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This paper deals with a predator-prey model with Beddington-DeAngelis functional response
under homogeneous Neumann boundary conditions. We mainly discuss the following three
problems: (1) stability of the nonnegative constant steady states for the reaction-diffusion system;
(2) the existence of Turing patterns; (3) the existence of stationary patterns created by cross-
diffusion.

1. Introduction

Consider the following predator-prey system with diffusion:

ut − d1Δu = r1u
(
1 − u

K

)
− fv, x ∈ Ω, t > 0,

vt − d2Δv = r2v
(
1 − v

δu

)
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where Ω ⊂ �
N is a bounded domain with smooth boundary ∂Ω and ν is the outward

unit normal vector of the boundary ∂Ω. In the system (1.1), u(x, t) and v(x, t) represent
the densities of the species prey and predator, respectively, u0(x) and v0(x) are given
smooth functions on Ω which satisfy compatibility conditions. The constants d1, d2, called



2 Boundary Value Problems

diffusion coefficients, are positive, r1 and r2 are the intrinsic growth rates of the prey
and predator, K denotes the carrying capacity of the prey, and δu represents the carrying
capacity of the predator, which is in proportion to the prey density. The function f is a
functional response function. The parameters r1, r2, K, and δ are all positive constants. The
homogeneous Neumann boundary conditions indicate that the system is self-contained with
zero population flux across the boundary. For more ecological backgrounds about this model,
one can refer to [1–6].

In recent years there has been considerable interest in investigating the system (1.1)
with the prey-dependent functional response (i.e., f is only a function of u). In [5, 6], Du,
Hsu and Wang investigated the global stability of the unique positive constant steady state
and gained some important conclusions about pattern formation for (1.1) with Leslie-Gower
functional response (i.e., f = βu). In [7, 8], Peng and Wang studied the long time behavior of
time-dependent solutions and the global stability of the positive constant steady state for (1.1)
with Holling-Tanner-type functional response (i.e., f = βu/(m + u)). They also established
some results for the existence and nonexistence of non-constant positive steady states with
respect to diffusion and cross-diffusion rates. In [9], Ko and Ryu investigated system (1.1)
when f satisfies a general hypothesis: f(0) = 0, and there exists a positive constant M
such that 0 < fu(u) ≤ M for all u > 0. They studied the global stability of the positive
constant steady state and derived various conditions for the existence and non-existence of
non-constant positive steady states. When the function f in the system (1.1) takes the form
f = βu/(u + mv) called ratio-dependent functional response, Peng, and Wang [10] studied
the global stability of the unique positive constant steady state and gained several results for
the non-existence of non-constant positive solutions.

It is known that the prey-dependent functional response means that the predation
behavior of the predator is only determined by the prey, which contrasts with some realistic
observations, such as the paradox of enrichment [11, 12]. The ratio-dependent functional
response reflects the mutual interference between predator and prey, but it usually raises
controversy because of the low-density problem [13]. In 1975, Beddington and DeAngelis
[14, 15] proposed a function f = βu/(1 + mu + nv), commonly known as Beddington-
DeAngelis functional response. It has an extra term in the denominator which models mutual
interference between predator and prey. In addition, it avoids the low-density problem.

In this paper, we study the system (1.1) with f = βu/(1 +mu + nv). Using the scaling

r1
K
u −→ u,

r1
Kδ

v −→ v, r1 −→ λ,
Kδ

r1
β −→ β,

K

r1
m −→ m,

Kδ

r1
n −→ n, (1.2)

and taking r2 = 1 for simplicity of calculation, (1.1) becomes

ut − d1Δu = λu − u2 − βuv

1 +mu + nv
� g1(u, v), x ∈ Ω, t > 0,

vt − d2Δv = v
(
1 − v

u

)
� g2(u, v), x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

(1.3)
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It is obvious that (1.3) has two nonnegative constant solutions: the semitrivial solution (λ, 0)
and the unique positive constant solution (u∗, v∗), where

u∗ =
λ(m + n) − 1 − β +

√[
λ(m + n) − 1 − β]2 + 4λ(m + n)

2(m + n)
, v∗ = u∗. (1.4)

In the system (1.3), the Beddington-DeAngelis functional response is used only in the prey
equation, not the predator, and the predator equation contains a Leslie-Gower term v/(δu)
[16]. To our knowledge, there are few known results for (1.3) while there has been relatively
good success for the predator-prey model with the full Beddington-DeAngelis functional
responses. For example, Cantrell and Cosner [17] derived criteria for permanence and for
predator extinction, and Chen and Wang [18] proved the nonexistence and existence of
nonconstant positive steady states.

Taking into account the population fluxes of one species due to the presence of the
other species, we consider the following cross-diffusion system:

ut − d1Δu = λu − u2 − βuv

1 +mu + nv
, x ∈ Ω, t > 0,

vt − d2Δ(1 + d3u)v = v
(
1 − v

u

)
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0. x ∈ Ω,

(1.5)

where Δd2d3uv is a cross-diffusion term. If d3 > 0, the movement of the predator is
directed towards the lower concentration of the prey, which represents that the prey species
congregate and form a huge group to protect themselves from the attack of the predator.
It is clear that such an environment of prey-predator interaction often occurs in reality. For
example, in [19–21], and so forth, with the similar biological interpretation, the authors also
introduced the same cross-diffusion term as in (1.5) to the prey of various prey-predator
models.

The main aim of this paper is to study the effects of the diffusion and cross-
diffusion pressures on the existence of stationary patterns. We will demonstrate that
the unique positive constant steady state (u∗, v∗) for the reduced ODE system is locally
asymptotically stable if a11 < 1, where a11 = 1/β{m(λ − u∗)2 − βu∗}. But (u∗, v∗) can lose its
stability when it is regarded as a stationary solution of the corresponding reaction-diffusion
system (see Theorem 2.5) and Turing patterns can be found as a result of diffusion (see
Theorem 3.5). Moreover, after the cross-diffusion pressure is introduced, even though the
unique positive constant steady state is asymptotically stable for the model without cross-
diffusion, stationary patterns can also exist due to the emergence of cross-diffusion (see
Theorem 4.4). The main conclusions of this paper continue to hold for any positive constant
r2. We also remark here that, there have been some works which are devoted to the studies
of the role of diffusion and cross-diffusion in helping to create stationary patterns from the
biological processes [22–25].
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This paper is organized as follows. In Section 2, we study the long time behavior of
(1.3). In Section 3, we investigate the existence of Turing patterns of (1.3) by using the Leray-
Schauder degree theory. In Section 4, we prove the existence of stationary patterns of (1.5).
We end with a brief section on conclusions.

2. The Long Time Behavior of Time-Dependent Solutions

In this section, we discuss the global behavior of solutions for the system (1.3). By the
standard theory of parabolic equations [26, 27], we can prove that the problem (1.3) has
a unique classical global solution (u, v), which satisfies 0 < u(x, t) ≤ max{λ, supΩu0} and
0 < v(x, t) ≤ max{λ, supΩu0, supΩv0} on Ω × [0,+∞).

2.1. Global Attractor and Permanence

First, we show that �0 � [0, λ] × [0, λ] is a global attractor for (1.3).

Theorem 2.1. Let (u(x, t), v(x, t)) be any non-negative solution of (1.3). Then,

lim
t→+∞

sup
Ω

u(x, t) ≤ λ, lim
t→+∞

sup
Ω

v(x, t) ≤ λ. (2.1)

Proof. The first result of (2.1) follows easily from the comparison argument for parabolic
problems. Then, there exists a constant T 	 0 such that u(x, t) < λ + ε on Ω × [T,+∞) for
an arbitrary constant ε > 0, and thus,

vt − d2Δv ≤ v
(
1 − v

λ + ε

)
, (x, t) ∈ Ω × [T,+∞). (2.2)

Let v(t) be the unique positive solution of

dw

dt
= w
(
1 − w

λ + ε

)
, t ∈ [T,+∞),

w(T) = max
Ω

v(x, T) ≥ 0.
(2.3)

The comparison argument yields

lim
t→+∞

sup
Ω

v(x, t) ≤ lim
t→+∞

v(t) = λ + ε, (2.4)

which implies the second assertion of (2.1) by the continuity as ε → 0.

Theorem 2.2. Assume that β < nλ + 1, then the positive solution (u(x, t), v(x, t)) of (1.3) satisfies

lim
t→+∞

inf
Ω
u(x, t) ≥ K, lim

t→+∞
inf
Ω
v(x, t) ≥ K, (2.5)
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where

K �
1
2m

{
(m − n)λ − 1 +

√
[(m − n)λ − 1]2 + 4mλ

(
1 + nλ − β)

}
. (2.6)

Proof. Since β < nλ+1, there exists a sufficiently small constant ε1 > 0 such that λ+(nλ−β)(λ+
ε1) > 0. In view of Theorem 2.1, there exists a T 	 0 such that v(x, t) < λ + ε1 in Ω × [T,+∞).
Thus we have

ut − d1Δu ≥ −mu2 + (mλ − nλ − nε1 − 1)u + λ +
(
nλ − β)(λ + ε1)

1 +mu + n(λ + ε1)
u (2.7)

for (x, t) ∈ Ω × [T,+∞). Let u(t) be the unique positive solution of

dw

dt
=
−mw2 + (mλ − nλ − nε1 − 1)w + λ +

(
nλ − β)(λ + ε1)

1 +mw + n(λ + ε1)
w, t ∈ [T,+∞),

w(T) = min
Ω

u(x, T) > 0.

(2.8)

Then, limt→+∞infΩ u(x, t) ≥ limt→+∞u(t), where

lim
t→+∞

u(t) =
1
2m

{
(m − n)λ − 1 − nε1 +

√
[(m − n)λ − nε1 − 1]2 + 4m

[
λ +
(
nλ − β)(λ + ε1)

]}
.

(2.9)

By continuity as ε1 → 0, we have limt→+∞infΩu(x, t) ≥ K. Similarly, we can prove the second
result of (2.5).

From Theorems 2.1 and 2.2, we see that the system (1.3) is permanent if β < nλ + 1.

2.2. Local Stability of Nonnegative Equilibria

Now, we consider the stability of non-negative equilibria.

Lemma 2.3. The semi-trivial solution (λ, 0) of (1.3) is unconditionally unstable.

Proof. The linearization matrix of (1.3) at (λ, 0) is

J1 =

⎛
⎝−λ − βλ

1 +mλ
0 1

⎞
⎠. (2.10)

It is easy to see that 1 is an eigenvalue of J1, thus (λ, 0) is unconditionally unstable.
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Now, we discuss the Turing instability of (u∗, v∗). Recall that a constant solution is
Turing unstable if it is stable in the absence of diffusion, and it becomes unstable when
diffusion is present [28]. More precisely, this requires the following two conditions.

(i) It is stable as an equilibrium of the system of ordinary differential equations

du

dt
= g1(u, v),

dv

dt
= g2(u, v), (2.11)

where g1(u, v) and g2(u, v) are given in (1.3).

(ii) It is unstable as a steady state of the reaction-diffusion system (1.3).

Theorem 2.4. If a11 < 1, then the unique positive equilibrium (u∗, v∗) of (2.11) is locally
asymptotically stable. If a11 > 1, then (u∗, v∗) is unstable, where a11 = 1/β[m(λ − u∗)2 − βu∗].

Proof. The linearization matrix of (2.11) at (u∗, v∗) is

J2 =

(
a11 a12

a21 a22

)
, (2.12)

where

a11 =
1
β

[
m(λ − u∗)2 − βu∗

]
, a12 = −(λ − u∗)(1 +mu∗)

1 + (m + n)u∗
, a21 = 1, a22 = −1. (2.13)

A simple calculation shows

det J2 = −a11 − a12 = (m + n)u2∗ + λ
1 + (m + n)u∗

, trace J2 = a11 − 1. (2.14)

Clearly, det J2 > 0. If a11 < 1, then trace J2 < 0. Hence, all eigenvalues of J2 have negative real
parts and (u∗, v∗) is locally asymptotically stable. If a11 > 1, then traceJ2 > 0, which implies
that J2 has two eigenvalues with positive real parts and (u∗, v∗) is unstable.

Similarly as in [23, 29], let 0 = μ1 < μ2 < μ3 < μ4 . . . be the eigenvalues of the
operator −Δ onΩwith the homogeneous Neumann boundary condition, and let E(μi) be the
eigenspace corresponding to μi inH1(Ω). Let {φij : j = 1, 2, . . . ,dimE(μi)} be the orthonormal
basis of E(μi), X = [H1(Ω)]2, Xij = {cφij : c ∈ �2}. Then,

X =
+∞⊕
i=1

Xi, Xi =
dimE(μi)⊕

j=1

Xij . (2.15)

Define i0 as the largest positive integer such that d1μi < a11 for i ≤ i0. Clearly, if

d1μ2 < a11, (2.16)
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then 2 ≤ i0 < +∞. In this case, denote

d̃2 � min
2≤i≤i0

d
(i)
2 , d

(i)
2 �

d1μi + det J2
μi
(
a11 − d1μi

) . (2.17)

The local stability of (u∗, v∗) for (1.3) can be summarized as follows.

Theorem 2.5. (i) Assume that a11 > 1, then (u∗, v∗) is unstable.
(ii) Assume that a11 < 1. Then (u∗, v∗) is locally asymptotically stable if a11 ≤ d1μ2; (u∗, v∗)

is locally asymptotically stable if a11 > d1μ2 and d2 < d̃2; (u∗, v∗) is unstable if a11 > d1μ2 and
d2 > d̃2.

Proof. Consider the following linearization operator of (1.3) at (u∗, v∗):

L =

(
d1Δ + a11 a12

a21 d2Δ + a22

)
, (2.18)

where a11, a12, a21, and a22 are given in (2.13). Suppose (φ(x), ψ(x))T is an eigenfunction of L
corresponding to an eigenvalue μ̃, then

(
d1Δφ +

(
a11 − μ̃

)
φ + a12ψ, d2Δψ + a21φ +

(
a22 − μ̃

)
ψ
)T = (0, 0)T . (2.19)

Setting

φ =
∑

1≤i<+∞, 1≤j≤dimE(μi)

aijφij , ψ =
∑

1≤i<+∞, 1≤j≤dimE(μi)

bijφij , (2.20)

we can find that

∑

1≤i<+∞, 1≤j≤dimE(μi)
Li

(
aij

bij

)
φij = 0, where Li =

(
a11 − d1μi − μ̃ a12

a21 a22 − d2μi − μ̃

)
. (2.21)

It follows that μ̃ is an eigenvalue of L if and only if the determinant of the matrix Li is zero
for some i ≥ 1, that is,

μ̃2 + Piμ̃ +Qi = 0, (2.22)

where

Pi = (d1 + d2)μi − trace J2, Qi = −d2μi
(
a11 − d1μi

)
+ d1μi + det J2. (2.23)

Clearly, Q1 > 0 since μ1 = 0. If a11 > 1, then traceJ2 > 0 and P1 < 0. Hence, L has two
eigenvalues with positive real parts and the steady state (u∗, v∗) is unstable.
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Note that Pi > 0 for all i ≥ 1 if a11 < 1, and Qi > 0 for all i ≥ 1 if a11 ≤ d1μ2. This implies
that Re μ̃ < 0 for all eigenvalue μ̃, and so the steady state (u∗, v∗) is locally asymptotically
stable.

Assume that a11 > d1μ2. If d2 < d̃2, then d1μi < a11 and d2 < d
(i)
2 for i ∈ [2, i0]. It follows

that Qi > 0 for all i ∈ [2, i0]. Furthermore, if i > i0, then d1μi ≥ a11 and Qi > 0. The conclusion
leads to the locally asymptotically stability of (u∗, v∗) again. If d2 > d̃2, then we may assume
that the minimum in (2.17) is attained by k ∈ [2, i0]. Thus, d1μk < a11 and d2 > d

(k)
2 , so we

have Qk < 0. This implies that (u∗, v∗) is unstable.

Remark 2.6. From Theorems 2.4 and 2.5, we can conclude that (u∗, v∗) is Turing unstable if
d1μ2 < a11 < 1 and d2 > d̃2.

2.3. Global Stability of (u∗, v∗)

The following three theorems are the global stability results of the positive constant solution
(u∗, v∗). In the sense of biology, our conclusion of the global stability of (u∗, v∗) implies that, in
some ranges of the parameters λ, β,m, and n, both the prey and the predator will be spatially
homogeneously distributed as time converges to infinity, no matter how quickly or slowly
they diffuse.

Theorem 2.7. Assume that β < nλ + 1 and

β

{
λ + u∗
K + u∗

(1 +mu∗) − 1 +mK + nK
1 +mλ + nλ

}
< (1 +mu∗ + nv∗)(1 +mK + nK). (2.24)

Then (u∗, v∗) attracts all positive solutions of (1.3).

Proof. Define the Lyapunov function

E1(t) =
∫

Ω

(
u − 2u∗ +

u∗2

u

)
dx + δ1

∫

Ω

(
v − v∗ − v∗ ln v

v∗

)
dx, (2.25)

where

δ1 = (K + u∗)
{
1 +

β

(1 +mu∗ + nv∗)(1 +mλ + nλ)

}
, (2.26)

(u, v) is a positive solution of (1.3). Then E1(t) ≥ 0 for all t ≥ 0. The straightforward
computations give that

dE1

dt
=
∫

Ω

u2 − u∗2
u2

utdx + δ1

∫

Ω

v − v∗
v

vtdx

=
∫

Ω
D1dx +

∫

Ω

1
u

{
A1(u − u∗)2 + B1(u − u∗)(v − v∗) + C1(v − v∗)2

}
dx,

(2.27)
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where

D1 = −
{
d1

2u∗2

u3
|∇u|2 + δ1d2 v∗

v2
|∇v|2

}
≤ 0,

A1 = (u + u∗)
{
−1 + βmv∗

(1 +mu∗ + nv∗)(1 +mu + nv)

}
,

B1 = δ1 −
β(u + u∗)(1 +mu∗)

(1 +mu∗ + nv∗)(1 +mu + nv)
, C1 = −δ1.

(2.28)

From Theorems 2.1 and 2.2, there exists a t0 	 0 such that K − ε < u(x, t), v(x, t) < λ + ε in
Ω × [t0,+∞) for an arbitrary and small enough constant ε > 0. By continuity as ε → 0, (2.24)
implies that

B1 =
K + u∗

(1 +mu∗ + nv∗)(1 +mK + nK)

×
{
(1 +mu∗ + nv∗)(1 +mK + nK)

−β
(
(u + u∗)(1 +mu∗)(1 +mK + nK)

(K + u∗)(1 +mu + nv)
− 1 +mK + nK

1 +mλ + nλ

)}
≥ 0

(2.29)

in Ω × [t0,+∞). Applying the Young inequality to (2.27), we have

dE1

dt
≤
∫

Ω
D1dx +

∫

Ω

1
u
(A1 + B1)(u − u∗)2dx +

∫

Ω
1
u

(
B1

4
+ C1

)
(v − v∗)2dx

=
∫

Ω
D1dx +

∫

Ω

1
u

{
δ1 − (u + u∗)

(
1 +

β

(1 +mu∗ + nv∗)(1 +mu + nv)

)}
(u − u∗)2dx

+
∫

Ω

1
u

{
−3
4
δ1 −

β(u + u∗)(1 +mu∗)
4(1 +mu∗ + nv∗)(1 +mu + nv)

}
(v − v∗)2dx

≤ 0
(2.30)

in Ω × [t0,+∞). Similarly as in [24, 30], the standard argument concludes (u(x, t), v(x, t)) →
(u∗, v∗) in [L∞(Ω)]2, which thereby shows that (u∗, v∗) attracts all positive solutions of (1.3)
under our hypotheses. Thus, the proof is complete.
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Theorem 2.8. Assume that β < nλ + 1,

β

(
1 +mu∗ − 1 +mK + nK

1 +mλ + nλ

)
< (1 +mu∗ + nv∗)(1 +mK + nK), (2.31)

β <
(λm + λn + 2)(m + n)

2
. (2.32)

Then, (u∗, v∗) attracts all positive solutions of (1.3).

Proof. Define the Lyapunov function

E2(t) =
∫

Ω

{
u∗ − u
u

+ ln
u

u∗

}
dx + δ2

∫

Ω

{
v − v∗ − v∗ ln v

v∗

}
dx, (2.33)

where δ2 = 1 + (β/(1 +mu∗ + nv∗)(1 +mλ + nλ), (u, v)) is a positive solution of (1.3). Then

dE2

dt
=
∫

Ω
D2dx +

∫

Ω

1
u

{
A2(u − u∗)2 + B2(u − u∗)(v − v∗) + C2(v − v∗)2

}
dx, (2.34)

where

D2 = −
{
d1

2u∗ − u
u3

|∇u|2 + δ2d2 v∗
v2

|∇v|2
}
,

A2 = −1 + βmv∗
(1 +mu∗ + nv∗)(1 +mu + nv)

,

B2 = δ2 −
β(1 +mu∗)

(1 +mu∗ + nv∗)(1 +mu + nv)
, C2 = −δ2.

(2.35)

From Theorems 2.1 and 2.2, there exists a t0 	 0 such that K − ε < u(x, t), v(x, t) < λ + ε in
Ω × [t0,+∞) for an arbitrary and small enough constant ε > 0. Thus (2.31) implies that

B2 =
1

(1 +mu∗ + nv∗)(1 +mK + nK)

×
{
(1 +mu∗ + nv∗)(1 +mK + nK)

−β
(
(1 +mu∗)(1 +mK + nK)

(1 +mu + nv)
− 1 +mK + nK

1 +mλ + nλ

)}
≥ 0

(2.36)
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inΩ×[t0,+∞). On the other hand, (2.32) guarantees that 2u∗ −u > 0 inΩ×[t0,+∞). Applying
the Young inequality to (2.34), we have

dE2

dt
≤
∫

Ω
D2dx +

∫

Ω

1
u
(A2 + B2)(u − u∗)2dx +

∫

Ω

1
u

(
B2

4
+ C2

)
(v − v∗)2dx

=
∫

Ω
D2dx +

∫

Ω

1
u

{
δ2 −
(
1 +

β

(1 +mu∗ + nv∗)(1 +mu + nv)

)}
(u − u∗)2dx

+
∫

Ω

1
u

{
−3
4
δ2 −

β(1 +mu∗)
4(1 +mu∗ + nv∗)(1 +mu + nv)

}
(v − v∗)2dx

≤ 0

(2.37)

in Ω × [t0,+∞). Consequently, our analysis confirms that Theorem 2.8 holds.

Remark 2.9. If we choose the common Lyapunov function

E3(t) =
∫

Ω

{
u − u∗ − u∗ ln u

u∗

}
dx + δ3

∫

Ω

{
v − v∗ − v∗ ln v

v∗

}
dx, (2.38)

where δ3 = K{1+ (β/(1 +mu∗ +nv∗)(1+mλ+nλ))}, we can also derive the global stability of
(u∗, v∗) for (1.3) under a stronger condition than (2.24). Thus, the Lyapunov function defined
by (2.25) is better than (2.38) in discussing the global stability of (u∗, v∗) for (1.3).

Remark 2.10. If we choosem = 1, then (2.32) holds since β < λn+1. It is not hard to verify that
the condition (2.31) in Theorem 2.8 contains the condition (2.24) in Theorem 2.7. However, if
we choose m and n to be sufficiently small, then u∗ = v∗ → λ/(1 + β) and K → λ(1 − β). We
can see that the range of parameters satisfying (2.24) is wider than that satisfying (2.32). This
means that we can derive various conditions for the global stability of (u∗, v∗) by choosing
different Lyapunov functions.

3. Stationary Patterns for the PDE System without Cross-Diffusion

In this section, we discuss the corresponding steady-state problem of (1.3):

−d1Δu = λu − u2 − βuv

1 +mu + nv
= g1(u, v) in Ω,

−d2Δv = v
(
1 − v

u

)
= g2(u, v) in Ω,

∂νu = ∂νv = 0 on ∂Ω.

(3.1)

The existence and non-existence of the non-constant positive solutions of (3.1) will be given.
In the following, the generic constants C1, C2, C∗, C, C, and so forth, will depend on

the domain Ω and the dimension N. However, as Ω and the dimensionN are fixed, we will
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not mention the dependence explicitly. Also, for convenience, we shall write Λ instead of the
collective constants (λ, β,m, n).

3.1. A Priori Upper and Lower Bounds

The main purpose of this subsection is to give a priori upper and lower bounds for the
positive solutions to (3.1). To this aim, we first cite two known results.

Lemma 3.1 (maximum principle [25]). Let g ∈ C(Ω × �1) and bj ∈ C(Ω), j = 1, 2, . . . ,N.

(i) If w ∈ C2(Ω) ∩ C1(Ω) satisfies

Δw(x) +
N∑
j=1

bj(x)wxj + g(x,w(x)) ≥ 0 in Ω,

∂w

∂ν
≤ 0 on ∂Ω,

(3.2)

and w(x0) = maxΩw(x), then g(x0, w(x0)) ≥ 0.

(ii) If w ∈ C2(Ω) ∩ C1(Ω) satisfies

Δw(x) +
N∑
j=1

bj(x)wxj + g(x,w(x)) ≤ 0 in Ω,

∂w

∂ν
≥ 0 on ∂Ω,

(3.3)

and w(x0) = minΩw(x), then g(x0, w(x0)) ≤ 0.

Lemma 3.2 (Harnack, inequality [31]). Letw ∈ C2(Ω)∩C1(Ω) be a positive solution toΔw(x)+
c(x)w(x) = 0, where c ∈ C(Ω), satisfying the homogeneous Neumann boundary condition. Then
there exists a positive constant C∗ which depends only on ‖c‖∞ such that

max
Ω

w ≤ C∗min
Ω

w. (3.4)

The results of upper and lower bounds can be stated as follows.

Theorem 3.3. For any positive number d, there exists a positive constant C(Λ, d) such that every
positive solution(u, v) of (3.1) satisfies C < u(x), v(x) < λ if d1 ≥ d.
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Proof. Let u(x1) = maxΩ u(x), v(x2) = maxΩv(x), u(y1) = minΩ u(x), v(y2) = minΩ v(x).
Application of Lemma 3.1 yields that

λ − u(x1) −
βv(x1)

1 +mu(x1) + nv(x1)
≥ 0,

λ − u(y1
) − βv

(
y1
)

1 +mu
(
y1
)
+ nv
(
y1
) ≤ 0,

1 − v(x2)
u(x2)

≥ 0, 1 − v
(
y2
)

u
(
y2
) ≤ 0.

(3.5)

Clearly, u(x1) < λ and v(x2) ≤ u(x2) ≤ u(x1) < λ. Moreover, we have

v
(
y1
) ≤ v(x2) ≤ u(x2) ≤ u(x1), (3.6)

v
(
y1
) ≥ v(y2

) ≥ u(y2
) ≥ u(y1

)
. (3.7)

By (3.5), we obtain

m
(
u
(
y1
))2 + [1 + nv(y1

) − λm]u(y1
)
+
(
β − λn)v(y1

) − λ ≥ 0. (3.8)

Noting that u(y1) ≤ v(y1) ≤ u(x1) from (3.6) and (3.7), (3.8) implies that maxΩu(x) = u(x1) >
C1 for some positive constant C1 = C1(Λ).

Let c(x) � d−1
1 (λ − u − (βv/(1 +mu + nv). Then, ‖c(x)‖∞ ≤ (2 + β)λ/d. The Harnack

inequality shows that there exists a positive constant C∗ = C∗(λ, β, d) such that

max
Ω

u(x) ≤ C∗min
Ω

u(x). (3.9)

Combining (3.9) with maxΩ u(x) > C1, we find that minΩ u(x) > C1 for some positive
constant C = C(Λ, d). It follows from (3.7) that minΩv(x) = v(y2) ≥ u(y1) > C. The proof
is completed.

3.2. Non-Existence of Non-Constant Positive Steady States

In the following theorem we will discuss the non-constant positive solutions to (3.1) when
the diffusion coefficient d1 varies while the other parameters d2, λ, β,m, and n are fixed.

Theorem 3.4. For any positive number d, there exists a positive constant D = D(Λ, d) > d such
that (3.1) has no non-constant positive solution if d1 > D.

Proof. For any ϕ ∈ L1(Ω), let

ϕ =
1
|Ω|
∫

Ω
ϕdx. (3.10)
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Assume that (u, v) is a positive solution of (3.1), multiplying the two equations of (3.1) by
(u − u)/u and (v − v)/v, respectively, and then integrating over Ω by parts, we have

∫

Ω

{
d1u

u2
|∇u|2 + d2v

v2
|∇v|2

}
dx =

∫

Ω
g1(u, v)

u − u
u

dx +
∫

Ω
g2(u, v)

v − v
v

dx

=
∫

Ω

{
−1 + βmv

(1 +mu + nv)(1 +mu + nv)

}
(u − u)2dx

+
∫

Ω

{
− β(1 +mu)
(1 +mu + nv)(1 +mu + nv)

+
v

uu

}
(u − u)(v − v)dx

+
∫

Ω

(
− 1
u

)
(v − v)2dx.

(3.11)

From Theorem 3.3 and Young’s inequality, we obtain

∫

Ω

{
d1|∇u|2 + d2|∇v|2

}
dx ≤ C2

(
−1 + βm

n
+ C3

)∫

Ω
(u − u)2dx + C2

∫

Ω

(
ε − 1

u

)
(v − v)2dx

(3.12)

for some positive constants C2 = C2(Λ, d), C3 = C3(Λ, d, ε), where ε is the arbitrary small
positive constant arising fromYoung’s inequality. By Theorem 3.3, we can choose ε ∈ (0, 1/λ).
Then applying the Poincaré inequality to (3.12) we obtain

μ2

∫

Ω

{
d1(u − u)2 + d2(v − v)2

}
dx ≤ C4

∫

Ω
(u − u)2dx +C2

∫

Ω

(
ε − 1

u

)
(v − v)2dx, (3.13)

which implies that u = u = constant and v = v = constant if d1 > D = max{C4/μ2, d}.

3.3. Existence of Non-Constant Positive Steady States

Throughout this subsection, we always assume that a11 > 0. First, we study the linearization
of (3.1) at (u∗, v∗). Let

Y =
{
(u, v) : (u, v) ∈

[
C1
(
Ω
)]2

, ∂νu = ∂νv = 0 on ∂Ω
}
. (3.14)

For the sake of convenience, we define a compact operator F : Y → Y by

F(e) �
(

(a11 − d1Δ)−1
(
g1(u, v) + a11u

)

(−a22 − d2Δ)−1
(
g2(u, v) − a22v

)
)
, (3.15)
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where e = (u(x), v(x))T , (a11 − d1Δ)−1, and (−a22 − d2Δ)−1 are the inverses of the operators
(a11 − d1Δ) and (−a22 − d2Δ) in Y with the homogeneous Neumann boundary conditions.
Then the system (3.1) is equivalent to the equation (I−F)e = 0. To apply the index theory, we
investigate the eigenvalue of the problem

−(I − Fe(e∗))Ψ = μ̃Ψ, Ψ/= 0, (3.16)

where Ψ = (ψ1, ψ2)
T and e∗ = (u∗, v∗)

T . If 0 is not an eigenvalue of (3.16), then the Leray-
Schauder Theorem [27] implies that

index(I − F, e∗) = (−1)γ , (3.17)

where γ is the sum of the algebraic multiplicities of the positive eigenvalues of −(I − Fe(e∗)),
(3.16) can be rewritten as

−(μ̃ + 1
)
d1Δψ1 =

(−μ̃ + 1
)
a11ψ1 + a12ψ2,

−(μ̃ + 1
)
d2Δψ2 = a21ψ1 +

(
μ̃ + 1

)
a22ψ2.

(3.18)

As in the proof of Theorem 2.5, we can conclude that μ̃ is an eigenvalue of −(I − Fe(e∗)) on
Xij if and only if it is a root of the characteristic equation detBi = 0, where

Bi =

((−μ̃ + 1
)
a11 −

(
μ̃ + 1

)
d1μi a12

a21
(
μ̃ + 1

)
a22 −

(
μ̃ + 1

)
d2μi

)
. (3.19)

The characteristic equation detBi = 0 can be written as

μ̃2 +
2d1μi

a11 + d1μi
μ̃ +

−d2μi
(
a11 − d1μi

)
+ d1μi + det J2(

a11 + d1μi
)(−a22 + d2μi

) = 0. (3.20)

Note that −d2μi(a11 − d1μi) + d1μi + det J2 = Qi, where Qi is given in (2.23). Therefore, if 0 is
not a root of (3.20) for all i ≥ 1, we have

index(I − F, e∗) = (−1)γ , (3.21)

where γ is the sum of the algebraic multiplicities of the positive roots of (3.20).

Theorem 3.5. Assume that the parameters λ, β, m, n, and d1 are fixed and 0 < a11 < 1. If a11/d1 ∈
(μn, μn+1) for some n ≥ 2 and

∑
2≤i≤n, Qi<0 dimE(μi) is odd, then the problem (3.1) has at least one

non-constant positive solution for any d2 > d̃2, where Qi and d̃2 are given in (2.23) and (2.17),
respectively.
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Proof. The proof, which is by contradiction, is based on the homotopy invariance of the
topological degree. Suppose, on the contrary, that the assertion is not true for some d2 =
d̆2 > d̃2. In the follow we fix d2 = d̆2. Taking d = a11/μ2 in Theorems 3.3 and 3.4, we obtain a
positive constant D. Fixed d̂1 = D + 1 and d̂2 = 1. For θ ∈ [0, 1], define a homotopy

F(θ; e) �

⎛
⎜⎝
(
a11 −

(
θd1 + (1 − θ)d̂1

)
Δ
)−1(

g1(u, v) + a11u
)

(
−a22 −

(
θd2 + (1 − θ)d̂2

)
Δ
)−1(

g2(u, v) − a22v
)

⎞
⎟⎠. (3.22)

Then, e is a positive solution of (3.1) if and only if it is a positive solution of F(1; e) = e.
It is obvious that e∗ is the unique constant positive solution of (3.22) for any 0 ≤ θ ≤ 1.
By Theorem 3.3, there exists a positive constant C such that, for all 0 ≤ θ ≤ 1, the positive
solutions of the problem F(θ; e) = e are contained in B(C) � {e ∈ Y | C−1 < u, v < C}.
Since F(θ; e)/= e for all e ∈ ∂B(C) and F(θ; ·) : B(C) × [0, 1] → Y is compact, we can see that
the degree deg(I − F(θ; ·), B(C), 0) is well defined. Moreover, by the homotopy invariance
property of the topological degree, we have

deg(I − F(0; ·), B(C), 0) = deg(I − F(1; ·), B(C), 0). (3.23)

If a11/d1 ∈ (μn, μn+1) for some n ≥ 2, then i0 = n and d̃2 = min2≤i≤nd
(i)
2 in (2.17). Since

d2 = d̆2 > d̃2, then Qk < 0 for some k, 2 ≤ k ≤ n. Let i = k. Then, (3.20) has one positive root
and a negative root. Furthermore, we have Qi > 0 for i = 1 and all i ≥ n + 1. Therefore, when
i = 1 and i ≥ n+1, the characteristic equation (3.20) has no roots with non-negative real parts.
In addition, if

∑
2≤i≤n, Qi<0 dimE(μi) is odd, we have

index(I − F(1; ·), e∗) = (−1)
∑

2≤i≤n, Qi<0 dimE(μi) = −1. (3.24)

By our supposition, the equation F(1; e) = e has only the positive solution e∗ in B(C), and
hence

deg(I − F(1; ·), B(C), 0) = index(I − F(1; ·), e∗) = −1. (3.25)

Similar argument shows μ̃ is an eigenvalue of −(I − Fe(0; e∗)) if and only if it is a root
of the characteristic equation

μ̃2 +
2d̂1μi

a11 + d̂1μi
μ̃ +

−d̂2μi
(
a11 − d̂1μi

)
+ d̂1μi + det J2

(
a11 + d̂1μi

)(
−a22 + d̂2μi

) = 0. (3.26)

It is easy to check that all eigenvalues of (3.26) have negative real parts for all i ≥ 1, which
implies

index(I − F(0; ·), e∗) = (−1)0 = 1. (3.27)
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In view of Theorem 3.4, it follows that the equation F(0; e) = e has only the positive solution
e∗ in B(C), and therefore,

deg(I − F(0; ·), B(C), 0) = index(I − F(0; ·), e∗) = 1. (3.28)

This contradicts (3.23), and the proof is complete.

Example 3.6. Let Ω = (0, 1). Then, the parameters λ = 2, β = 6, m = 3, n = 0.1, d1 = 0.0152,
and d2 = 4.1309 satisfy all the conditions of Theorem 3.5. This means that (u∗, v∗) = ((2

√
159−

4)/31, (2
√
159 − 4)/31) is a locally asymptotically stable equilibrium point for the system

du

dt
= 2u − u2 − 6uv

1 + 3u + 0.1v
,

dv

dt
= v
(
1 − v

u

)
,

(3.29)

but it is an unstable steady state for the system

ut − 0.0152uxx = 2u − u2 − 6uv
1 + 3u + 0.1v

, x ∈ (0, 1), t > 0,

vt − 4.1309vxx = v
(
1 − v

u

)
, x ∈ (0, 1), t > 0,

ux = vx = 0, x = 0, 1, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, 1).

(3.30)

Moreover, the above reaction-diffusion system has at least one non-constant positive steady
state.

3.4. Bifurcation

In this subsection, we discuss the bifurcation of non-constant positive solutions of (3.1) with
respect to the diffusion coefficient d2. In the consideration of bifurcation with respect to d2,
we recall that, for a constant solution e∗, (d2; e∗) ∈ (0,+∞) × Y is a bifurcation point of (3.1)
if, for any δ ∈ (0, d2), there exists a d2 ∈ [d2 − δ, d2 + δ] such that (3.1) has a non-constant
positive solution close to e∗. Otherwise, we say that (d2; e∗) is a regular point [27].

We will consider the bifurcation of (3.1) at the equilibrium points (d2; e∗), while all
other parameters are fixed. From (2.23), we define

Q
(
d2;μ
)
= d1d2μ2 − (d2a11 − d1)μ + det J2. (3.31)

It is clear that Q(d2;μ) = 0 has at most two roots for any fixed d2 > 0. Noting that det J2 > 0
in the proof of Theorem 2.4, if

R(d2) � (d2a11 + d1)2 + 4d1d2a12 > 0, (3.32)
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then Q(d2, μ) = 0 has two different real roots with same symbols. Let

Sp =
{
μ1, μ2, μ3, . . .

}
, Σ(d2) =

{
μi > 0 | Q(d2;μi

)
= 0, d1μi < a11

}
,

Γ =

{
d2 | d2 = d(i)

2 =
d1μi − det J2
μi
(
a11 − d1μi

) , μi > 0, d1μi < a11

}
.

(3.33)

We note that for each d2 > 0, Σ(d2) may have 0 or 2 elements. The result is contained in the
following theorem. Its proof is based on the topological degree arguments used earlier in this
paper. We shall omit it but refer the reader to similar treatments in [24, 32, 33].

Theorem 3.7 (bifurcation with respect to d2).

(1) Suppose that d2 /∈ Γ. Then, (d2; e∗) is a regular point of (3.1).

(2) Suppose that d2 ∈ Γ and R(d2) > 0. If
∑

μi∈Σ(d2)
dimE(μi) is odd, then (d2; e∗) is a

bifurcation point of (3.1) with respect to the curve (d2; e∗), d2 > 0. In this case, there exists
an interval (σ1, σ2) ⊂ R+, where

(i) d2 = σ1 < σ2 < +∞ and σ2 ∈ Γ or
(ii) 0 < σ1 < σ2 = d2 and σ1 ∈ Γ or

(iii) (σ1, σ2) = (d2,+∞), or
(iv) (σ1, σ2) = (0, d2),

such that for every d2 ∈ (σ1, σ2), (3.1) admits a non-constant positive solution.

4. Stationary Patterns for the PDE System with Cross-Diffusion

In this section, we discuss the corresponding steady-state problem of the system (1.5):

−d1Δu = λu − u2 − βuv

1 +mu + nv
in Ω,

−d2Δ(1 + d3u)v = v
(
1 − v

u

)
in Ω,

∂νu = ∂νv = 0 on ∂Ω.

(4.1)

The existence and non-existence of the non-constant positive solutions of (4.1) will be given.

4.1. A Priori Upper and Lower Bounds

Theorem 4.1. If d1, d2 ≥ d and d3/d2 ≤ D, where d and D are fixed positive numbers. Then,
there exist positive constants C(Λ, d,D), C(Λ, d,D) such that every positive solution (u, v) of (4.1)
satisfies

C < u(x), v(x) < C(Λ, d,D), ∀x ∈ Ω. (4.2)
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Proof. We first prove that there exists a positive constant C = C(Λ, d,D) such that

max
Ω

u ≤ Cmin
Ω

u, max
Ω

v ≤ Cmin
Ω

v. (4.3)

A direct application of Lemma 3.1 to the first equation of (4.1) gives u < λ on Ω. From
Lemma 3.2, we have maxΩu ≤ CminΩu for some positive constant C(Λ, d,D). Define
ϕ(x) = d2(1 + d3u)v and ϕ(x0) = maxΩϕ. Applying Lemma 3.1 again to the second equation
of (4.1), we have v(x0) ≤ u(x0) < λ, which implies

max
Ω

v ≤ d−1
2 max

Ω
ϕ < (1 + d3λ)λ. (4.4)

On the other hand, ϕ satisfies

−Δϕ =
u − v

d2(1 + d3u)u
ϕ in Ω,

∂ϕ

∂ν
= 0 on ∂Ω.

(4.5)

Denote c(x) = (u − v)/(d2(1 + d3u)u). we have

‖c(x)‖∞ ≤ 1
d2

+
maxΩv
d2minΩu

≤ 1
d2

+
(1 + d3u(x0))v(x0)

d2minΩu

<
1
d2

+
(1 + d3λ)u(x0)
d2minΩu

≤ 1
d2

+
(1 + d3λ)

d2
· maxΩu
minΩu

≤ C(Λ, d,D).

(4.6)

Hence, Lemma 3.2 implies that there exists a positive constant C′(Λ, d,D) such that maxΩ ϕ ≤
C′minΩ ϕ. Moreover, we have

maxΩv
minΩv

≤ maxΩϕ
minΩϕ

· maxΩ(1 + d3u)
minΩ(1 + d3u)

≤ C′ · maxΩu
minΩu

≤ C. (4.7)

Thus, (4.3) is proved.
Note that minΩ v < v(x0) ≤ u(x0) ≤ maxΩ u < λ, (4.3) implies that there exists a

positive constant C(Λ, d,D) such that u(x), v(x) < C, for all x ∈ Ω.
Turn now to the lower bound. Suppose, on the contrary, that the first result of (4.1)

does not hold. Then, there exists a sequence {d1,i, d2,i, d3,i}∞i=1 with d1,i, d2,i ∈ [d,+∞)×[d,+∞),
d3,i ∈ (0,+∞) such that the corresponding positive solutions (ui, vi) of (4.1) satisfy

min
Ω

ui −→ 0 or min
Ω

vi −→ 0, as i −→ ∞, (4.8)



20 Boundary Value Problems

and (ui, vi) satisfies

−d1,iΔui = λui − u2i −
βuivi

1 +mui + nvi
in Ω,

−d2,iΔ(1 + d3,iui)vi = vi
(
1 − vi

ui

)
in Ω,

∂νui = ∂νvi = 0 on ∂Ω.

(4.9)

Integrating by parts, we obtain that

∫

Ω
ui

(
λ − ui −

βvi
1 +mui + nvi

)
dx = 0,

∫

Ω
vi

(
1 − vi

ui

)
dx = 0.

(4.10)

By the second equation of (4.10), there exists xi ∈ Ω such that vi(xi) = ui(xi), for all i ≥ 1. By
(4.8), this implies that

min
Ω

ui −→ 0, min
Ω

vi −→ 0 as i −→ ∞. (4.11)

Combining (4.3) yields

max
Ω

ui −→ 0, max
Ω

vi −→ 0 as i −→ ∞. (4.12)

So we have

λ − ui −
βvi

1 +mui + nvi
> 0 on Ω, ∀i	 1. (4.13)

Integrating the first equation of (4.9) over Ω by parts, we have

∫

Ω
ui

(
λ − ui −

βvi
1 +mui + nvi

)
dx > 0, ∀i	 1, (4.14)

which is a contradiction to the first equation of (4.10). The proof is completed.

4.2. Non-Existence of Non-Constant Positive Steady States

Theorem 4.2. If d2 > 1/μ2 and d3/d2 ≤ D, where D is a fixed positive number, then the problem
(4.1) has no non-constant positive solution if d1 is sufficiently large.
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Proof. Assume that (u, v) is a positive solution of (4.1), multiplying the two equations of (4.1)
by (u − u) and (v − v) respectively, and then integrating over Ω by parts, we have

∫

Ω

{
d1|∇u|2 + d2(1 + d3u)|∇v|2 + d2d3v∇u · ∇v

}
dx

=
∫

Ω

{
λ − (u + u) − β(nv + 1)

(1 +mu + nv)(1 +mu + nv)

}
(u − u)2dx

+
∫

Ω

{
− β(mu + 1)u
(1 +mu + nv)(1 +mu + nv)

+
v2

uu

}
(u − u)(v − v)dx +

∫

Ω

(
1 − v + v

u

)
(v − v)2dx.

(4.15)

From Theorem 4.1 and Young’s inequality, we obtain

∫

Ω

{
d1|∇u|2 + d2(1 + d3u)|∇v|2

}
dx

≤
∫

Ω

{
C(ε)(u − u)2 + (1 + ε)(v − v)2 + d2

2d
2
3v

2

4ε
|∇u|2 + ε|∇v|2

}
dx

(4.16)

for some positive constant C(ε) only depending on Λ, ε, D. By this combined with
Theorem 4.1 and Poincaré inequality, we obtain

∫

Ω

{
d1|∇u|2 + d2(1 + d3u)|∇v|2

}
dx ≤

∫

Ω

{
C(ε)
(
1 + d2

2d
2
3

)
|∇u|2 +

(
1
μ2

+ ε
)
|∇v|2

}
dx,

(4.17)

which implies that (u, v) = (u, v) if d1 > C(1 + d2
2d

2
3), d2 > (1/μ2) + ε and d3/d2 ≤ D.

4.3. Existence of Non-Constant Positive Steady States

To show the existence of non-constant positive solutions, we use Leray-Schauder degree
theory again. Denote w = (1 + d3u)v and w∗ = (1 + d3u∗)v∗, then (4.1) can be rewritten
as

−d1Δu = λu − u2 − βuw

(1 + d3u)(1 +mu) + nw
� g1(u,w) in Ω,

−d2Δw =
w

1 + d3u

(
1 − w

(1 + d3u)u

)
� g2(u,w) in Ω,

∂νu = ∂νv = 0 on ∂Ω.

(4.18)
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So, (4.18) has a unique positive constant solution h∗ � (u∗, w∗). The linearization matrix of
G(u,w) = (g1(u,w), g2(u,w))T at (u∗, v∗) is

J3 =

(
m11 m12

m21 m22

)
, (4.19)

where

m11 = a11 − a12 d3u∗
1 + d3u∗

, m12 =
a12

1 + d3u∗
,

m21 = 1 +
d3u∗

1 + d3u∗
, m22 = − 1

1 + d3u∗
.

(4.20)

If

m11 = a11 − a12 d3u∗
1 + d3u∗

> 0, (4.21)

we can define a compact operator Φ : Y → Y by

Φ(h) �

(
(m11 − d1Δ)−1

(
g1(u,w) +m11u

)

(−m22 − d2Δ)−1
(
g2(u,w) −m22w

)
)
, (4.22)

where h = (u(x), w(x))T , (m11 − d1Δ)−1, and (−m22 − d2Δ)−1 are the inverses of the operators
(m11 − d1Δ) and (−m22 − d2Δ) in Y with the homogeneous Neumann boundary condition.
Moreover, the system (4.18) is equivalent to the equation (I − Φ)h = 0. To apply the index
theory, we investigate the eigenvalue of the problem

−(I −Φh(h∗))Ψ = μ̃Ψ, Ψ/= 0, (4.23)

where Ψ = (ψ1, ψ2)
T . If 0 is not an eigenvalue of (4.23), then the Leray-Schauder Theorem

implies that

index(I −Φ,h∗) = (−1)γ , (4.24)

where γ is the sum of the algebraic multiplicities of the positive eigenvalues of −(I −Φh(h∗)).
Notice that (4.23) can be rewritten as

−(μ̃ + 1
)
d1Δψ1 =

(−μ̃ + 1
)
m11ψ1 +m12ψ2,

−(μ̃ + 1
)
d2Δψ2 = m21ψ1 +

(
μ̃ + 1

)
m22ψ2.

(4.25)
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As the proof of Theorem 2.5, we can conclude that μ̃ is an eigenvalue of −(I − Φh(h∗)) on Xij
if and only if it is a root of the characteristic equation detBi = 0, where

Bi =

((−μ̃ + 1
)
m11 −

(
μ̃ + 1

)
d1μi m12

m21
(
μ̃ + 1

)
m22 −

(
μ̃ + 1

)
d2μi

)
. (4.26)

The characteristic equation detBi = 0 can be written as

Pi
(
μ̃
)
� μ̃2 +M1

(
d3;μi

)
μ̃ +M2

(
d3;μi

)
= 0, (4.27)

where

M1
(
d3;μi

)
=

2d1μi
m11 + d1μi

, M2
(
d3;μi

)
=
d1d2μi2 − (d1m22 + d2m11)μi + det J3(

m11 + d1μi
) (−m22 + d2μi

) . (4.28)

When i = 1,

P1
(
μ̃
)
= μ̃2 − m11m22 −m12m21

m11m22
= μ̃2 − a11 + a12

m11
. (4.29)

In the following, we always assume that (4.21) holds. Note that a11 + aa12 = −det J2 < 0, we
can conclude that (4.29) has no root with positive real part.

When i ≥ 2,M1(d3;μi) > 0. Consider the following limit:

lim
d3 →+∞

M2
(
d3;μ
)
=
d1μ − (a11 − a12)
d1μ + a11 − a12 . (4.30)

For sake of convenience, denote

μ̂ =
a11 − a12

d1
, Λ2 =

{(
λ, β,m, n

) | a11 < −a12
}
. (4.31)

Somemeticulous computations and simple analysis indicate that the following lemma is true.

Lemma 4.3. Let (λ, β,m, n) ∈ Λ2. Assume that μ̂ ∈ (μn, μn+1) for some n ≥ 2 and the
sum
∑n

i=2 dimE(μi) is odd. Then, there exists a positive constant D such that for d3 > D,
index(Φ(·), h̃) = −1.

Theorem 4.4. Under the same assumption of Lemma 4.3, there exists a positive constantD such that
for d3 > D, the problem (4.1) has at least one non-constant positive solution.

Proof. From Lemma 4.3, there exists a positive constant D such that, when d3 > D,
index(F(·), ũ) = −1. We shall prove that for any d3 > D, (4.1) has at least one non-constant
positive solution. The proof, which is by contradiction, is based on the homotopy invariance
of the topological degree. Suppose, on the contrary, that the assertion is not true for some
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d3 = d̂3 > D. Hereafter, we fix d3 = d̂3 and d̂2 = 1/μ2 + 1. Let d̂1 be so large that the conditions
in Theorem 4.2 hold for d3 = 0. For θ ∈ [0, 1], define

Φ(θ;h) �

⎛
⎜⎜⎜⎝

(
m11 −

[
θd1 + (1 − θ)d̂1

]
Δ
)−1(

λu − u2 − βuw

(1 + θd3u)(1 +mu) + nw
+m11u

)

(
−m22 −

[
θd2 + (1 − θ)d̂2

]
Δ
)−1( w

1 + θd3u

(
1 − w

(1 + θd3u)u

)
−m22w

)

⎞
⎟⎟⎟⎠.

(4.32)

It is obvious that h̃ is the unique constant positive solution of (4.32) for any 0 ≤ θ ≤ 1. By
Theorem 4.1 andw = (1 + d3u)v, there exists a positive constant C such that, for all 0 ≤ θ ≤ 1,
the positive solutions of the problem Φ(θ;h) = 0 are contained in B(C) � {h ∈ Y | C−1 <
u,w < C}. Since Φ(θ;h)/= 0 for all h ∈ ∂B(C), we can see that the degree deg(Φ(θ; ·), B(C), 0)
is well defined. Moreover, by the homotopy invariance property of the topological degree,
we have

deg(Φ(0; ·), B(C), 0) = deg(Φ(1; ·), B(C), 0). (4.33)

By our supposition and Lemma 4.3, the equation Φ(1;h) = 0 has only the positive solution
h̃ in B(C), and hence deg(Φ(1; ·), B(C), 0) = index(Φ(1; ·), h̃) = −1. Similar argument shows
deg(Φ(0; ·), B(C), 0) = index(Φ(0; ·), h̃) = 1. This contradicts with (4.33), and then the proof is
completed.

Example 4.5. Let Ω = (0, 1). Then, the parameters λ = 2, β = 6, m = 3, n = 0.1, d1 = 0.0743,
d2 = 2, and d3 = 100 satisfy all the conditions of Theorem 4.4. In this case, (u∗, v∗)=((2

√
159 −

4)/31, (2
√
159 − 4)/31) is a locally asymptotically stable steady state for the system

ut − 0.0743uxx = 2u − u2 − 6uv
1 + 3u + 0.1v

, x ∈ (0, 1), t > 0,

vt − 2vxx = v
(
1 − v

u

)
, x ∈ (0, 1), t > 0,

ux = vx = 0, x = 0, 1, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, 1).

(4.34)

However, it is an unstable steady state for the system

ut − 0.0743uxx = 2u − u2 − 6uv
1 + 3u + 0.1v

, x ∈ (0, 1), t > 0,

vt − 2(v + 100uv)xx = v
(
1 − v

u

)
, x ∈ (0, 1), t > 0,

ux = vx = 0, x = 0, 1, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, 1).

(4.35)
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Moreover, the above cross-diffusion system has at least one non-constant positive steady
state.

5. Conclusions

In this paper, we have introduced a more realistic mathematical model for a diffusive prey-
predator system where the Beddington-DeAngelis functional response is used only in the
prey equation and a Leslie-Gower term is contained by the predator equation. This system
admits rich dynamics which include the attractor, persistence, stable or unstable equilibria,
and Turing patterns. Letting n = 0, our conclusions are essentially the same as for the
systems with a Holling-Tanner response for the prey [7, 8]. However, the presence of mutual
interference by predators can stabilize the positive equilibrium. Moreover, after the cross-
diffusion pressure is introduced, our model is a strongly coupled reaction-diffusion system,
which is mathematically more complex than systems without cross-diffusion. We show
that, even though the unique positive constant steady state is asymptotically stable for the
dynamics with diffusion, non-constant positive steady solutions can also exist due to the
emergence of cross-diffusion. Our results confirm that cross-diffusion can create stationary
patterns.
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