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We discuss Neumann and Robin problems driven by the p-Laplacian with jumping nonlinearities.
Using sub-sup solutionmethod, Fucı́k spectrum, mountain pass theorem, degree theorem together
with suitable truncation techniques, we show that the Neumann problem has infinitely many
nonconstant solutions and the Robin problem has at least four nontrivial solutions. Furthermore,
we study oscillating equations with Robin boundary and obtain infinitely many nontrivial
solutions.

1. Introduction

Let Ω be a bounded domain of Rn with smooth boundary ∂Ω, we consider the following
problems:

(i) Neumann problem:

−Δpu + α|u|p−2u = f(x, u), in Ω,

∂u

∂ν
= 0, on ∂Ω,

(p1)

(ii) Robin problem:

−Δpu + α|u|p−2u = f(x, u), in Ω,

|∇u|p−2 ∂u
∂ν

+ b(x)|u|p−2u = 0, on ∂Ω,
(p2)
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where Δpu = div(|∇u|p−2∇u) is the p-Laplacian operator of uwith 1 < p < ∞, α > 0,
b(x) ∈ L∞(∂Ω), b(x) ≥ 0, and b(x)/= 0 on ∂Ω, f(x, 0) = 0 for a.e. x ∈ Ω, and ∂u/∂ν
denotes the outer normal derivative of uwith respect to ∂Ω. Our purpose is to show
the multiplicity of solutions to (p1) and (p2).

It is known that (p1) and (p2) are the Euler-Lagrange equations of the functionals

J1(u) =
1
p

∫
Ω
|∇u|pdx +

α

p

∫
Ω
|u|pdx −

∫
Ω
F(x, u)dx,

J2(u) =
1
p

∫
Ω
|∇u|pdx +

α

p

∫
Ω
|u|pdx +

1
p

∫
∂Ω

b(x)|u|pds −
∫
Ω
F(x, u)dx,

(1.1)

respectively, defined on the Sobolev space W1,p(Ω), where F(x, u) =
∫u
0 f(x, s)ds. The critical

points of functionals correspond to the weak solutions of problems. In Li [1] and Zhang et al.
[2], the authors study the existence and multiple solutions of (p1) and (p2) using the critical
points theory for the semilinear case p = 2. There also have been some papers dealingwith the
quasilinear case p /= 2 using the critical point theory, and some existence results of solutions
have been generalized to this case in thework of Perera [3], Zhang et al. [4], and Zhang-Li [5].
Most of these papers use the minimax arguments, and nontrivial solutions are obtained with
the assumption that the nonlinearity is superlinear at 0. In this paper, we give the nontrivial
solutions of (p1) and (p2) with a jumping nonlinearity when the asymptotic limits of the
nonlinearity fall in the regions formed by the curves of the Fucı́k spectrum. Our technique is
based on mountain pass theorem, computing the critical groups and Fucı́k spectrum.

Our general assumptions are the following.

(f1) There is constant C > 0 such that f(x, t) satisfies the following subcritical condi-
tions:

∣∣f(x, t)∣∣ ≤ C
(|t|q + 1

)
for every x ∈ Ω, t ∈ R, (1.2)

with p − 1 < q < p∗ − 1, where p∗ = np/(n − p) if n > p, and p∗ = ∞ if n = 1, 2, . . . , p.

(f2) ∃ sequence {ai} and {bi}, where ai, bi ∈ R, i = 1, 2, . . ., which satisfy ai > 0, bi < 0
and ai ↗ +∞, bi ↘ −∞ as i → ∞. And at the same time {ai}, {bi} satisfy

f(x, ai) = αa
p−1
i , f(x, bi) = −α|bi|p−1, for every x ∈ Ω (1.3)

which means that {ai}, {bi} are constant solution sequences of (p1).

Let a0 = b0 = 0, f(x, t) < αtp−1 if t ∈ (ai, ai+1), where i is an odd number, i ≥ 1;
f(x, t) > αtp−1 if t ∈ (ai, ai+1), where i is an even number, i ≥ 0; f(x, t) < −α|t|p−1 if t ∈ (bi+1, bi),
where i is an even number, i ≥ 0; f(x, t) > −α|t|p−1 if t ∈ (bi+1, bi), where i is an odd number,
i ≥ 1, for every x ∈ Ω.

(f3) For all t /=ai, bi, f is C1; f ′
−(x, ai)/= f ′

+(x, ai), f ′
−(x, bi)/= f ′

+(x, bi), where i is an even
number, i ≥ 2, f ′

−(x, t), f ′
+(x, t) denote the left and the right derivatives of f at t,

respectively.
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(f4) Let (a, b) = (f ′
+(x, ai)− α, f ′

−(x, ai)− α) for i is an even number, i ≥ 2. For (a, b) ∈ R2,
the problem

−Δpu = a
[
(u − c)+

]p−1 − b
[
(u − c)−

]p−1
, in Ω,

∂u

∂ν
= 0, on ∂Ω,

(1.4)

only has constant solution c, where (u−c)±(x) = max{±(u−c), 0} and c is a constant.

And f ′
i−(x, ai) − α > λ2, f ′

i+(x, ai) − α > λ2 for i is an even number, i ≥ 2, where

fi(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t < 0,

f(x, t), 0 ≤ t ≤ ai,

f(x, ai), t > ai,

(1.5)

and f ′
i−(x, ai), f ′

i+(x, ai) denote the left and the right derivatives of fi at ai, respectively, and
λ2 is the second of the eigenvalue problems with Neumann boundary value condition.

(f5) ∃m > α, such that f(x, t) +m|t|p−2t is increasing in t.

In particular, from (f2), we know that (p1) has infinitely many constant solutions, a.e.,
{ai}, {bi}, i = 0, 1, 2, . . .. In this paper, we mainly discuss whether it has many nonconstant
solutions and what their locations are.

Then we have the main results of this paper.

Theorem 1.1. Assume that (f1)–(f5) hold. Then (p1) has infinitely many nonconstant solutions.
Moreover, if one chooses some order intervals which have two pairs of strict constant sub-sup solutions,
then (p1) has at least two nonconstant solutions in some order intervals.

Furthermore, if we assume that f ′
−(x, 0)/= f ′

+(x, 0) under the same conditions as in
Theorem 1.1, we can have at least one sign-changing solution which is of mountain pass type
from the mountain pass theorem in order interval. When we discuss multiple solutions of
(p1), we notice that there may be infinitely many sign-changing solutions under stronger
assumptions. In fact, if we give more assumptions,we can obtain infinitely many sign-
changing solutions.

We assume the following.

(F) F(x, t) > ((λ2 + α + ε0)/p)tp, |t| ≥ M, M is large enough, where λ2 is the second
eigenvalue of Neumann problem of −Δp and ε0 > 0.

Corollary 1.2. Under the same conditions as in Theorem 1.1, (F) and f ′
−(x, 0)/= f ′

+(x, 0), then one
can get infinitely many sign-changing solutions for (p1) which are of mountain pass type or not
mountain pass type but with positive local degree.

For the Robin problem, if ∃M1 > 0, M2 > 0 such that f(x,M1) = 0, f(x,−M2) = 0 for
a.e. x ∈ Ω, then we give the following assumptions:
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(g1) f ∈ C1(Ω × R1 \ {0}), f ′
−(x, 0)/= f ′

+(x, 0), and min{f ′
+(x, 0), f

′
−(x, 0)} > λ1 + α for a.e.

x ∈ Ω, where f ′
−(x, 0), f

′
+(x, 0) denote the left and the right derivatives of f at 0,

respectively, and λ1 is the first eigenvalue of Robin problem of −Δp;

(g2) let (a, b) = (f ′
+(x, 0) − α, f ′

−(x, 0) − α). For (a, b) ∈ R2, the problem

−Δpu = a(u+)p−1 − b
(
u−)p−1, in Ω,

|∇u|p−2 ∂u
∂ν

+ b(x)|u|p−2u = 0, on ∂Ω,
(1.6)

only has trivial solution 0, where u±(x) = max{±u, 0}.
In this case, we have the following.

Theorem 1.3. Assume that (f1), (f5), (g1), (g2) hold. Then one has at least four nontrivial solutions
of problem (p2).

Furthermore, we give the following stronger assumption:

(F ′) F(x, t) > [(λ2 + α + ε0)/p + C̃]tp, |t| ≥ M, F(x, u) =
∫u
0 f(x, s)ds, u ∈ E2, where E2 =

{u ∈ W1,p(Ω) : u = kϕ1 + tϕ2}, C̃ 
 (C2/2)‖b(x)‖L∞(∂Ω). Here C is the imbedding
constant of Sobolev Trace Theorem (see [6]),M is large enough, ε0 is small enough,
λ2 is the second of the eigenvalue problems with Robin boundary value condition,
and ϕ1, ϕ2 are the first and the second eigenfunction, respectively.

Then we have the following.

Corollary 1.4. Assume that f is satisfied as in Theorem 1.3 and (F ′), then one can have infinitely
many sign-changing solutions for (p2) which are of mountain pass type or not mountain pass type but
with positive local degree.

In the oscillating problems of Robin boundary, a.e., (f2) holds. We make the following
assumption.

(F ′′)
∫
Ω F(x, tϕ1)dx ≥ ((λ1 + α + ε0)/p + C̃)tp

∫
Ω ϕ

p

1dx, |t| ≥ M, where ϕ1 is the first
eigenvalue of the Robin problem and

∫
Ω ϕ

p

1dx = 1.

Then we have the following.

Theorem 1.5. Assume that f is satisfied as in Theorem 1.3 and (f2), (F ′′), one can get infinitely
many nontrivial solutions of problem (p2). Some of them are minimum points; others are mountain
pass points.

2. Preliminaries

Now we recall the notion of critical groups of an isolated critical point u of a C1 functional J
briefly. LetU ⊂ M be an isolated neighborhood of u such that there are no critical points of J
in U \ {u};M is a Banach space. The critical groups of u are defined as

Cq(J, u) = Hq(Jc ∩U, (Jc \ {u}) ∩U;G), q = 0, 1, 2, . . ., (2.1)
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where c = J(u) and Jc = {u ∈ M|J(u) ≤ c} is a level set of J and Hq(X, Y ;G) are singular
relative homology groups with a Abelian coefficient group G, Y ⊂ X, q = 0, 1, 2, . . .. They are
independent of the choices of U, hence are well defined. Use Hq(X;G) to stand for the qth
singular cohomology group with an Abelian coefficient group G; from now on we denote it
by Hq(X). Assume that J ∈ C2(M,R), and a critical point u is called nondegenerate if the
Hessian J ′′(u) at this point has a bounded inverse. Let u be a nondegenerate critical point of
J ; we call the dimension of the negative space corresponding to the spectral decomposition
of J ′′(u), that is, the dimension of the subspace of negative eigenvectors of J ′′(u), the Morse
index of u, and denote it by ind(J ′′(u)). If C1(J, u)/= 0, then we call an isolated critical point u
of J as a mountain pass point. For the details, we refer to [7].

We have the following basic facts on the critical groups for an isolated critical point
of J .

(a) Let u be is an isolated minimum point of J , then Cq(J, u) = δq0G.

(b) If J ∈ C2(M,R) and u is a nondegenerate critical point of J with Morse index j, then
Cq(J, u) = δqjG.

Definition 2.1. If any sequence {uk} ⊂ M which satisfies J(uk) → c and J ′(uk) → 0 (k → ∞)
has a convergent subsequence, one says that J satisfies the (PS)c condition. If J satisfies (PS)c
condition for all c ∈ R, one says that J satisfies the (PS) condition.

Lemma 2.2 (see [8]). Assume that u and u are, respectively, lower and upper solutions for the
problem

−Δpu = g(x, u), in Ω,

|∇u|p−2 ∂u
∂ν

+ b(x)|u|p−2u = 0, on ∂Ω,

(2.2)

with u ≤ u a.e. in Ω, where g(x, s) is a Carathéodory function on Ω × R with the property that, for
any s0 > 0, there exists a constant A such that |g(x, s)| ≤ A for a.e. x ∈ Ω and all s ∈ [−s0, s0].
Consider the associated functional

Φ(u) :=
1
p

∫
Ω
|∇u|p −

∫
Ω
G(x, u), (2.3)

where G(x, u) :=
∫s
0 g(x, t)dt and the intervalM := {u ∈ W1,P(Ω) : u ≤ u ≤ u a.e. in Ω}. Then the

infimum of Φ onM is achieved at some u, and such a u is a solution of the above problem.

In what follows, we set X = W1,p(Ω) which is is uniformly convex (1 < p < ∞) and
equipped with the norm ‖u‖ = (

∫
Ω |∇u|pdx+(m+α)

∫
Ω |u|pdx)1/p. Let E be a Hilbert space and

PE ⊂ E a closed convex cone such that X is densely embedded in E. Assume that P = X ∩ PE,
P has nonempty interior Ṗ and any order interval is bounded. It is well known that (PS)
condition implies the compactness of the critical set at each level c ∈ R, on the case of the
above condition. Then we assume the following:

(J1) J ∈ C2(E,R) and satisfies (PS) condition in E and deformation property in X;
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(J2) ∇J = id − KE, where KE : E → E is compact. KE(X) ⊂ X and the restriction
K = KE|X : X → X is of classC1 and strongly preserving, that is, u 
 v ⇔ u−v ∈ Ṗ ;

(J3) J is bounded from below on any order interval in X.

Lemma 2.3 (Mountain pass theorem in half-order intervals, sup-solutions case (see [9])).
Suppose that J satisfies (J1)–(J3). v1 < v2 is a pair of strict supersolution of ∇J = 0. v0 < v1 is
a subsolution of ∇J = 0. Suppose that [v0, v1] and [v0, v2] are admissible invariant sets for J . If J
has a local strict minimizer w in [v0, v2] \ [v0, v1]. Then J has mountain pass points u0 in [v0, v2]\
[v0, v1].

Lemma 2.4 (Mountain pass theorem in order intervals (see [10])). Suppose that J satisfies (J1)–
(J3) and {v1, v2},{ω1, ω2} are two pairs of strict sub-sup solutions of ∇J = 0 in X with v1 < ω2,
[v1, v2] ∩ [ω1, ω2] = ∅. Then J has a mountain pass point u0,u0 ∈ [v1, ω2] \ ([v1, v2] ∪ [ω1, ω2]).
More precisely, let v0 be the maximal minimizer of J in [v1, v2] and ω0 the minimal minimizer of J in
[ω1, ω2]. Then v0 � u0 � ω0. Moreover, C1(J, u0), the critical group of J at u0, is nontrivial.

Remark 2.5. (a) Lemma 2.4 still holds if J ∈ C1(E,R), K is of class C0 (see [10]).
(b) For X = W1,p(Ω), we define gp(t) := |t|p−2t. From assumption (f5), there exists

m > α such that f(x, u) − α|u|p−2u +mgp(u) is strictly increasing in u. The assumption is not
essential but is assumed for simplicity. If such m does not exist then we can approximate f

by a sequence of functions so that m as above exists, and obtain the solutions by passing to
limits. For m > α, we need the operator

Am : X −→ X, Am(u) =
(−Δp +mgp(·)

)−1((x, u) +mgp(u)
)
. (2.4)

From [11], we know that Am is compact, that is, it is continuous and maps bounded subsets
of X into relatively compact subsets of X. Since −Δpu +mgp(u) is a positive operator,

K :=
(−Δpu +mgp(u)

)−1(
f(x, u) − α|u|p−2u +mgp(u)

)
(2.5)

is strongly orderpreserving. From the above discussion, we have the mountain pass theorem
in order intervals of J1 and J2.

Next, let us recall some notions and known results on Fucı́k spectrum.
The Fucı́k spectrum of p-Laplacian on W1,p(Ω) is defined as the set Σp of those points

(a, b) ∈ R2 for which the problem

−Δpu = a(u+)p−1 − b
(
u−)p−1, u ∈ W1,p(Ω) (2.6)

has nontrivial solutions. Here u±(x) = max{±u, 0}.
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For the semilinear case p = 2, it is known that Σ2 consists, at least locally, of curves
emanating from the points (λl, λl) where {λl}l∈N are the distinct eigenvalues of −Δ (see, e.g.,
[12]). It was shown in Schechter [13] that Σ2 contains continuous and strictly decreasing
curves Cl1 , Cl2 through (λl, λl) such that the points in the square Ql = (λl−1, λl+1)2 that are
either below the lower curve Cl1 or above the upper curve Cl2 are free of Σ2, while the points
on the curves are in Σ2 when they do not coincide. The points in the region between the
curves may or may not belong to Σ2.

As shown in Lindqvist [14] that the first eigenvalue λ1 of −Δp is positive, simple and
admits a strictly positive eigenfunction ϕ1, so Σp contains the two lines λ1 × R and R × λ1.
This generalized notion of spectrumwas introduced for the semilinear case p = 2 in the 1970s
by Fucı́k [12] in connection with jumping nonlinearities. A first nontrivial curve C2 in Σp

through (λ2, λ2) that is continuous, strictly decreasing, and asymptotic to λ1 × R and R × λ1

at infinity was constructed and variationally characterized by a mountain-pass procedure in
Cuesta et al. [15].

Consider the problem

−Δpu = a
[
(u − c)+

]p−1 − b
[
(u − c)−

]p−1
, in Ω,

∂u

∂ν
= 0, on ∂Ω,

(2.7)

−Δpu = a(u+)p−1 − b
(
u−)p−1, in Ω,

|∇u|p−2 ∂u
∂ν

+ b(x)|u|p−2u = 0, on ∂Ω,

(2.8)

from the variational point of view; solutions of (2.7) and (2.8) are the critical points of the
functional

I1(u) = I1(u, a, b) =
∫
Ω

(
|∇u|p − a

[
(u − c)+

]p − b
[
(u − c)−

]p)
dx,

I2(u) = I2(u, a, b) =
∫
Ω

(|∇u|p − a(u+)p − b
(
u−)p)dx +

1
p

∫
∂Ω

b(x)|u|pds,
(2.9)

respectively, where c is a constant.
If (a, b) does not belong to Σp, c is the constant solution of (2.7), that is, c is an isolated

critical point of I1; 0 is the trivial solution of (2.8), that is, 0 is an isolated critical point of
I2, then from the definition of critical group, we have the Cq(I1, c) and Cq(I2, 0) defined, q =
0, 1, 2, . . .. Now, we give some results relative to the computation of the critical groups which
are the results of Dancer and Perera [16]. Let C11 = ((−∞, λ1] × λ1) ∪ (λ1 × (−∞, λ1)) and
C12 = (λ1 × [λ1,+∞)) ∪ ((λ1,+∞) × λ1).
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Lemma 2.6. (i) If (a, b) lies below C11, then Cq(I, c) = δq0Z.
(ii) If (a, b) lies between C11 and C12, then Cq(I, c) = 0 for all q.
(iii) If (a, b) lies between C12 and C2, then Cq(I, c) = δq1Z.
(iv) If (a, b) does not belong to Σp, but lies above C2, then Cq(I, c) = 0 for q = 0, 1.

Denote

Is(u) =
∫
Ω
|∇u|p − s

∣∣(u − c)+
∣∣p, u ∈ X, (2.10)

and Ĩs is the restriction of Is to the C1 manifold

S =
{
u ∈ X :

∫
Ω
|u − c|p = 1

}
. (2.11)

As noted in [16], the critical groups of I are related to the homology groups of sublevel sets
of Ĩa−b. We have that

I|S = Ĩa−b − b, (2.12)

so the sublevel sets

Id = {u ∈ X : I(u) ≤ d}, Ĩds =
{
u ∈ S : Ĩs ≤ d

}
(2.13)

are related by

Id ∩ S = Ĩd+ba−b . (2.14)

Lemma 2.7. If (a, b) does not belong to Σp, then

Cq(I, c) ∼=
⎧⎨
⎩
δq0Z, if Ĩb

a−b = ∅,
H̃q−1

(
Ĩb
a−b

)
, otherwise,

(2.15)

where H̃q denote reduced homology groups. It also holds with Ĩba−b replaced by ©b = {u ∈ S :
Ĩa−b(u) > b}.
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3. The Proof of the Main Results

Let

fi(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t < 0,

f(x, t), 0 ≤ t ≤ ai,

f(x, ai), t > ai.

Fi(x, t) =
∫ t

0
fi(x, s)ds

J1i(u) =
1
p

∫
Ω
|∇u|pdx +

α

p

∫
Ω
|u|pdx −

∫
Ω
Fi(x, u)dx.

(3.1)

It is well known that critical points of J1i correspond to weak solutions of the following
equation:

−Δpu + α|u|p−2u = fi(x, u), in Ω,

∂u

∂ν
= 0, on ∂Ω.

(p′)

We have that fi(x, t) ∈ C0(R,R) and J1i ∈ C1(E,R). We can discuss similar case for bi.
Next, we give the relation of the solutions of (p′) and the solutions of (p1), that is,

Lemma 3.2 below. In order to prove Lemma 3.2, we firstly give the comparison principle.
Let

Lp := −Δp + a(x)|u|p−2u,

λ1,p(a) = inf
{∫

Ω

[|∇u|p + a(x)|u|p]dx, u ∈ W
1,p
0 (Ω),

∫
Ω
|u|pdx = 1

}
.

(3.2)

Lemma 3.1 (comparison principle (see [17])). Assume a ∈ L∞(Ω), λ1,p(a) > 0. The Lpu ∈
L∞(Ω) with u|∂Ω ∈ C1+α(∂Ω), and Lpu ≤ 0 with u ∈ W1,p(Ω) ∩ L∞(Ω), then u ≤ 0.

Lemma 3.2. If ui(x) is a solution of (p′), then ui(x) is also a solution of (p1) and satisfies 0 ≤
ui(x) ≤ ai, i = 1, 2, . . ..

Proof. Suppose that the conclusion is false. Now, consider the domain Ui = {x ∈ Ω | ui(x) >
ai}, then we have

−Δpu = fi(x, u) − α|u|p−2u ≤ 0, in Ui,

u = ai, on ∂Ui,
(3.3)

where −Δpu = fi(x, u) − α|u|p−2u = f(x, ai) − α|u|p−2u ≤ f(x, ai) − αa
p−1
i = 0, x ∈ Ui by the

definition of fi(x, u). By the comparison principle, we can conclude that ui(x) ≤ 0 in Ui. It is
a contradiction, so we have that Ui = ∅, that is, ui(x) ≤ ai.

Similarly, we consider Vi = {x ∈ Ω | ui(x) < 0}, by the comparison principle; we also
get the contradiction, so we have that Vi = ∅, that is, ui(x) ≥ 0. From the above discussion, we



10 Boundary Value Problems

have that 0 ≤ ui(x) ≤ ai, i = 1, 2, . . . and fi(x, u) = f(x, ui), so ui(x) is a solution of (p1). This
completes the proof of the lemma.

Remark 3.3. From the above discussion, by applying Lemma 3.2, we know that solutions of
(p′) are also the solutions of (p1) if we want to prove Theorem 1.1, we only need to prove that
(p′) has infinitely many nonconstant solutions under the assumptions as in Theorem 1.1 and
(p′) has two nonconstant solutions in every order interval.

Theorem 3.4. There are infinitely many nonconstant solutions of (p′). Moreover, if there exists some
order intervals which have two pairs of strict constant sub-sup solutions, then there are at least two
nonconstant solutions in these order intervals.

Proof. We treat the case of ai; the other case of bi is proved by a similar argument.
If (f2) holds, then

−Δpai = 0 = fi(x, ai) − αa
p−1
i , for a.e. x ∈ Ω, (3.4)

so {ai} are all positive constant solutions of (p′). Assuming that i is large enough and i is an
even number, we also infer that {a2k−1} are local minimums, k = 1, 2, . . . , i/2. So we get u2k−1
and u2k−1 a strict subsolution and sup-solution pair for (p′), satisfying u2k−1 < a2k−1 < u2k−1
for each k, k = 1, 2, . . . , i/2.

Now, we study the order interval [u1, u3] in X which includes two suborder intervals
[u1, u1] and [u3, u3], a2 ∈ [u1, u3].

We infer that J1i(u) satisfies deformation properties and is bounded from below on
[u1, u3] and so we get a mountain pass point u1 ∈ [u1, u3] \ ([u1, u1] ∪ [u3, u3]) according to
mountain pass theorem in order interval, we have that C1(J1i, u1) is nontrivial.

From assumption (f3), we know that the left and the right derivatives of fi at a2 are
different; we consider the problem

−Δpu = fi(x, u) − α|u|p−2u, in Ω,

∂u

∂ν
= 0, on ∂Ω,

(3.5)

where fi ∈ C(Ω × R) and as u → a2 we have

fi(x, u) − α|u|p−2u =
(
f ′
i+(x, a2) − α

)[
(u − a2)+

]p−1

− (
f ′
i−(x, a2) − α

)[
(u − a2)−

]p−1 + ◦
(
|u − a2|p−1

)
.

(3.6)

We take a = f ′
i+(x, a2) − α,b = f ′

i−(x, a2) − α, then from assumption (f4) and the definition of
Σp, we know that (a, b) does not belong to Σp. So, we have the following.

(1) If (a, b) does not belong to Σp, but lies above C2, then

Cq(J1i, a2) = 0 for q = 0, 1 (3.7)
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by Lemma 2.6(iv). In this case, C1(J1i, a2) = 0, so Cq(J1i, a2) � Cq(J1i, u1), and we
have u1 /=a2.

(2) Denote

Ja−b(u) =
∫
Ω
|∇u|p − (a − b)

∣∣(u − a2)+
∣∣p, u ∈ X, (3.8)

and J̃a−b is the restriction of Ja−b to the C1 manifold

S =
{
u ∈ X :

∫
Ω
|u − a2|p = 1

}
, (3.9)

where a = f ′
i+(x, a2) − α,b = f ′

i−(x, a2) − α as shown above.

From (f4), we know that (a, b) does not belong to Σp, and if J̃a−b(u) > b, a.e. J̃ b
a−b = ∅,

then

Cq(J1i, a2) = δq0Z (3.10)

by Lemma 2.7. In this case, C1(J1i, a2) = 0, so Cq(J1i, a2) � Cq(J1i, u1), and we have u1 /=a2.
Similarly, applying the mountain pass theorem in order interval to [u3, u5] which

contain two sub-order intervals [u3, u3] and [u5, u5], we get a mountain pass point u2 and
prove that Cq(J1i, a4) � Cq(J1i, u2), so u2 /=a4 from Lemmas 2.6 and 2.7.

We let the procedure go on. So i/2 − 1 mountain pass points are available which are
nonconstant solutions of (p′), where i is large enough and i is an even number. Then we have
infinitely many nonconstant positive solutions of (p′) by the arbitrary of i.

We can discuss the similar case for bi and get infinitely many nonconstant negative
solutions.

Now, we discuss the solutions in [u1, u3] more deeply. Since u1 is a mountain pass
point, for the Leray-Schauder degree of id −Ki, we have the computing formular

deg
(
id −Ki, B(u1, r), 0

)
= −1, (3.11)

where r > 0 is small enough, Ki = (−Δp + (m + α)gp(·))−1f∗
i |X : X → X is of class C0

and strongly preserving, f∗
i (x, u) = fi(x, u) +mgp(u) (see Remark 2.5(b)). Then according to

Poincaré-Hopf formular for C1 case and the computation of Cq(J1i, a2), we have

index(J1i, a2) = (−1)l. (3.12)

Furthermore, for minimum points a1, a3,

Cq(J1i, a1) ∼= δq0G, Cq(J1i, a3) ∼= δq0G. (3.13)
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From the additivity of Leray-Schauder degree and Theorem 1.1 in [10], we can get

1 = deg
(
id −Ki,

[
u1, u3

]
, 0
)

= deg
(
id −Ki,

[
u1, u1

]
, 0
)
+ deg

(
id −Ki,

[
u3, u3

]
, 0
)
+ deg

(
id −Ki, B(a2, r), 0

)

+ deg
(
id −Ki, B(u1, r), 0

)

= 1 + 1 + (−1)l + (−1).

(3.14)

So we have (−1)l = 1. It is impossible. From the above discussion, we conclude that there
must exist another critical point u∗

1 ∈ [u1, u3], which satisfies u∗
1 /=u1 and is nonconstant.

Similarly, we can discuss the order interval [u3, u5], and we get another critical point
u∗
2 /= u2. We let the procedure go on.

This completes the proof of Theorem 3.4.

Thus, we prove that the conclusion of Theorem 1.1 holds.

The Proof of Corollaries 1.2 and 1.4.

Proof. See Theorem 3.5 of Li [1].

Proof of Theorem 1.3. From the variational point of view, solutions of (p2) are the critical points
of the functional

J2(u) =
1
p

∫
Ω
|∇u|pdx +

α

p

∫
Ω
|u|pdx +

1
p

∫
∂Ω

b(x)|u|pds −
∫
Ω
F(x, u)dx, (3.15)

defined on X := W1,p(Ω), where F(x, u) =
∫u
0 f(x, s)ds.

We show that J2 belongs to C1(X,R). In fact, we set

J21(u) =
1
p

∫
Ω
|∇u|pdx +

α

p

∫
Ω
|u|pdx −

∫
Ω
F(x, u)dx, J22(u) =

1
p

∫
∂Ω

b(x)|u|pds. (3.16)

Under the condition (f1), it is well known that J21 is a C1-functional. Next, we consider J22. If
we let u, v ∈ X, 0 < |t| < 1,

[J22(u + tv) − J22(u)]
t

=
∫
∂Ω

b(x)|u|p−2uv ds +
∑
q≥2

C
q
p

p
tq−1

∫
∂Ω

b(x)|u|p−q|v|qds

−→
∫
∂Ω

b(x)|u|p−2uv ds, (t −→ 0).

(3.17)

So we have that J22 has a Gateaux derivative and 〈J ′22(u), v〉 =
∫
∂Ω b(x)|u|p−2uv ds.
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Let un → u in X; now, by Hölder’s and Sobolev’s inequalities we can estimate

∣∣〈J ′22(un) − J ′22(u), v
〉∣∣ =

∣∣∣∣
∫
∂Ω

b(x)
(
|un|p−2un − |u|p−2u

)
v ds

∣∣∣∣

≤ ‖b‖L∞(∂Ω)

∫
∂Ω

∣∣∣(|un|p−2un − |u|p−2u
)
v
∣∣∣ds

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c‖b‖L∞(∂Ω)

∫
∂Ω
(|un| + |u|)p−2|un − u||v|ds if p ≥ 2,

c‖b‖L∞(∂Ω)

∫
∂Ω
|un − u|p−1|v|ds if p < 2,

≤

⎧⎪⎨
⎪⎩
c‖b‖L∞(∂Ω)‖T(un − u)‖Lp′ (∂Ω)‖Tv‖Lp(∂Ω) if p ≥ 2,

c‖b‖L∞(∂Ω)‖T(un − u)‖p−1Lp(∂Ω)‖Tv‖Lp(∂Ω) if p < 2,

(3.18)

but, when p ≥ 2, p′ = p/(p − 1) ≤ p, we have ‖u‖Lp′ ≤ ‖u‖Lp , then we have

∣∣〈J ′22(un) − J ′22(u), v〉
∣∣ ≤

⎧⎪⎨
⎪⎩
c‖b‖L∞(∂Ω)‖T(un − u)‖Lp(∂Ω)‖Tv‖Lp(∂Ω) if p ≥ 2,

c‖b‖L∞(∂Ω)‖T(un − u)‖p−1Lp(∂Ω)‖Tv‖Lp(∂Ω) if p < 2,

≤

⎧⎪⎨
⎪⎩
c‖b‖L∞(∂Ω)‖un − u‖W1,p(Ω)‖v‖W1,p(Ω) if p ≥ 2,

c‖b‖L∞(∂Ω)‖un − u‖p−1
W1,p(Ω)‖v‖W1,p(Ω) if p < 2,

(3.19)

where 1/p + 1/p′ = 1, T : W1,p(Ω) → Lp(∂Ω) is trace operator, and ‖Tu‖Lp(∂Ω) ≤ C‖u‖W1,p(Ω)

for all u ∈ W1,p(Ω) with the constant C depending on Ω by Sobolev Trace Theorem (see [6]).
To get (3.18), we have used the following well-known inequalities:

∣∣∣|u|p−2u − |v|p−2v
∣∣∣ ≤

⎧⎨
⎩
c(|u| + |v|)p−2|u − v| if p ≥ 2,

c|u − v|p−1 if p < 2,
(3.20)

which hold for a convenient c > 0, u, v ∈ Rn. So

∥∥J ′22(un) − J ′22(u)
∥∥ ≤

⎧⎨
⎩
c‖b‖L∞(∂Ω)‖un − u‖W1,p(Ω) if p ≥ 2,

c‖b‖L∞(∂Ω)‖un − u‖p−1
W1,p(Ω) if p < 2.

−→ 0, (n −→ ∞). (3.21)

So J ′22(u) is continuous and J2 ∈ C1(X,R).
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Consider the truncated functions

f̃(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t ≤ −M2,

f(x, t), −M2 ≤ t ≤ M1,

0, t ≥ M1

(3.22)

and the corresponding functional

J̃(u) =
1
p

∫
Ω
|∇u|pdx +

α

p

∫
Ω
|u|pdx +

1
p

∫
∂Ω

b(x)|u|pds −
∫
Ω
F̃(x, u)dx, (3.23)

F̃(x, t) =
∫ t
0 f̃(x, s)ds.

From Perera [18] we have that J̃ satisfies (PS) condition. From the deformation
theorem, we know that J̃ satisfies deformation property when J̃ satisfies (PS) condition. By
a similar discussion as in Theorem 1.1, we only need to discuss the critical points of J̃ .

Now, we construct the sub-sup solutions of (p2). It is easy to see that M1 is a constant
sup-solution of (p2) and −M2 is a constant subsolution. Moreover, we consider εϕ1 for all
ε > 0 small enough. From [14] we know that ϕ1(x) > 0, x ∈ Ω. In fact, with u := εϕ1, by (g1)
we have

−Δpu + α
∣∣u∣∣p−2u − f

(
x, u

)
= εp−1ϕp−1

1 (x)

⎡
⎣(λ1 + α) − f

(
x, εϕ1

)
εp−1ϕp−1

1

⎤
⎦ ≤ 0. (3.24)

Furthermore, ϕ1 ∈ W1,p(Ω) ∩ L∞(Ω) satisfies −Δpϕ1 = λϕ
p−1
1 in the weak sense, then the

regularity theory for the p-Laplacian (e.g., [19]) implies ϕ1 ∈ C1,α(Ω) for some α = α(n, p) ∈
(0, 1). Moreover ϕ1 ≥ 0. In addition, by the strong maximum principle of [20] and ϕ1 /= 0, then
ϕ1 > 0 in Ω and ∂ϕ1/∂ν < 0 on ∂Ω. So if b(x) is small enough at some point x0 ∈ ∂Ω, we can
have [|∇u|p−2(∂u/∂ν)+b(x)|u|p−2u]|x0 ≤ 0. From the above discussion, we have a sub-solution
of (p2), a.e., εϕ1(x0). With εϕ1 := εϕ1(x0).

By a similar argument we can find that [−M2,−εϕ1] is a pair of strict sub-sup solutions.
Now we study the order interval [−M2,M1] in X which includes two suborder

intervals [−M2,−εϕ1] and [εϕ1,M1]. By Lemma 2.2, there exists weak solutions of (p2)
(relative minimum points) u2, u3 in [−M2,−εϕ1] and [εϕ1,M1], respectively. We can infer
that J̃(u) is bounded from below on [−M2,M1], so we get a mountain pass point u1 ∈
[−M2,M1]\ ([−M2,−εϕ1]∪[εϕ1,M1]) according to mountain pass theorem in order interval.
From the definition of mountain pass point, we have that C1(J̃ , u1) is nontrivial.

From assumption (g2), we know that the left and the right derivatives of f̃ at 0 are
different, we consider the problem

−Δpu = f̃(x, u) − α|u|p−2u, in Ω,

|∇u|p−2 ∂u
∂ν

+ b(x)|u|p−2u = 0, on ∂Ω,
(3.25)
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where f̃ ∈ C(Ω × R), and as u → 0 we have

f̃(x, u) − α|u|p−2u =
(
f̃ ′
+(x, 0) − α

)
(u+)p−1 −

(
f̃ ′
−(x, 0) − α

)(
u−)p−1 + ◦

(
|u|p−1

)
. (3.26)

We take a = f̃ ′
+(x, 0)− α, b = f̃ ′

−(x, 0)− α; then also from assumption (g2) and the definition of
Σp, we know that (a, b) /∈ Σp.

Then we consider the following cases.

(1) If (a, b) does not belong to Σp, but lies above C2, then

Cq

(
J̃ , 0

)
= 0 for q = 0, 1 (3.27)

by Lemma 2.6(iv). In this case, C1(J̃ , 0) = 0, so Cq(J̃ , 0) � Cq(J̃ , u1), we have u1 /= 0.

(2) Denote

Ja−b(u) =
∫
Ω
|∇u|p − (a − b)(u+)p +

∫
∂Ω

b(x)|u|pds, u ∈ X, (3.28)

and J̃a−b is the restriction of Ja−b to the C1 manifold

S =
{
u ∈ X :

∫
Ω
|u|p = 1

}
, (3.29)

where a = f̃ ′
+(x, 0) − α, b = f̃ ′

−(x, 0) − α as shown above.

From (g2), we know that (a, b) does not belong to Σp, if J̃a−b(u) > b, a.e. J̃ b
a−b = ∅, then

Cq

(
J̃ , 0

)
= δq0Z (3.30)

by Lemma 2.7. In this case, C1(J̃ , 0) = 0, so Cq(J̃ , 0) � Cq(J̃ , u1), and we have u1 /= 0.
Now, we discuss the solutions in [−M2,M1] more deeply. We already have four

solutions 0, u1, u2, u3, where u1 is the mountain pass point and u2, u3 are the local minimum
points of J2. For the minimum points u2, u3, we have

Cq

(
J̃ , u2

) ∼= δq0G, Cq

(
J̃ , u3

) ∼= δq0G. (3.31)

Since u1 is a mountain pass point, for the Leray-Schauder degree of id − K̃, we have
the computing formular

deg
(
id − K̃, B(u1, r), 0

)
= −1, (3.32)

where r > 0 is small enough, K̃ = (−Δp + (m + α)gp(·))−1f∗|X : X → X is of class C0 and
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strongly order preserving, f∗(x, u) = f(x, u) + mgp(u) (see Remark 2.5(b)). Then according
to Poincaré-Hopf formula for C1 case and the computation of Cq(J̃ , 0), we have

index
(
J̃ , 0

)
= (−1)dl−1 . (3.33)

From the additivity of Leray-Schauder degree and Theorem 1.1 in [10], we can get

1 = deg
(
id − K̃, [−M,M], 0

)

= deg
(
id − K̃,

[−M,−εϕ1
]
, 0
)
+ deg

(
id − K̃,

[
εϕ1,M

]
, 0
)

+ deg
(
id − K̃, B(0, r), 0

)
+ deg

(
id − K̃, B(u1, r), 0

)

= 1 + 1 + (−1)dl−1 + (−1).

(3.34)

It is impossible. From the above discussion, we conclude that there must exist another critical
point u∗ ∈ [−M2,M1], which satisfies u∗ /=u1 and is nontrivial.

This completes the proof of Theorem 1.3.

Proof of Theorem 1.5. Consider the truncated function

fi(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t < 0,

f(x, t), 0 ≤ t ≤ ai,

f(x, ai), t > ai.

(3.35)

Corresponding functional is

Ji(u) =
1
p

∫
Ω
|∇u|pdx +

α

p

∫
Ω
|u|pdx +

1
p

∫
∂Ω

b(x)|u|pds −
∫
Ω
Fi(x, u)dx, (3.36)

where Fi(x, u) =
∫u
0 fi(x, s)ds, i = 1, 2, . . ..

It is known that the solution of (p2) is also a solution of the following equation as in
the same discussion in Lemma 3.2:

−Δpu + α|u|p−2u = fi(x, u), in Ω,

|∇u|p−2 ∂u
∂ν

+ b(x)|u|p−2u = 0, on ∂Ω.
(3.37)
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By the standard argument we know that Ji satisfies (J1)–(J3) and the order intervals consisted
by sub-super-solutions are admissible invariant set of Ji. Taking v0 = −M2, v1 = a1 > 0, then
Ji(u) has a minimizer u1 ∈ [v0, v1]. By assumption (F ′′)there exists a t1 > 0 such that

J2
(
t1ϕ1

)
=
t
p

1

p

∫
Ω

∣∣∇ϕ1
∣∣pdx +

α

p
t
p

1

∫
Ω
ϕ1

pdx +
t
p

1

p

∫
∂Ω

b(x)ϕ1
pds −

∫
Ω
F
(
x, t1ϕ1

)
dx

≤ (λ1 + α)tp1
p

∫
Ω
ϕ1

pdx −

(
λ1 + α + ε0 + C̃

)
t
p

1

p

∫
Ω

ϕ1
pdx < J2(u1).

(3.38)

If we take v2 = an1 > t1ϕ1, where n1 < i, then

Ji
(
t1ϕ1

)
= J2

(
t1ϕ1

)
< Ji(u1) (3.39)

which implies that Ji(u) has a minimizer u2 ∈ [v0, v2] \ [v0, v1] such that Ji(u2) < Ji(u1). By
Lemma 2.3 we get a mountain pass point u3. Moreover, v0 < ui < v2, i = 1, 2, 3, and ui are
positive.

Next, we take v1 = an1 , v0 = εϕ1. Then Ji(u) has a minimizer u2 ∈ [v0, v1]. By
assumption (F ′′) there is a t2 > 0 such that

J2
(
t2ϕ1

)
< J2(u2). (3.40)

If we take v2 = an2 > t2ϕ1, where n2 < i, then

Ji
(
t2ϕ1

)
= J2

(
t2ϕ1

)
< Ji(u2) (3.41)

which implies that Ji(u) has a minimizer u4 ∈ [v0, v2] \ [v0, v1] such that Ji(u4) < Ji(u2). By
Lemma 2.3 we get a mountain pass point u5. Moreover, v0 < ui < v2, i = 1, 2, 3, 4, 5, and ui are
all positive. Continue making the procedure we obtain the result.

The proof is complete.

Corollary 3.5. Moreover, (p1) has infinitely many nonconstant negative energy solutions {uk},
which are mountain pass types, if the conditions as in Theorem 1.1 hold and J1(a2k) → −∞ or
J1(b2k) → −∞ as k → +∞.

Proof. Assume that J1(a2k) → −∞ as k → +∞. Let c = infγ∈Γmaxγ(I)∩SJ1(u(t)), where Γ =
{γ ∈ C(I,W)|γ(0) = a2k−1, γ(1) = a2k+1}, and I = [0, 1], S = W \ (W1 ∪W2),W = [u2k−1, u2k+1],
W1 = [u2k−1, u2k−1], W2 = [u2k+1, u2k+1], c∗ = J(a2k), k = 1, 2, . . .. We discuss the problem
in W which have two minimum points a2k−1 and a2k+1. We have that a2k−1 and a2k+1 are in
the same radial direction A = {ke1 | k ∈ R}, e1 is the first eigenvalue function of (−Δp + α)
with Neumann boundary. In fact, e1 is a constant. We conclude that c∗ ≥ c (see Corollary 3.4
of C. Li and S. Li [21]). Furthermore, if (f3), (f4) hold, then c∗ > c. In fact, if c∗ = c, then
c∗ = maxu∈γ ∗(I)∩SJ(u) = infγ∈Γmaxγ(I)∩SJ(u(t)) = J(a2k), where γ ∗ is a special path between
a2k−1 and a2k+1, which is a path of radial direction A = {ke1 | k ∈ R}. So a2k is a mountain
pass point. But according to assumptions (f3) and (f4), we know that C1(J1, a2k) = 0, (l /= 2),
that is, a2k is not a mountain pass type. This is a contradiction. We draw the conclusion.



18 Boundary Value Problems

Remark 3.6. In Theorems 1.3 and 3.4, we can deal with the case in which (a, b) lies above C2,
but when (a, b) lies between C12 and C2, then

Cq(J1i, a2) ∼=
⎧⎨
⎩
Z, q = 1,

0, q /= 1,
∼= Cq(J1i, u1),

Cq

(
J̃ , 0

) ∼=
⎧⎨
⎩
Z, q = 1,

0, q /= 1,
∼= Cq

(
J̃ , u1

)
,

(3.42)

we cannot distinguish u1 from a2 and 0, then there may not be nonconstant solutions and
nontrivial solutions to (p1) and (p2).

Remark 3.7. If we give the assumption

(F̃)
∫
Ω F(x, u)dx > ((μ2 + ε0)/2)

∫
Ω u2dx, as ‖u‖ ≥ M, u ∈ E2, where E2 = {u ∈ E |

u = k1e1 + k2e2}, e1, e2 are the first and the second eigenfunctions of (−Δp + α} with
Neumann boundary, respectively, for all k1, k2 ∈ R, ‖e1‖ = ‖e2‖ = 1, ε0 > 0, and M
is large enough,

then under (f1)–(f5) and (F̃), we can obtain infinitely many nonconstant positive, negative,
and sign-changing solutions of (p1).

As a matter of fact, we can infer (F̃) from (F).
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