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We consider q-Euler numbers, polynomials, and q-Stirling numbers of first and second kinds.
Finally, we investigate some interesting properties of the modified q-Bernstein polynomials related
to q-Euler numbers and q-Stirling numbers by using fermionic p-adic integrals on Zp.

1. Introduction

Let C[0, 1] be the set of continuous functions on [0, 1]. The classical Bernstein polynomials of
degree n for f ∈ C[0, 1] are defined by

Bn

(
f
)
=

n∑

k=0

f

(
k

n

)
Bk,n(x), 0 ≤ x ≤ 1, (1.1)

where Bn(f) is called the Bernstein operator and

Bk,n(x) =
(
n
k

)
xk(x − 1)n−k (1.2)
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are called the Bernstein basis polynomials (or the Bernstein polynomials of degree n)
(see [1]). Recently, Acikgoz and Araci have studied the generating function for Bernstein
polynomials (see [2, 3]). Their generating function for Bk,n(x) is given by

F(k)(t, x) =
tke(1−x)txk

k!
=

∞∑

n=0

Bk,n(x)
tn

n!
, (1.3)

where k = 0, 1, . . . and x ∈ [0, 1]. Note that

Bk,n(x) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
n

k

⎞

⎠xk(1 − x)n−k, if n ≥ k,

0, if n < k,

(1.4)

for n = 0, 1, . . . (see [2, 3]).
Let p be an odd prime number. Throughout this paper, Zp,Qp, and Cp will denote the

ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of
the algebraic closure of Qp, respectively. Let vp be the normalized exponential valuation of Cp

with |p|p = p−1.
Throughout this paper, we use the following notation:

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

(1.5)

(cf. [4–7]). Let N be the natural numbers and Z+ = N ∪ {0}. Let UD(Zp) be the space of
uniformly differentiable function on Zp.

Let q ∈ Cp with |1 − q|p < p−1/(p−1) and x ∈ Zp. Then q-Bernstein type operator for
f ∈ UD(Zp) is defined by (see [8, 9])

Bn,q

(
f
)
=

n∑

k=0

f

(
k

n

)(
n
k

)
[x]kq[1 − x]n−kq =

n∑

k=0

f

(
k

n

)
Bk,n

(
x, q
)
, (1.6)

for k, n ∈ Z+,where

Bk,n

(
x, q
)
=
(
n
k

)
[x]kq[1 − x]n−kq (1.7)

is called the modified q-Bernstein polynomials of degree n. When we put q → 1 in (1.7),
[x]kq → xk, [1−x]n−kq → (1−x)n−k, and we obtain the classical Bernstein polynomial, defined
by (1.2). We can deduce very easily from (1.7) that

Bk,n

(
x, q
)
= [1 − x]qBk,n−1

(
x, q
)
+ [x]qBk−1,n−1

(
x, q
)

(1.8)
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(see [8]). For 0 ≤ k ≤ n, derivatives of the nth degree modified q-Bernstein polynomials are
polynomials of degree n − 1:

d
dx

Bk,n

(
x, q
)
= n
(
qxBk−1,n−1

(
x, q
) − q1−xBk,n−1

(
x, q
)) ln q

q − 1
(1.9)

(see [8]).
The Bernstein polynomials can also be defined in many different ways. Thus, recently,

many applications of these polynomials have been looked for by many authors. In the recent
years, the q-Bernstein polynomials have been investigated and studied by many authors in
many different ways (see [1, 8, 9] and references therein [10, 11]). In [11], Phillips gave many
results concerning the q-integers and an account of the properties of q-Bernstein polynomials.
He gave many applications of these polynomials on approximation theory. In [2, 3], Acikgoz
and Araci have introduced several type Bernstein polynomials. The Acikgoz and Araci paper
to announced in the conference is actually motivated to write this paper. In [1], Simsek
and Acikgoz constructed a new generating function of the q-Bernstein type polynomials
and established elementary properties of this function. In [8], Kim et al. proposed the
modified q-Bernstein polynomials of degree n,which are different q-Bernstein polynomials of
Phillips. In [9], Kim et al. investigated some interesting properties of the modified q-Bernstein
polynomials of degree n related to q-Stirling numbers and Carlitz’s q-Bernoulli numbers.

In the present paper, we consider q-Euler numbers, polynomials, and q-Stirling
numbers of first and second kinds. We also investigate some interesting properties of the
modified q-Bernstein polynomials of degree n related to q-Euler numbers and q-Stirling
numbers by using fermionic p-adic integrals on Zp.

2. q-Euler Numbers and Polynomials Related to
the Fermionic p-Adic Integrals on Zp

For N ≥ 1, the fermionic q-extension µq of the p-adic Haar distribution µHaar,

µ−q
(
a + pNZp

)
=

(−q)a
[
pN
]
−q
, (2.1)

is known as a measure on Zp, where a + pNZp = {x ∈ Qp | |x − a|p ≤ p−N} (cf. [4, 12]).
We will write dµ−q(x) to remind ourselves that x is the variable of integration. Let UD(Zp)
be the space of uniformly differentiable function on Zp. Then µ−q yields the fermionic p-adic
q-integral of a function f ∈ UD(Zp):

I−q
(
f
)
=
∫

Zp

f(x)dµ−q(x) = lim
N→∞

1 + q

1 + qp
N

pN−1∑

x=0

f(x)
(−q)x (2.2)
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(cf. [12–15]). Many interesting properties of (2.2)were studied by many authors (see [12, 13]
and the references given there). Using (2.2), we have the fermionic p-adic invariant integral
on Zp as follows:

lim
q→−1

Iq
(
f
)
= I−1

(
f
)
=
∫

Zp

f(a)dµ−1(x). (2.3)

For n ∈ N, write fn(x) = f(x + n). We have

I−1
(
fn
)
= (−1)nI−1

(
f
)
+ 2

n−1∑

l=0

(−1)n−l−1f(l). (2.4)

This identity is obtained by Kim in [12] to derive interesting properties and relationships
involving q-Euler numbers and polynomials. For n ∈ Z+,we note that

I−1
(
[x]nq

)
=
∫

Zp

[x]nqdµ−1(x) = En,q, (2.5)

where En,q are the q-Euler numbers (see [16]). It is easy to see that E0,q = 1. For n ∈ N, we
have

n∑

l=0

(
n
l

)
qlEl,q =

n∑

l=0

(
n
l

)
ql lim

N→∞

pN−1∑

x=0
[x]lq(−1)x

= lim
N→∞

pN−1∑

x=0
(−1)x

(
q[x]q + 1

)n

= lim
N→∞

pN−1∑

x=0
(−1)x[x + 1]nq

= − lim
N→∞

pN−1∑

x=0
(−1)x

(
[x]nq +

[
pN
]n

q

)

= −En,q.

(2.6)

From this formula, we have the following recurrence formula:

E0,q = 1,
(
qE + 1

)n + En,q = 0 if n ∈ N, (2.7)

with the usual convention of replacing El by El,q. By the simple calculation of the fermionic
p-adic invariant integral on Zp, we see that

En,q =
2

(
1 − q

)n
n∑

l=0

(
n
l

)
(−1)l 1

1 + ql
, (2.8)
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where ( n
l ) = n!/l!(n − l)! = n(n − 1) · · · (n − l + 1)/l!. Now, by introducing the following

equations:

[x]n1/q = qnq−nx[x]nq , q−nx =
∞∑

m=0

(
1 − q

)m
(
n +m − 1

m

)
[x]mq (2.9)

into (2.5), we find that

En,1/q = qn
∞∑

m=0

(
1 − q

)m
(
n +m − 1

m

)
En+m,q. (2.10)

This identity is a peculiarity of the p-adic q-Euler numbers, and the classical Euler numbers
do not seem to have a similar relation. Let Fq(t) be the generating function of the q-Euler
numbers. Then we obtain that

Fq(t) =
∞∑

n=0

En,q
tn

n!

=
∞∑

n=0

2
(
1 − q

)n
n∑

l=0

(−1)l
(
n
l

)
1

1 + ql
tn

n!

= 2et/(1−q)
∞∑

k=0

(−1)k
(
1 − q

)k
1

1 + qk
tk

k!
.

(2.11)

From (2.11), we note that

Fq(t) = 2et/(1−q)
∞∑

n=0
(−1)ne(−qn/(1−q))t = 2

∞∑

n=0
(−1)ne[n]qt. (2.12)

It is well known that

I−1
([
x + y

]n) =
∫

Zp

[
x + y

]ndµ−1
(
y
)
= En,q(x), (2.13)

where En,q(x) are the q-Euler polynomials (see [16]). In the special case x = 0, the numbers
En,q(0) = En,q are referred to as the q-Euler numbers. Thus, we have

∫

Zp

[
x + y

]ndµ−1
(
y
)
=

n∑

k=0

(
n
k

)
[x]n−kq qkx

∫

Zp

[
y
]kdµ−1

(
y
)

=
n∑

k=0

(
n
k

)
[x]n−kq qkxEk,q

=
(
qxE + [x]q

)n
.

(2.14)
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It is easily verified, using (2.12) and (2.13), that the q-Euler polynomials En,q(x) satisfy the
following formula:

∞∑

n=0

En,q(x)
tn

n!
=
∫

Zp

e[x+y]qtdµ−1
(
y
)

=
∞∑

n=0

2
(
1 − q

)n
n∑

l=0

(−1)l
(
n
l

)
qlx

1 + ql
tn

n!

= 2
∞∑

n=0
(−1)ne[n+x]qt.

(2.15)

Using formula (2.15), when q tends to 1, we can readily derive the Euler polynomials, En(x),
namely,

∫

Zp

e(x+y)tdµ−1
(
y
)
=

2ext

et + 1
=

∞∑

n=0

En(x)
tn

n!
(2.16)

(see [12]). Note that En(0) = En are referred to as the nth Euler numbers. Comparing the
coefficients of tn/n! on both sides of (2.15), we have

En,q(x) = 2
∞∑

m=0
(−1)m[m + x]nq =

2
(
1 − q

)n
n∑

l=0

(−1)l
(
n
l

)
qlx

1 + ql
. (2.17)

We refer to [n]q as a q-integer and note that [n]q is a continuous function of q. In an
obvious way we also define a q-factorial,

[n]q! =

⎧
⎨

⎩

[n]q[n − 1]q · · · [1]q, n ∈ N,

1, n = 0,
(2.18)

and a q-analogue of binomial coefficient,

(
x
n

)

q

=
[x]q!

[x − n]q![n]q!
=

[x]q[x − 1]q · · · [x − n + 1]q
[n]q!

(2.19)

(cf. [14, 16]). Note that

lim
q→ 1

(
x
n

)

q

=
(
x
n

)
=

x(x − 1) · · · (x − n + 1)
n!

. (2.20)

It readily follows from (2.19) that

(
x
n

)

q

=

(
1 − q

)n
q−(

n
2 )

[n]q!

n∑

i=0

q(
i
2 )
(
n
i

)

q

(−1)n+iq(n−i)x (2.21)
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(cf. [7, 16]). It can be readily seen that

qlx =
(
[x]q
(
q − 1

)
+ 1
)l

=
l∑

m=0

(
l
m

)
(
q − 1

)m[x]mq . (2.22)

Thus, by (2.13) and (2.22), we have

∫

Zp

(
x
n

)

q

dµ−1(x) =

(
q − 1

)n

[n]q!q
(n2 )

n∑

i=0

q(
i
2 )
(
n
i

)

q

(−1)i
n−i∑

j=0

(
n − i
j

)
(
q − 1

)j
Ej,q. (2.23)

From now on, we use the following notation:

[x]q!

[x − k]q!
= q

−( k2 )
k∑

l=0

s1,q(k, l)[x]lq, k ∈ Z+,

[x]nq =
n∑

k=0

q
( k2 )s2,q(n, k)

[x]q!

[x − k]q!
, n ∈ Z+

(2.24)

(see [7]). From (2.24), and (2.22), we calculate the following consequence:

[x]nq =
n∑

k=0

q
( k2 )s2,q(n, k)

1
(
1 − q

)k

k∑

l=0

(
k
l

)

q

q
( l2 )(−1)lql(x−k+1)

=
n∑

k=0

q
( k2 )s2,q(n, k)

1
(
1 − q

)k

k∑

l=0

(
k
l

)

q

q
( l2 )+l(1−k)(−1)l

×
l∑

m=0

(
l
m

)
(
q − 1

)m[x]mq

=
n∑

k=0

q
( k2 )s2,q(n, k)

1
(
1 − q

)k

×
k∑

m=0

(
q − 1

)m
(

k∑

l=m

(
k
l

)

q

q
( l2 )+l(1−k)

(
l
m

)
(−1)l

)

[x]mq .

(2.25)

Therefore, we obtain the following theorem.

Theorem 2.1. For n ∈ Z+,

En,q =
n∑

k=0

k∑

m=0

k∑

l=m

q
( k2 )s2,q(n, k)

(
q − 1

)m−k
(
k
l

)

q

q
( l2 )+l(1−k)

(
l
m

)
(−1)l+kEm,q. (2.26)
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By (2.22) and simple calculation, we find that

n∑

m=0

(
n
m

)
(
q − 1

)m
Em,q =

∫

Zp

qnxdµ−1(x)

=
n∑

k=0

(
q − 1

)k
q
( k2 )
(
n
k

)

q

∫

Zp

k−1∏

i=0
[x − i]qdµ−1(x)

=
n∑

k=0

(
q − 1

)k
(
n
k

)

q

k∑

m=0

s1,q(k,m)
∫

Zp

[x]mq dµ−1(x)

=
n∑

m=0

(
n∑

k=m

(
q − 1

)k
(
n
k

)

q

s1,q(k,m)

)

Em,q.

(2.27)

Therefore, we deduce the following theorem.

Theorem 2.2. For n ∈ Z+,

n∑

m=0

(
n
m

)
(
q − 1

)m
Em,q =

n∑

m=0

n∑

k=m

(
q − 1

)k
(
n
k

)

q

s1,q(k,m)Em,q. (2.28)

Corollary 2.3. For m,n ∈ Z+ withm ≤ n,

(
n
m

)
(
q − 1

)m =
n∑

k=m

(
q − 1

)k
(
n
k

)

q

s1,q(k,m). (2.29)

By (2.17) and Corollary 2.3, we obtain the following corollary.

Corollary 2.4. For n ∈ Z+,

En,q(x) =
2

(
1 − q

)n
n∑

l=0

n∑

k=l

(−1)l(q − 1
)k−l
(
n
k

)

q

s1,q(k, l)
qlx

1 + ql
. (2.30)

It is easy to see that

(
n
k

)

q

=
∑

l0+···+lk=n−k
q
∑k

i=0 ili (2.31)

(cf. [7]). From (2.31) and Corollary 2.4, we can also derive the following interesting formula
for q-Euler polynomials.

Theorem 2.5. For n ∈ Z+,

En,q(x) = 2
n∑

l=0

n∑

k=l

∑

l0+···+lk=n−k
q
∑k

i=0 ili
1

(
1 − q

)n+l−k s1,q(k, l)(−1)
k qlx

1 + ql
. (2.32)
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These polynomials are related to the many branches of Mathematics, for example,
combinatorics, number theory, and discrete probability distributions for finding higher-order
moments (cf. [14–16]). By substituting x = 0 into the above, we have

En,q = 2
n∑

l=0

n∑

k=l

∑

l0+···+lk=n−k
q
∑k

i=0 ili
1

(
1 − q

)n+l−k s1,q(k, l)(−1)
k 1
1 + ql

, (2.33)

where En,q is the q-Euler numbers.

3. q-Euler Numbers, q-Stirling Numbers, and q-Bernstein Polynomials
Related to the Fermionic p-Adic Integrals on Zp

First, we consider the q-extension of the generating function of Bernstein polynomials in (1.3).
For q ∈ Cp with |1 − q|p < p−1/(p−1), we obtain that

F
(k)
q (t, x) =

tke[1−x]qt[x]kq
k!

= [x]kq
∞∑

n=0

(
n + k
k

)
[1 − x]nq

tn+k

(n + k)!

=
∞∑

n=k

(
n
k

)
[x]kq[1 − x]n−kq

tn

n!

=
∞∑

n=0

Bk,n

(
x, q
) tn

n!
,

(3.1)

which is the generating function of the modified q-Bernstein type polynomials (see [9]).
Indeed, this generating function is also treated by Simsek and Acikgoz (see [1]). Note that
limq→ 1F

(k)
q (t, x) = F(k)(t, x). It is easy to show that

[1 − x]n−kq =
∞∑

m=0

n−k∑

l=0

(
l +m − 1

m

)(
n − k
l

)
(−1)l+mql[x]l+mq

(
q − 1

)m
. (3.2)

From (1.6), (2.3), (2.15), and (3.2), we derive the following theorem.

Theorem 3.1. For k, n ∈ Z+ with n ≥ k,

∫

Zp

Bk,n

(
x, q
)

( n
k )

dµ−1
(
y
)
=

∞∑

m=0

n−k∑

l=0

(
l +m − 1

m

)(
n − k
l

)
(−1)l+mql(q − 1

)m
El+m+k,q, (3.3)

where En,q are the q-Euler numbers.
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It is possible to write [x]kq as a linear combination of the modified q-Bernstein
polynomials by using the degree evaluation formulae andmathematical induction. Therefore,
we obtain the following theorem.

Theorem 3.2 (see [8, Theorem 7]). For k, n ∈ Z+, i ∈ N, and x ∈ [0, 1],

n∑

k=i−1

(
k
i

)

( n
i )

Bk,n

(
x, q
)
= [x]iq

(
[x]q + [1 − x]q

)n−i
. (3.4)

Let i − 1 ≤ n. Then from (1.7), (3.2), and Theorem 3.2, we have

[x]iq =

∑n
k=i−1

((
k
i

)
( n
k )/(

n
i )
)
[x]kq[1 − x]n−kq

[x]n−iq

(
1 +
(
[1 − x]q/[x]q

))n−k

=
∞∑

m=0

n∑

k=i−1

m+n−k∑

l=0

∞∑

p=0

(
k
i

)
( n
k )

( n
i )

(
l + p − 1

p

)(
m + n − k

l

)

×
(
n − i +m − 1

m

)
(−1)l+p+mql(q − 1

)p[x]i−n−m+k+p+l
q .

(3.5)

Using (2.13) and (3.5), we obtain the following theorem.

Theorem 3.3. For k, n ∈ Z+ and i ∈ N with i − 1 ≤ n,

Ei,q =
∞∑

m=0

n∑

k=i−1

m+n−k∑

l=0

∞∑

p=0

(
k
i

)
( n
k )

( n
i )

(
l + p − 1

p

)(
m + n − k

l

)

×
(
n − i +m − 1

m

)
(−1)l+p+mql(q − 1

)p
Ei−n−m+k+p+l,q.

(3.6)

The q-String numbers of the first kind is defined by

n∏

k=1

(
1 + [k]qz

)
=

n∑

k=0

S1
(
n, k; q

)
zk, (3.7)

and the q-String number of the second kind is also defined by

n∏

k=1

(
1 + [k]qz

)−1
=

n∑

k=0

S2
(
n, k; q

)
zk (3.8)

(see [9]). Therefore, we deduce the following theorem.
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Theorem 3.4 (see [9, Theorem 4]). For k, n ∈ Z+ and i ∈ N,

∑n
k=i−1

((
k
i

)
/( n

i )
)
Bk,n

(
x, q
)

(
[x]q + [1 − x]q

)n−i =
i∑

k=0

k∑

l=0

S1
(
k, l; q

)
S2
(
k, i − k; q

)
[x]lq. (3.9)

By Theorems 3.2 and 3.4 and the definition of fermionic p-adic integrals on Zp, we
obtain the following theorem.

Theorem 3.5. For k, n ∈ Z+ and i ∈ N,

Ei,q =
n∑

k=i−1

(
k
i

)

( n
i )

∫

Zp

Bk,n

(
x, q
)

(
[x]q + [1 − x]q

)n−idµ−1(x)

=
i∑

k=0

k∑

l=0

S1
(
k, l; q

)
S2
(
k, i − k; q

)
El,q,

(3.10)

where Ei,q is the q-Euler numbers.

Let i − 1 ≤ n. It is easy to show that

[x]iq
(
[x]q + [1 − x]q

)n−i

=
n−i∑

l=0

(
n − i
l

)
[x]l+iq [1 − x]n−i−lq

=
n−i∑

l=0

n−i−l∑

m=0

(
n − i
l

)(
n − i − l

m

)
(−1)mqm[x]m+i+l

q q−mx

=
n−i∑

l=0

n−i−l∑

m=0

∞∑

s=0

(
n − i
l

)(
n − i − l

m

)(
m + s − 1

s

)
(−1)mqm(1 − q

)s[x]m+i+l+s
q .

(3.11)

From (3.11) and Theorem 3.2, we have the following theorem.

Theorem 3.6. For k, n ∈ Z+ and i ∈ N,

n∑

k=i−1

(
k
i

)

( n
i )

∫

Zp

Bk,n

(
x, q
)
dµ−1(x) =

n−i∑

l=0

n−i−l∑

m=0

∞∑

s=0

(
n − i
l

)(
n − i − l

m

)(
m + s − 1

s

)

× (−1)mqm(1 − q
)s
Em+i+l+s,q,

(3.12)

where Ei,q are the q-Euler numbers.

In the same manner, we can obtain the following theorem.
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Theorem 3.7. For k, n ∈ Z+ and i ∈ N,

∫

Zp

Bk,n

(
x, q
)
dµ−1(x) =

n∑

j=k

∞∑

m=0

(
j
k

)(
n
j

)(
j − k +m − 1

m

)
(−1)j−k+mqj−k(q − 1

)m
Em+j,q,

(3.13)

where Ei,q are the q-Euler numbers.

4. Further Remarks and Observations

The q-binomial formulas are known as

(
a; q
)
n = (1 − a)

(
1 − aq

) · · ·
(
1 − aqn−1

)
=

n∑

i=0

(
n

i

)

q

q
(
i

2
)
(−1)iai,

1
(
a; q
)
n

=
1

(1 − a)
(
1 − aq

) · · · (1 − aqn−1
) =

∞∑

i=0

(
n + i − 1

i

)

q

ai.

(4.1)

For h ∈ Z, n ∈ Z+, and r ∈ N,we introduce the extended higher-order q-Euler polynomials as
follows [16]:

E
(h,r)
n,q (x) =

∫

Zp

· · ·
∫

Zp

q
∑r

j=1(h−j)xj [x + x1 + · · · + xr]nqdµ−1(x1) · · ·dµ−1(xr). (4.2)

Then,

E
(h,r)
n,q (x) =

2r
(
1 − q

)n
n∑

l=0

(
n
l

)
(−1)l qlx

(−qh−1+l; q−1)r

=
2r

(
1 − q

)n
n∑

l=0

(
n
l

)
(−1)l qlx

(−qh−r+l; q)r
.

(4.3)

Let us now define the extended higher-order Nörlund type q-Euler polynomials as follows
[16]:

E
(h,−r)
n,q (x) =

1
(
1 − q

)n
n∑

l=0

(
n
l

)
(−1)l qlx

∫
Zp

· · · ∫
Zp

ql(x1+···+xr)q
∑r

j=1(h−j)xjdµ−1(x1) · · ·dµ−1(xr)
. (4.4)
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In the special case x = 0, E(h,−r)
n,q = E

(h,−r)
n,q (0) are called the extended higher-order Nörlund type

q-Euler numbers. From (4.4), we note that

E
(h,−r)
n,q (x) =

1
2r
(
1 − q

)n
n∑

l=0

(
n
l

)
(−1)lqlx

(
−qh−r+l; q

)

r

=
1
2r

r∑

m=0

q(
m
2 )q(h−r)m

(
r
m

)

q

[m + x]nq .

(4.5)

A simple manipulation shows that

q(
m
2 )

(
r

m

)

q

=
q(

m
2 )[r]q · · · [r −m + 1]q

[m]q!
=

1
[m]q!

m−1∏

k=0

(
[r]q − [k]q

)
,

n−1∏

k=0

(
z − [k]q

)
= zn

n−1∏

k=0

(

1 −
[k]q
z

)

=
n∑

k=0

S1
(
n − 1, k; q

)
(−1)kzn−k.

(4.6)

Formula (4.5) implies the following lemma.

Lemma 4.1. For h ∈ Z, n ∈ Z+, and r ∈ N,

E
(h,−r)
n,q (x) =

1
2r[m]q!

r∑

m=0

m∑

k=0

q(h−r)mS1
(
m − 1, k; q

)
(−1)k[r]m−k

q [x +m]nq . (4.7)

From (2.22), we can easily see that

[x +m]nq =
1

(
1 − q

)n
n∑

j=0

j∑

l=0

(
n
j

)(
j
l

)
(−1)j+l(1 − q

)l
qmj[x]lq. (4.8)

Using (2.13) and (4.8), we obtain the following lemma.

Lemma 4.2. For m,n ∈ Z+,

En,q(m) =
1

(
1 − q

)n
n∑

j=0

j∑

l=0

(
n
j

)(
j
l

)
(−1)j+l(1 − q

)l
qmjEl,q. (4.9)

By Lemma 4.2, and the definition of fermionic p-adic integrals on Zp, we obtain the
following theorem.
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Theorem 4.3. For h ∈ Z, n ∈ Z+, and r ∈ N,

∫

Zp

E
(h,−r)
n,q (x)dµ−1(x) =

2−r

[m]q!

r∑

m=0

m∑

k=0

q(h−r)mS1
(
m − 1, k; q

)
(−1)k[r]m−k

q En,q(m)

=
1

2r[m]q!

r∑

m=0

m∑

k=0

q(h−r)mS1
(
m − 1, k; q

)
(−1)k[r]m−k

q

× 1
(
1 − q

)n
n∑

j=0

j∑

l=0

(
n
j

)(
j
l

)
(−1)j+l(1 − q

)l
qmjEl,q.

(4.10)

Put h = 0 in (4.4). We consider the following polynomials E(0,−r)
n,q (x):

E
(0,−r)
n,q (x) =

n∑

l=0

(
1 − q

)−n( n
l )(−1)lqlx

∫
Zp

· · · ∫
Zp

ql(x1+···+xr)q−
∑r

j=1 jxjdµ−1(x1) · · ·dµ−1(xr)
. (4.11)

Then,

E
(0,−r)
n,q (x) =

1
2r

r∑

m=0

(
r
m

)
q(

m
2 )−rm[m + x]nq . (4.12)

A simple calculation of the fermionic p-adic invariant integral on Zp shows that

∫

Zp

E
(0,−r)
n,q (x)dµ−1(x) =

1
2r

r∑

m=0

(
r
m

)
q(

m
2 )−rmEn,q(m). (4.13)

Using Theorem 4.3, we can also prove that

∫

Zp

E
(0,−r)
n,q (x)dµ−1(x) =

2−r

[m]q!

r∑

m=0

m∑

k=0

q−rmS1
(
m − 1, k; q

)
(−1)k[r]m−k

q En,q(m). (4.14)

Therefore, we obtain the following theorem.

Theorem 4.4. For m ∈ Z+, r ∈ N withm ≤ r,

(
r
m

)
q(

m
2 )−rm =

1
[m]q!

m∑

k=0

q−rmS1
(
m − 1, k; q

)
(−1)k[r]m−k

q . (4.15)
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