivalence of (i) and (ii). By the very definitions of adjoint operators
and operator M, we have that, for any φ∗ = (φ∗

0, φ
∗
1) ∈ X∗ and u ∈ U,

〈u,M∗φ∗
0〉U,U∗ = 〈Mu,φ∗

0〉X,X∗ ,

〈u,M∗φ∗〉U,U∗ = 〈Mu, φ∗〉X,X∗ = 〈(Mu, 0),
(
φ∗
0, φ

∗
1

)〉X,X∗ = 〈Mu,φ∗
0〉X,X∗ .

(5.15)

Thus, the condition φ∗ ∈ KerM∗ is equivalent to the condition φ∗
0 ∈ KerM∗. Now assume

that (i) holds and let φ∗
0 ∈ KerΔ∗(λ) ∩ KerM∗. If we set

φ∗ =
(
φ∗
0, φ

∗
1

)
=

(
φ∗
0,−B∗

0(·) +
∫ ·

−r
eλ(θ−·)dη∗(θ)φ∗

0 +
∫ ·

−r
λeλ(θ−·)B∗

0(θ)dθφ
∗
0

)
∈ X∗, (5.16)

then, by virtue of Proposition 3.1, we have φ∗ ∈ Ker(λ − A∗) ∩ KerM∗, so that, by (i), φ∗ =
(φ∗

0, φ
∗
1) = 0 and thus φ∗

0 = 0. This proves the implication (i) ⇒ (ii). To show the converse
implication, suppose that (ii) is true and let φ∗ = (φ∗

0, φ
∗
1) ∈ Ker(λ − A∗) ∩ KerM∗. Then

again by virtue of Proposition 3.1, we have that φ∗
0 ∈ KerΔ∗(λ),

φ∗ =
(
φ∗
0,−B∗

0(·) +
∫ ·

−r
eλ(θ−·)dη∗(θ)φ∗

0 +
∫ ·

−r
λeλ(θ−·)B∗

0(θ)dθφ
∗
0

)
, (5.17)

and φ∗
0 ∈ KerM∗; hence φ∗

0 = 0 in view of (ii). Then φ∗ = 0, and thus relation (i) is shown to
be true.Now we show the equivalence of (i) and (iii). Define the closed operator [λ −A,M] :
D(A) ×U ⊂ X ×U → X by

[λ −A,M]
(
φ, u

)
= (λ −A)φ +Mu,

(
φ, u

) ∈ D(A) ×U. (5.18)

Here X ×U is a complex Banach space equipped with the norm ‖(φ, u)‖X×U = ‖φ‖X + ‖u‖U
for any (φ, u) ∈ X × U. Then by the duality theorem, condition (iii) is equivalent to
Ker[λ − A,M]∗ = {0}. By calculating the adjoint operator that involves duality pairings, we
can readily verify that the adjoint [λ −A,M]∗ : X∗ → X∗ ×U∗ is given by

[λ −A,M] ∗φ∗ =
((
λI −A∗

)
φ∗,M∗φ∗

)
, φ∗ ∈ X∗. (5.19)

It then follows from (5.19) that Ker[λ −A,M]∗ = {0} if and only if

Ker
(
λ −A∗

)
∩ KerM∗ = {0}. (5.20)
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This proves the desired equivalence of (i) and (iii). We note here that the adjoint operator
Δ(λ)∗ is given by Δ∗(λ). Then the equivalence of (ii) and (iv) can be shown as in the proof of
the equivalence of (i) and (iii). Hence the proof is complete.Given arbitrarily sets

Λ0 = {λ1, . . . , λl} ⊂ σd(Δ), Λ1 =
{
μ1, . . . , μl

} ⊂ C
l, (5.21)

letU = C
N and the controllerM : C

N → X be defined by

Mu =
N∑
i=1

ukbk, u = (u1, . . . , uN) ∈ C
N, bk ∈ X, k = 1, . . . ,N. (5.22)

For λ ∈ σd(Δ), it is clear that λ ∈ σd(A∗) = σd(Δ∗) and we can thus denote the basis of the
kernel KerΔ∗(λ) by {ϕ∗

λj
}dλj=1, where dλ = dim KerΔ∗(λ).

Proposition 5.4. Assume that M is given by (5.22). For any λ ∈ σd(Δ), the following conditions
are equivalent:

(i) Ker Δ∗(λ) ∩ Ker M∗ = {0};

(ii) Rank(〈bk, ϕ∗
λj〉X,X∗ : k = 1, . . . ,N, j = 1, . . . , dλ) = dλ.

Proof. First we note that KerM∗ is given by the orthogonal complement

KerM∗ = (ImM)⊥ = {bk : 1 ≤ k ≤N}⊥. (5.23)

To show the implication (i)⇒ (ii), let us suppose contrarily that the rank condition (ii) is not
satisfied. Then there exists a nonzero vector z = (z1, . . . , zdλ) ∈ C

dλ such that

dλ∑
j=1

zj〈bk, ϕ∗
λj〉X,X∗ = 0, k = 1, . . . ,N. (5.24)

If we set ϕ∗ =
∑dλ

j=1 zjϕ
∗
λj , then ϕ

∗ ∈ KerΔ∗(λ) is nonzero and

〈
bk, ϕ

∗〉
X,X∗ =

〈
bk,

dλ∑
j=1

zjϕ
∗
λj

〉

X,X∗

=
dλ∑
j=1

zj〈bk, ϕ∗
λj〉X,X∗ = 0, k = 1, . . . ,N. (5.25)
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Thus ϕ∗ ∈ {bk : 1 ≤ k ≤N}⊥ = KerM∗. This implies that (i) does not hold. Next wewill show
the converse implication (ii)⇒ (i). Assume that (ii) is valid and let ϕ∗ ∈ KerΔ∗(λ)∩{bk : 1 ≤
k ≤ N}⊥. Suppose that ϕ∗ is represented as ϕ∗ =

∑dλ
j=1 zjϕ

∗
λj
, zj ∈ C

1, by use of the basis {ϕ∗
λj
}

of Ker Δ∗(λ), and the condition 〈bk, ϕ∗〉X,X∗ = 0, k = 1, . . . ,N, are written as

(0, . . . , 0)T =

⎛
⎝

〈
b1,

dλ∑
j=1

zjϕ
∗
λj

〉

X,X∗

, . . . ,

〈
bN,

dλ∑
j=1

zjϕ
∗
λj

〉

X,X∗

⎞
⎠

T

=

⎛
⎝ dλ∑

j=1

zj
〈
b1, ϕ

∗
λj

〉
X,X∗

, . . . ,
dλ∑
j=1

zj
〈
bN, ϕ

∗
λj

〉
X,X∗

⎞
⎠

T

= Bλ(z1, . . . , zdλ)
T , in C

N,

(5.26)

where Bλ = (〈bk, ϕ∗
λj
〉X,X∗ : k = 1, . . . ,N, j = 1, . . . , dλ). Here (·)T means the transpose operation

of matrices. So the rank condition (ii) implies that zj = zj = 0, j = 1, . . . , dλ. Thus ϕ∗ = 0, which
obviously shows (i).

We can summarize the previous results in the following form.

Theorem 5.5. Assume that M is given by (5.22). For any λ ∈ σd(Δ), the following relations (i)–
(v) are equivalent:

(i) Im(λ −A) + ImM = X;

(ii) ImΔ(λ) + ImM = X;

(iii) Ker(λ −A∗) ∩ KerM∗ = {0};
(iv) KerΔ∗(λ) ∩ KerM∗ = {0};
(v) Rank(〈bk, ϕ∗

λj
〉X,X∗ : k = 1, . . . ,N, j = 1, . . . , dλ) = dλ.

Proof. SinceM is given by (5.22), ImM is finite dimensional. Whereas dim PλX = dim Mλ

is finite by λ ∈ σd(A), from Theorem 5.28 by Kato in [12], the operator λ−A is Fredholm and
hence by Lemma 1.9 by Kato in [12], the sum Im(λ−A)+ ImM is closed. It is also clear that
ImΔ(λ) is closed and so is Im Δ(λ) + ImM for λ ∈ σd(Δ). Then the equivalences (i)–(v)
follow from Propositions 5.2, 5.3 and 5.4.

For a finite set Λ0 = {λ1, . . . , λl} ⊂ σd(Δ), there exists, by assumption, a rectifiable
Jordan curve γΛ0 which surrounds Λ0 and separates Λ0 and C

1 \ Λ0. If we denote by PΛ0 the
projection on Λ0, then we can decompose the space X as

X = NΛ0 ⊕ RΛ0 , (5.27)

where

NΛ0 = PΛ0X, RΛ0 = (I − PΛ0)X. (5.28)
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As Λ0 ⊂ σd(Δ), each λi ∈ Λ0 is a pole of (z −A)−1 and the subspaceNΛ0 is finite dimensional
by Proposition 4.2. For the mappings M and A, we define the operators AΛ0 and MΛ0 by

AΛ0 = PΛ0A, MΛ0 = PΛ0M. (5.29)

Since the operatorsAΛ0 andMΛ0 are bounded and linear in the finite-dimensional spaceNΛ0 ,
the exponential operator etAΛ0 = SΛ0(t) is well defined onNΛ0 . Let φ ∈ X and u ∈ L2(R+;CN).
We introduce the following finite-dimensional control system on MΛ0 by

dY0(t)
dt

= AΛ0Y0(t) +MΛ0u(t), t ≥ 0,

Y0(0) = PΛ0φ ∈ NΛ0 .

(5.30)

In view of the study by Wonham in [14], the dual observed system of (5.30) on the adjoint
space (NΛ0)

∗ ⊂ X∗ is given by

dZ0(t)
dt

= A∗
Λ0
Z0(t), t ≥ 0,

Z0(0) = (PΛ0)
∗φ∗ ∈ (NΛ0)

∗ = N∗
Λ0
,

Y0(t) = M∗
Λ0
Z0(t), t ≥ 0,

(5.31)

where (PΛ0)
∗ = P ∗

Λ0
, Λ0 = {λ1, . . . , λl} is given by P ∗

Λ0
=

1
2πi

∫
γ∨Λ0

(z − A∗)−1dz, γ∨Λ0
being

mirror image of γΛ0 , N∗
Λ0

= P ∗
Λ0
X∗, A∗

Λ0
= (PΛ0A)∗ = P ∗

Λ0
A∗ is a bounded linear operator

on N∗
Λ0
, M∗

Λ0
∈ L(X∗,CN) is given by M∗

Λ0
ψ∗ = M∗P ∗

Λ0
ψ∗, ψ∗ ∈ X∗. And We denote by

S∗
Λ0
(t) the exponential operator generated by A∗

Λ0
. It is obvious that S∗

Λ0
(t) = S∗(t)P ∗

Λ0
.

In finite-dimensional control theory it is well known (cf., Wonham [14]) that the finite-
dimensional control system (5.30) is controllable; that is,

⋃
t>0

{∫ t

0
SΛ0(t − s)MΛ0u(s)ds : u ∈ L2

(
[0, t];CN

)}
= NΛ0 (5.32)

if and only if the observed system (5.31) is observable; that is,

M∗
Λ0
S∗
Λ0
(t)ψ∗ = 0, t ≥ 0, ψ∗ ∈ N∗

Λ0
implies that ψ∗ = 0. (5.33)

The spaceNΛ0 is decomposed as NΛ0 = Nλ1⊕· · ·⊕Nλl (direct sum) so that we have the similar
direct sum N∗

Λ0
= N∗

λ1
⊕· · ·⊕N∗

λl
. The projection P ∗

Λ0
is also decomposed as P ∗

Λ0
= P ∗

λ1
+· · ·+P ∗

λl
,

and hence

M∗
Λ0
S∗
Λ0
(t)ψ∗ = M∗S∗(t)P ∗

Λ0
ψ∗ = M∗S∗(t)P ∗

λ1
ψ∗ + · · · +M∗S∗(t)P ∗

λl
ψ∗. (5.34)
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Therefore, condition (5.33) is equivalent to the statement

M∗S∗(t)ψ∗ = 0, t ≥ 0, ψ∗ ∈ N∗
λi
implies that ψ∗ = 0 (5.35)

for each i = 1, . . . , l.
Since the eigenvalue λi of A∗ is a pole of (z −A∗)−1 with order kλi , we have

S∗(t)P ∗
λi
=

1
2πi

∫
γλi

etz(z −A∗)−1dz

= etλi · 1
2πi

∫
γλi

et(z−λi)(z −A∗)−1dz

= etλi
kλi−1∑
j=0

tj

j!
· 1
2πi

∫
γλi

(
z − λi

)j
(z −A∗)−1dz

= etλi

⎛
⎝P ∗

λi
+
kλi−1∑
j=1

tj

j!

(
Q∗
λi

)j⎞⎠.

(5.36)

Hence, for ψ∗ ∈ N∗
λi
the equality

M∗S∗(t)ψ∗ = 0, t ≥ 0, (5.37)

is equivalent to

M∗P ∗
λi
ψ∗ = 0, M∗

(
Q∗
λi

)j
ψ∗ = 0, j = 1, . . . , kλi − 1. (5.38)

Recall that, by virtue of Proposition 4.2, we have

di = dim Ker(λi −A) = dim Ker
(
λi −A∗

)
= dim KerΔ∗

(
λi
)
< ∞. (5.39)

Wedenote the basis of KerΔ∗(λi) by{ϕ∗
i1, . . . , ϕ

∗
idi
} ⊂ D(A∗). Then again by Proposition 4.2,

the basis of Ker (λi −A∗)is given by

{(
ϕ∗
i1, Fλiϕ

∗
i1

)
, . . . ,

(
ϕ∗
idi
, Fλiϕ

∗
idi

)}
⊂ X∗. (5.40)

We set Φ∗
ij = (ϕ∗

ij , Fλiϕ
∗
idi
), then

〈
bk, ϕ

∗
ij

〉
X,X∗

= 〈(bk, 0),Φ∗
ij〉X,X∗ (5.41)
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holds for each k = 1, . . . ,N and j = 1, . . . , di. Indeed, we have

〈(bk, 0),Φ∗
ij〉X,X∗ = 〈(bk, 0),

(
ϕ∗
ij , Fλiϕ

∗
idi

)
〉X,X∗ = 〈bk, ϕ∗

ij〉X,X∗ . (5.42)

In order to prove the finite pole assignability theorem we need the following
proposition on the rank condition.

Proposition 5.6. Assume that M is given by (5.22). Then the following two statements are
equivalent

(i) The equalities

M∗P ∗
λi
ψ∗ = 0, M∗

(
Q∗
λi

)j
ψ∗ = 0, j = 1, . . . , kλi , ψ

∗ ∈ N∗
λi
, (5.43)

imply that ψ∗ = 0.

(ii) The rank condition

Rank
(
〈bk, ϕ∗

ij〉X,X∗ : k = 1, . . . ,N, j = 1, . . . , di
)

= di (5.44)

holds.

Proof. Since M is given by (5.22), it follows from standard calculations that the adjoint
operatorM∗

0 ∈ L(X∗,CN) is given by

M∗
0ψ

∗
0 =

(
〈b1, ψ∗

0〉, . . . , 〈bN, ψ∗
0〉

)
, ψ∗

0 ∈ X∗, (5.45)

andM∗ ∈ L(X∗,CN) is given byM∗ψ∗ =M∗
0ψ

∗
0 for ψ∗ = (ψ∗

0 , ψ
∗
1) ∈ X∗. Hence, the equalities

(5.43) can be rewritten as

〈
bk,

[
P ∗
λi
ψ∗

]
0

〉
X,X∗

=
〈
(bk, 0), P ∗

λi
ψ∗

〉
X,X∗

= 0, k = 1, . . . ,N, (5.46)

〈
bk,

[(
Q∗
λi

) j
ψ∗

]
0

〉
X,X∗

=
〈
(bk, 0), (Q∗

λi
)jψ∗

〉
X,X∗

= 0, k = 1, . . . ,N, j = 1, . . . , kλi . (5.47)

Wefirst show the implication (i)⇒ (ii). Suppose to the contrary that the rank condition (5.44),
or equivalently by the rank condition (5.41),

Rank
(
〈(bk, 0),Φ∗

ij〉X,X∗ : k = 1, . . . ,N, j = 1, . . . , di
)
= di (5.48)

is not satisfied. Then there exists a nonzero vector z = (z1, . . . , zdi) ∈ C
N such that

di∑
j=1

zj
〈
(bk, 0),Φ∗

ij

〉
X,X∗

= 〈(bk, 0),
di∑
j=1

zjΦ∗
ij〉X,X∗ = 0, k = 1, . . . ,N. (5.49)
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If we set Φ∗ =
∑di

j=1 zjΦ
∗
ij , then Φ∗ ∈ Ker(λi −A∗) ⊂ N∗

λi
is nonzero and by (5.49)

〈(bk, 0),Φ∗〉X,X∗ = 0, k = 1, . . . ,N. (5.50)

Since P ∗
λi
Φ∗ = Φ∗, equalities (5.46) hold owing to (5.50). The relation Ker(λi − A∗) = N∗

λi
∩

Ker Q∗
λi
(cf., (4.6)) yields Q∗

λi
Φ∗ = 0, and hence (Q∗

λi
)jΦ∗ = 0 for each j = 1, 2, . . .. This implies

equality (5.47). Hence (i) does not hold, which is a contradiction.

Next we show the converse implication (ii) ⇒ (i). Let ψ∗ ∈ N∗
λi
. Assume that the

rank condition (5.44), or equivalently (5.48), and equalities (5.46) hold. Since (Q∗
λi
)kλi = O

and ImQ∗
λi
⊂ M∗

λi
by (4.5), then ϕ∗

1 ≡ (Q∗
λi
)kλi−1ψ∗ ∈ KerQ∗

λi
, so that ϕ∗

1 ∈ Ker(λi −A∗) by (4.6).
Then ϕ∗

1 is written as

ϕ∗
1 =

di∑
j=1

zjΦ∗
ij , zj ∈ C

1, j = 1, . . . , di. (5.51)

Hence, it follows from (5.41), (5.45), and the last equality in (5.47) that

M∗
(
Q∗
λi

)kλi−1
ψ∗ =M∗

⎡
⎣ di∑
j=1

zjΦ∗
ij

⎤
⎦

0

=

⎛
⎝

〈
(b1, 0),

di∑
j=1

zjΦ∗
ij

〉

X,X∗

, . . . ,

〈
(bN, 0),

di∑
j=1

zjΦ∗
ij

〉

X,X∗

⎞
⎠

=

⎛
⎝

〈
b1,

di∑
j=1

zjϕ
∗
ij

〉

X,X∗

, . . . ,

〈
bN,

di∑
j=1

zjϕ
∗
ij

〉

X,X∗

⎞
⎠

= (0, . . . , 0) ∈ C
N,

(5.52)

and thus

Bi(z1, . . . , zdi)
T = (0, . . . , 0)T , (5.53)

where Bi = (〈bk, ϕ∗
ij〉X,X∗) and ·T denotes the transpose of the vector. Since the rank condition

(5.44) is satisfied, (5.53) implies that z1 = · · · = zdi = 0. That is, ϕ∗
1 = 0. Hence ϕ∗

2 ≡ (Q∗
λi
)kλi−2ψ∗
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is an element of Ker Q∗
λi
, so that ϕ∗

2 ∈ Ker(λi −A∗) by (4.6). We can repeat this procedure via
(5.44) to obtain

ϕ∗
2 = 0,

(
Q∗
λi

)kλi−3
ψ∗ = 0, . . . , Q∗

λi
ψ∗ = 0, P ∗

λi
ψ∗ = ψ∗ = 0. (5.54)

Therefore (i) is shown.Recall notation (5.21), and for each λi, i = 1, . . . , l, let {ϕ∗
ij}dij=1 ⊂ X∗ be

the basis of the null space KerΔ∗(λ), where di = dim KerΔ∗(λ). We may further obtain the
following result by virtue of Proposition 5.6.

Theorem 5.7. Assume thatM is given by (5.22) in system (5.2). Let a finite set Λ0 = {λ1, . . . , λl} ⊂
σd(Δ) be given. For each λi ∈ Λ0, let Bi, i = 1, . . . , l, beN × di matrices given by

Bi =
(
〈bk, ϕ∗

ij〉X,X∗ : k = 1, . . .N, j = 1, . . . , di
)
. (5.55)

Then the control system (5.2) is pole assignable with respect to (Λ0,Λ1) for any finite set Λ1 =
{μ1, . . . , μl} in C

1 if and only if the rank conditions

Rank Bi = di, for each i = 1, . . . , l, (5.56)

are satisfied.

Proof. Given that Λ1 = {μ1, . . . , μl} ⊂ C
1, by Theorem 5.5 and Proposition 5.6 we have the

equivalences of (5.32), (5.33), (5.35), (5.43), (5.44) and (5.56). Condition (5.32) means that
the finite-dimensional control system (5.30) on NΛ0 is controllable. Then by Wonham’s pole
assignment theorem [14], (5.30) on NΛ0 is controllable if and only if there exists a linear
operator K0 ∈ L(NΛ0 ,C

N) such that

σ(AΛ0 + BΛ0K0) = Λ1, on NΛ0 . (5.57)

Define the operator K ∈ L(X,CN) by

Kφ =

⎧⎨
⎩
K0φ, φ ∈ NΛ0 ,

0, φ ∈ RΛ0 .
(5.58)

It is clear that MK = O on RΛ0 and MK = MΛ0K0 on NΛ0 . Hence A +MK = A on RΛ0 and
A + MK = AΛ0 + MΛ0K0 on MΛ0 , which implies that σ(A + MK) = σ(A) \ Λ0 on RΛ0 and
σ(A + MK) = Λ1 on NΛ0 by (5.57). Thus, we obtain the conclusion (5.3) by the direct sum
decomposition (4.10). This completes the proof of the theorem.
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