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We investigate a second-order discrete problem with two additional conditions which are
described by a pair of linearly independent linear functionals. We have found the solution to this
problem and presented a formula and the existence condition of Green’s function if the general
solution of a homogeneous equation is known. We have obtained the relation between two Green’s
functions of two nonhomogeneous problems. It allows us to find Green’s function for the same
equation but with different additional conditions. The obtained results are applied to problems
with nonlocal boundary conditions.

1. Introduction

The study of boundary-value problems for linear differential equations was initiated by
many authors. The formulae of Green’s functions for many problems with classical boundary
conditions are presented in [1]. In this book, Green’s functions are constructed for regular
and singular boundary-value problems for ODEs, the Helmholtz equation, and linear
nonstationary equations. The investigation of semilinear problems with Nonlocal Boundary
Conditions (NBCs) and the existence of their positive solutions are well founded on the
investigation of Green’s function for linear problems with NBCs [2–7]. In [8], Green’s
function for a differential second-order problem with additional conditions, for example,
NBCs, has been investigated.

In this paper, we consider a discrete difference equation

a2
i ui+2 + a1

i ui+1 + a0
i ui = fi, (1.1)
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where a2, a0 /= 0. This equation is analogous to the linear differential equation

b2(x)u′′(x) + b1(x)u′(x) + b0(x)u(x) = f(x). (1.2)

In order to estimate a solution of a boundary value problem for a difference equation,
it is possible to use the representation of this solution by Green’s function [9].

In [10], Bahvalov et al. established the analogy between the finite difference equations
of one discrete variable and the ordinary differential equations. Also, they constructed a
Green’s function for a grid boundary-value problem in the simplest case (Dirichlet BVP).

The direct method for solving difference equations and an iterative method for solving
the grid equations of a general form and their application to difference equations are
considered in [11, 12]. Various variants of Thomas’ algorithm (monotone, nonmonotone,
cyclic, etc.) for one-dimensional three-pointwise equations are described. Also, modern
economic direct methods for solving Poisson difference equations in a rectangle with
boundary conditions of various types are stated.

Chung and Yau [13] study discrete Green’s functions and their relationship with
discrete Laplace equations. They discuss several methods for deriving Green’s functions. Liu
et al. [14] give an application of the estimate to discrete Green’s function with a high accuracy
analysis of the three-dimensional block finite element approximation.

In this paper, expressions of Green’s functions for (1.1) have been obtained using the
method of variation of parameters [12]. The advantage of this method is that it is possible
to construct the Green’s function for a nonhomogeneous equation (1.1) with the variable
coefficients a2, a1, a0 and various additional conditions (e.g., NBCs). The main result of
this paper is formulated in Theorem 4.1, Lemma 5.3, and Theorem 5.4. Theorem 4.1 can be
used to get the solution of an equation with a difference operator with any two linearly
independent additional conditions if the general solution of a homogeneous equation is
known. Theorem 5.4 gives an expression for Green’s function and allows us to find Green’s
function for an equation with two additional conditions if we know Green’s function for
the same equation but with different additional conditions. Lemma 5.3 is a partial case of
this theorem if we know the special Green’s function for the problem with discrete (initial)
conditions. We apply these results to BVPswith NBCs: first, we construct the Green’s function
for classical BCs, then we can construct Green’s function for a problem with NBCs directly
(Lemma 5.3) or via Green’s function for a classical problem (Theorem 5.4). Conditions for
the existence of Green’s function were found. The results of this paper can be used for the
investigation of quasilinear problems, conditions for positiveness of Green’s functions, and
solutions with various BCs, for example, NBCs.

The structure of the paper is as follows. In Section 2, we review the properties of
functional determinants and linear functionals. We construct a special basis of the solutions
in Section 3 and introduce some functions that are independent of this basis. The expression
of the solution to the second-order linear difference equation with two additional conditions
is obtained in Section 4. In Section 5, discrete Green’s function definitions of this problem
are considered. Then a Green’s function is constructed for the second-order linear difference
equation. Applications to problems with NBCs are presented in Section 6.

2. Notation

We begin this section with simple properties of determinants. Let � = � or � = � and 1 < n ∈
�.
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For all ai
j , b

i
j ∈ � , i, j = 1, 2, the equality
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(2.1)

is valid. The proof follows from the Laplace expansion theorem [8].
Let X = {0, 1, . . . , n}, X̃ = {0, 1, . . . , n − 2}. F(X) := {u | u : X → � } be a linear space

of real (complex) functions. Note that F(X) ∼= � n+1 and functions δi, i = 0, 1, . . . , n, such that
δi(j) = δ

j

i for j ∈ X (δn
m is a Kronecker symbol: δn

m = 1 if m = n, and δn
m = 0 if m/=n), form a

basis of this linear space. So, for all u ∈ F(X), there exists a unique choice of (u1, . . . , un) ∈ � n ,
such that u =

∑n
k=0 ukδk. If we have the vector-function u = [u1, u2] ∈ F2(X), thenwe consider

the matrix function [u] : X2 → M2×2(� ) ∼= � 4 and its functional determinant D[u]ij : X
2 →

�

[u]ij =
[

u1, u2
]

ij
:=

(
u1
i u1

j

u2
i u2

j

)

,

D[u]ij = det [u]ij = det
[
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(2.2)

TheWronskian determinantW[u]i in the theory of difference equations is denoted as follows:

W[u]j :=
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= D[u]j−1,j , j = 1, . . . , n. (2.3)

Let (if W[u]j+2 /= 0)

H[u]ij :=
D[u]j+1,i
W[u]j+2

=
D[u]j+1,i
D[u]j+1,j+2

, i ∈ X, j = −1, 0, 1, . . . , n − 2. (2.4)

We define Hi,n−1[u] = Hin[u] = 0, i ∈ X. Note that Hj+1,j = 0,Hj+2,j = 1 for j ∈ X̃.
If [u]ij = P · [u]ij , where P = (pmn ) ∈ M2×2(� ), then

det [u]ij = det [u]ij · detP, W[u]i = W[u]i · detP. (2.5)
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If W[u]/= 0 and P ∈ GL2(� ) := {P ∈ M2×2(� ) : detP/= 0}, then we get H[u] = H[u]. So, the
function H[u]ij is invariant with respect to the basis {u1, u2} and we write Hij .

Lemma 2.1. If w = [w1, w2] ∈ F2(X), then the equality

∣
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∣
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∣

D[w]ik D[w]jk
D[w]il D[w]jl

∣
∣
∣
∣
∣
= D[w]ij ·D[w]kl, i, j, k, l ∈ X, (2.6)

is valid.

Proof. If we take bm1 = wm
i , b

m
2 = wm

j , a
m
1 = wm

k
, am

2 = wm
l
, m = 1, 2, in (2.1), then we get

equality (2.6).

Corollary 2.2. Ifw = [w1, w2] ∈ F(X2), then the equality

W[D[w]·k, D[w]·l]i :=

∣
∣
∣
∣
∣

D[w]i−1,k D[w]ik
D[w]i−1,l D[w]il

∣
∣
∣
∣
∣
= W[w]i ·D[w]kl, (2.7)

k, l ∈ X, i = 1, . . . , n is valid.

We consider the space F∗(X) of linear functionals in the space F(X), and we use
the notation 〈f, u〉, 〈fk, uk〉 for the functional f value of the function u. Functionals δj ,
j = 0, 1, . . . , n form a dual basis for basis {δi}ni=0. Thus, 〈δj , u〉 = uj . If f ∈ F∗(X), g ∈ F∗(Y),
where X = {0, 1, . . . , n} and Y = {0, 1, . . . , m}, then we can define the linear functional (direct
product) f · g ∈ F∗(X × Y)

〈

fk · gl, wkl

〉

:=
〈

fk,
〈

gl, wkl

〉〉

, wkl ∈ F(X × Y). (2.8)

We define the matrix

M(f)[w] :=

(〈

f,w1〉 〈g,w1〉

〈

f,w2〉 〈g,w2〉

)

(2.9)

for f = (f, g),w = [w1, w2], and the determinant

D(f)[w] :=
〈

fk · gl, D[w]kl
〉

=

∣
∣
∣
∣
∣

〈

f,w1〉 〈g,w1〉

〈

f,w2〉 〈g,w2〉

∣
∣
∣
∣
∣
= detM(f)[w]. (2.10)
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For example,
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(2.11)

Let the functions w1, w2 ∈ F(X) be linearly independent.

Lemma 2.3. Functionals f , g are linearly independent on span{w1, w2} ⊂ F(X) if and only if
D(f)[w]/= 0.

Proof. We can investigate the case where F(X) = span{w1, w2}. The functionals f , g are
linearly independent if the equality α1f + α2g = 0 is valid only for α1 = α2 = 0. We can
rewrite this equality as 〈α1f + α2g,w〉 = 0 for all w ∈ span{w1, w2}. A system of functions
{w1, w2} is the basis of the span{w1, w2}, and the above-mentioned equality is equivalent to
the condition below

α1

(〈

f,w1〉

〈

f,w2〉

)

+ α2

(〈

g,w1〉

〈

g,w2〉

)

=

(〈

α1f + α2g,w1〉

〈

α1f + α2g,w2〉

)

=

(
0

0

)

. (2.12)

Thus, the functionals f , g are linearly independent if and only if the vectors

(〈

f,w1〉

〈

f,w2〉

)

,

(〈

g,w1〉

〈

g,w2〉

)

(2.13)

are linearly independent. But these vectors are linearly independent if and only if

∣
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∣
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∣
/= 0. (2.14)

If f = fPf ,w = Pww, where Pf ,Pw ∈ M2×2(� ), then

D
(

f
)

[w] = detPw ·D(f)[w] · detPf , (2.15)

D
(

f, h
)[

w, w0
]

= detPw ·D(f, h)
[

w, w0
]

· detPf . (2.16)
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3. Special Basis in a Two-Dimensional Space of Solutions

Let us consider a homogeneous linear difference equation

Lu := a2
i ui+2 + a1

i ui+1 + a0
i ui = 0, i ∈ X̃, (3.1)

where a2, a0 /= 0. Let S ⊂ F(X) a be two-dimensional linear space of solutions, and let {u1, u2}
be a fixed basis of this linear space. We investigate additional equations

〈L1, u〉 = 0, 〈L2, u〉 = 0, u ∈ S, (3.2)

where L1, L2 ∈ S∗ are linearly independent linear functionals, and we use the notation L =
(L1, L2). We introduce new functions

v1
i := D(δi, L2)[u], v2

i := D(L1, δi)[u]. (3.3)

For these functions 〈Lm, v
n〉 = δn

mD(L)[u], m,n = 1, 2, that is, vn ∈ KerLm for m/=n.
So, the function v1 satisfies equation 〈L2, u〉, and the function v2 satisfies equation 〈L1, u〉.
Components of the functions v1 and v2 in the basis {u1, u2} are

( 〈

L2, u2〉

−〈L2, u1〉

)

,

(−〈L1, u2〉

〈

L1, u1〉

)

, (3.4)

respectively. It follows that the functions v1, v2 are linearly independent if and only if

∣
∣
∣
∣
∣

〈

L2, u2〉 −〈L1, u2〉

−〈L2, u1〉 〈

L1, u1〉

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

〈

L1, u1〉 〈L2, u1〉

〈

L1, u2〉 〈L2, u2〉

∣
∣
∣
∣
∣
/= 0. (3.5)

But this determinant is zero if and only if D(L)[u] = 0. We combine Lemma 2.3 and these
results in the following lemma.

Lemma 3.1. Let {u1, u2} be the basis of the linear space S. Then the following propositions are
equivalent:

(1) the functionals L1, L2 are linearly independent;

(2) the functions v1, v2 are linearly independent;

(3) D(L)[u]/= 0.

If we take bm1 = um
i , b

m
2 = um

j , a
m
n = 〈Ln, um〉,m,n = 1, 2, in formula (2.1), then we get

∣
∣
∣
∣
∣

D(δi, L1)[u] D
(

δj , L1
)

[u]

D(δi, L2)[u] D
(

δj , L2
)

[u]

∣
∣
∣
∣
∣
= D[u]ij ·D(L)[u]. (3.6)
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The left-hand side of this equality is equal to

∣
∣
∣
∣
∣

D(δi, L2)[u] D
(

δj , L2
)

[u]

D(L1, δi)[u] D
(

L1, δj
)

[u]

∣
∣
∣
∣
∣
=
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∣
∣
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v1
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j

v2
i v2
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∣
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∣
∣

. (3.7)

Finally, we have (see (3.3))

D[v] = D[u] ·D(L)[u]. (3.8)

Similarly we obtain

W[v] = W[u] ·D(L)[u]. (3.9)

Lemma 3.2. Let {u1, u2} be a fundamental system of homogeneous equation (3.1). Then equality
(3.9) is valid, and

W[v]/= 0 ⇐⇒ D(L)[u]/= 0. (3.10)

Propositions in Lemma 3.1 are equivalent to the condition W[v]/= 0.

Corollary 3.3. If functionals L1, L2 are linearly independent, that is, D(L)[u]/= 0, and

v1
i :=

D(δi, L2)[u]
D(L)[u]

, v2
i :=

D(L1, δi)[u]
D(L)[u]

, (3.11)

that is, v = v/D(L), then the two bases {v1, v2} and {L1, L2} are biorthogonal:

〈Lm, v
n〉 = δn

m, m, n = 1, 2, (3.12)

D[v] =
D[u]
D(L)

, W[v] =
W[u]
D(L)

, H[v] = H[u]. (3.13)

Remark 3.4. Propositions in Lemma 3.1 are valid if we take {v1, v2} instead of {v1, v2}.

Remark 3.5. If {u1, u2} is another fundamental system and u = Pu, where P ∈ GL2(� ), then

D(δi, L2)[u]
D(L)[u]

=
D(δi, L2)[u]
D(L)[u]

,
D(L1, δi)[u]
D(L)[u]

=
D(L1, δi)[u]
D(L)[u]

(3.14)

(see (2.15)). So, the definition of v := [v1, v2] is invariant with respect to the basis {u1, u2}:
v1
i = D(δi, L2)/D(L), v2

i = D(L1, δi)/D(L).
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4. Discrete Difference Equation with Two Additional Conditions

Let {u1, u2} be the solutions of a homogeneous equation

Lu := a2
i ui+2 + a1

i ui+1 + a0
i ui = 0, a2

i , a
0
i /= 0, i ∈ X̃. (4.1)

Then D[u]i· is the solution of (4.1), that is,

a2
i D[u]i+2,j + a1

i D[u]i+1,j + a0
i D[u]ij = 0, i ∈ X̃, j ∈ X. (4.2)

For j = i + 1, this equality shows that −a2
i W[u]i+2 + a0

i W[u]i+1 = 0, and we arrive at the
conclusion that W[u]i ≡ 0 (the case where {u1, u2} are linearly dependent solutions) or
W[u]i /= 0 for all i = 1, . . . , n (the case of the fundamental system).

In this section, we consider a nonhomogeneous difference equation

Lu := a2
i ui+2 + a1

i ui+1 + a0
i ui = fi, i ∈ X̃, (4.3)

with two additional conditions

〈L1, u〉 = g1 ∈ � , 〈L2, u〉 = g2 ∈ � , (4.4)

where L1, L2 are linearly independent functionals.

4.1. The Solution to a Nonhomogeneous Problem with Additional
Homogeneous Conditions

A general solution of (4.1) is u = C1u1+C2u2, whereC1,C2 are arbitrary constants and {u1, u2}
is the fundamental system of this homogeneous equation. We replace the constants C1, C2 by
the functions c1, c2 ∈ F(X) (Method of Variation of Parameters [12]), respectively. Then, by
substituting

uf ;i = c1;iu
1
i + c2;iu

2
i , i ∈ X, (4.5)

into (4.3) and denoting dki =
∑2

l=1[cl;i+k − cl;i]ul
i+k, k = −1, 0, 1, 2, i = max(0,−k), . . . ,min(n −

k, n) [12], we obtain

fi =
2∑

k=0

ak
i uf ;i+k =

2∑

k=0

ak
i

2∑

l=1

cl;i+ku
l
i+k =

2∑

k=0

ak
i dki +

2∑

k=0

ak
i

2∑

l=1

cl;iu
l
i+k

=
2∑

k=0

ak
i dki +

2∑

l=1

cl;i

[
2∑

k=0

ak
i u

l
i+k

]

.

(4.6)
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The functions u1 and u2 are solutions of the homogeneous equation (4.1). Consequently,

fi =
2∑

k=0

ak
i dki, for i ∈ X̃. (4.7)

Denote bli = cl;i+1 − cl;i, l = 1, 2. We derive (k = 0, 1, 2)

dki − dk−1,i+1 =
2∑

l=1

(cl;i+k − cl;i)ul
i+k −

2∑

l=1

(cl;i+k − cl;i+1)ul
i+k =

2∑

l=1

bliu
l
i+k,

2∑

k=0

ak
i (dki − dk−1,i+1) =

2∑

l=1

bli
2∑

k=0

ak
i u

l
i+k = 0.

(4.8)

Then we rewrite equality (4.7) as (d0i = 0 by definition)

fi =
2∑

k=0

ak
i dki =

2∑

k=0

ak
i dk−1,i+1 = a2

i d1,i+1 + a0
i d−1,i+1. (4.9)

We can take d−1,i+1 = 0, i = 0, . . . , n − 1. Then d1,i+1 = fi/a
2
i for all i ∈ X̃, and we obtain the

following systems:

b1,i+1u
1
i+1 + b2,i+1u

2
i+1 = 0,

b1,i+1u
1
i+2 + b2,i+1u

2
i+2 =

fi

a2
i

,
i ∈ X̃. (4.10)

Since u1, u2 are linearly independent, the determinant W[u] is not equal to zero and system
(4.10) has a unique solution

b1,i+1 = c1;i+2 − c1;i+1 = − u2
i+1fi

a2
i W[u]i+2

, b2,i+1 = c2;i+2 − c2;i+1 =
u1
i+1fi

a2
i W[u]i+2

. (4.11)

Then

c1;i = −
i−2∑

j=0

u2
j+1fj

a2
jW[u]j+2

+ c1;1, c2;i =
i−2∑

j=0

u1
j+1fj

a2
jW[u]j+2

+ c2;1, i = 2, . . . , n, (4.12)

and the formula for solution of nonhomogeneous equation (with the conditions u0 = u1 = 0)
is

ui =
i−2∑

j=0

fj

a2
jW[u]j+2

∣
∣
∣
∣
∣

u1
j+1 u1

i

u2
j+1 u2

i

∣
∣
∣
∣
∣
=

i−2∑

j=0

D[u]j+1,i
W[u]j+2

fj

a2
j

=
i−2∑

j=0

Hij

a2
j

fj (4.13)
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for i = 2, . . . , n. We introduce a function Hθ ∈ F(X × X̃):

Hθ
ij :=

θi−jHij

a2
j

, θi :=

⎧

⎨

⎩

1 i > 0,

0 i ≤ 0.
(4.14)

Then we rewrite (4.13) and the conditions u0 = 0, u1 = 0 as follows:

ui =
n−2∑

j=0

Hθ
ijfj =

(

Hθ
ij , fj

)

X
=
(

Hθ
i,·, f
)

X
, i ∈ X, (4.15)

where (w, g)X = (wl, gl)X :=
∑n−2

l=0 wlgl, w, g ∈ F(X̃). So, we derive a formula for the general
solution ui = (Hθ

i,·, f)X + C1u
1
i + C2u

2
i . We use this formula for the special basis {v1, v2} (see

(3.11)). In this case, we have

ui =
(

Hθ
i,·, f
)

X
+C1v

1
i + C2v

2
i , i ∈ X. (4.16)

Let there be homogeneous conditions

〈L1, u〉 = 0, 〈L2, u〉 = 0. (4.17)

So, by substituting general solution (4.16) into homogeneous additional conditions, we find
(see (3.12))

C1 = −
〈

Lk
1 ,
(

Hθ
k,·, f

)

X

〉

= −
(〈

Lk
1 ,H

θ
k,·
〉

, f
)

X
,

C2 = −
〈

Lk
2 ,
(

Hθ
k,·, f

)

X

〉

= −
(〈

Lk
2 ,H

θ
k,·
〉

, f
)

X
.

(4.18)

Next we obtain a formula for solution in the case of difference equation with two additional
homogeneous conditions

uf ;i =
(

Hθ
i,·, f
)

X
− v1

i

(〈

Lk
1 ,H

θ
k,·
〉

, f
)

X
− v2

i

(〈

Lk
2 ,H

θ
k,·
〉

, f
)

X

=
(〈

δk
i − Lkvi, Hθ

k,·
〉

, f
)

X
,

(4.19)

where v1
i = D(δi, L2)/D(L), v2

i = D(L1, δi)/D(L), vi = [v1
i , v

2
i ], L

k = (Lk
1 , L

k
2), i, k ∈ X, Lkvi :=

Lk
1v

1
i + Lk

2v
2
i .

4.2. A Homogeneous Equation with Additional Conditions

Let us consider the homogeneous equation (4.1) with the additional conditions (4.4)

Lu = 0, 〈L1, u〉 = g1, 〈L2, u〉 = g2. (4.20)
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We can find the solution

u0;i = g1 · v1
i + g2 · v2

i , i ∈ X, (4.21)

to this problem if the general solution is inserted into the additional conditions.
The solution of nonhomogeneous problems is of the form ui = uf ;i+u0;i (see (4.19) and

(4.21)). Thus, we get a simple formula for solving problem (4.3)-(4.4).

Theorem 4.1. The solution of problem (4.3)-(4.4) can be expressed by the formula

ui =
(〈

δk
i − Lkvi, Hθ

k,·
〉

, f
)

X
+ g1 · v1

i + g2 · v2
i , i ∈ X. (4.22)

Formula (4.22) can be effectively employed to get the solutions to the linear difference
equation, with various a0, a1, a2, any right-hand side function f , and any functionals L1, L2

and any g1, g2, provided that the general solution of the homogeneous equation is known. In
this paper, we also use (4.22) to get formulae for Green’s function.

4.3. Relation between Two Solutions

Next, let us consider two problems with the same nonhomogeneous difference equation with
a difference operator as in the previous subsection

Lu = f, Lv = f,

〈lm, u〉 = fm, m = 1, 2, 〈Lm, v〉 = Fm, m = 1, 2,
(4.23)

and D(L)/= 0. The differencew = v − u satisfies the problem

Lw = 0,

〈Lm,w〉 = Fm − 〈Lm, u〉, m = 1, 2.
(4.24)

Thus, it follows from formula (4.21) that

wi = (F1 − 〈L1, u〉)v1
i + (F2 − 〈L2, u〉)v2

i , i ∈ X, (4.25)

or

vi = ui + (F1 − 〈L1, u〉)D(δi, L2)
D(L)

+ (F2 − 〈L2, u〉)D(L1, δi)
D(L)

, i ∈ X, (4.26)

and we can express the solution of the second problem (4.23) via the solution of the first
problem.
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Corollary 4.2. The relation

vi =
1

D(L)[u]

∣
∣
∣
∣
∣
∣
∣
∣

〈

L1, u1〉 〈

L2, u1〉 u1
i

〈

L1, u2〉 〈

L2, u2〉 u2
i

〈L1, u〉 − F1 〈L2, u〉 − F2 ui

∣
∣
∣
∣
∣
∣
∣
∣

, i ∈ X, (4.27)

between the two solutions of problems (4.23) is valid.

Proof. If we expand the determinant in (4.27) according to the last row, then we get formula
(4.26).

Remark 4.3. The determinant in formula (4.27) is equal to

∣
∣
∣
∣
∣
∣
∣
∣

〈

L1, u1〉 〈L2, u1〉 u1
i

〈

L1, u2〉 〈L2, u2〉 u2
i

〈L1, u〉 〈L2, u〉 ui

∣
∣
∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣
∣

〈

L1, u1〉 〈L2, u1〉 u1
i

〈

L1, u2〉 〈L2, u2〉 u2
i

F1 F2 0

∣
∣
∣
∣
∣
∣
∣
∣

. (4.28)

In this way, we can rewrite (4.27) as

vi =
D(L, δi)[u, u]

D(L)[u]
+
F1D(δi, L2)[u] + F2D(L1, δi)[u]

D(L)[u]
, i ∈ X. (4.29)

Note that in this formula the function u is in the first term only and vi is invariant with regard
to the basis {u1, u2}.

5. Green’s Functions

5.1. Definitions of Discrete Green’s Functions

We propose a definition of Green’s function (see [9, 12]). In this section, we suppose that
� = � and Xn := X = {0, 1, . . . , n}. Let A : F(Xn) → F(Xn−m) = ImA be a linear operator,
0 ≤ m ≤ n. Consider an operator equation Au = f , where u ∈ F(Xn) is unknown and
f ∈ F(Xn−m) is given. This operator equation, in a discrete case, is equivalent to the system of
linear equations

n∑

i=0

ajiui = fj , j = 0, 1, . . . , n −m, (5.1)

that is, Au = f, where u ∈ �n+1 , f ∈ �n−m+1 , A = (aji) ∈ M(n+1)×(n−m+1)(�), rank A = n −m + 1.
We have dim Ker A = m. In the casem > 0, we must add additional conditions if we want to
get a unique solution. Let us addM − n +m homogeneous linear equations

n∑

i=0

bjiui = 0, j = 1, . . . ,M − n +m, (5.2)
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where B = (bji) ∈ M(n+1)×(M−n+m)(�), rankB = M − n +m, and denote

ãji :=

⎧

⎨

⎩

aji, j = 0, 1, . . . , n −m,

bj−n+m,i, j = n −m + 1, . . . ,M,
i ∈ Xn,

f̃j :=

⎧

⎨

⎩

fj , j = 0, 1, . . . , n −m,

0, j = n −m + 1, . . . ,M.

(5.3)

We have a system of linear equations Ãu = f̃, where f̃ = (f̃j) ∈ M(n+1)×1(�), Ã =
(ãji) ∈ M(n+1)×(M+1)(�). The necessary condition for a unique solution is M ≥ n. Additional
equations (5.2) define the linear operator B : F(Xn) → F(XM−n+m) and the additional
operator equation Bu = 0, and we have the following problem:

Au = f, Bu = 0. (5.4)

If solution of (5.4) allows the following representation:

ui =
n−m∑

j=0

Gijfj , i ∈ Xn, (5.5)

then G ∈ F(Xn × Xn−m) is called Green’s function of operator A with the additional condition
Bu = 0. Green’s function exists if KerA∩KerB = {0}. This condition is equivalent to det Ã/= 0
forM = n. In this case, we can easily get an expression for Green’s function in representation
(5.5) from the Kramer formula or from the formula for u = Ã−1f̃. If Ã−1 = (gij), then Gij =
gij for i ∈ Xn, j ∈ Xn−m and AG = E, BG = O, where G = (Gij) ∈ M(n+1)×(n−m+1)(�) (or
∑n

k=0 aikGkj = δi
j , i ∈ Xn−m,

∑n
k=0 bikGkj = 0, i ∈ Xm, j ∈ Xn−m). So, [G0j , . . . , Gnj] is a unique

solution of problem (5.4) with fj = [δ0
j , . . . , δ

n
j ], j ∈ Xn−m.

Example 5.1. In the casem = 2, formula (5.5) can be written as

ui =
n−2∑

j=0

Gijfj =
(

Gi,·, f
)

X
, i ∈ Xn. (5.6)

The functionHθ ∈ F(X × X̃) is an example of Green’s function for (4.3)with discrete (initial)
conditions u0 = u1 = 0. In the casem = 2, formula (5.6) is the same as (4.15), X̃ = Xn−2.

Remark 5.2. Let us consider the case m = 2. If fi = fi+1, where the function f is defined on
X := {1, 2, . . . , n − 1}, then we use the shifted Green’s function G ∈ F(X ×X)

ui =
n−1∑

j=1

Gijfj , Gij := Gi,j−1, i ∈ Xn. (5.7)
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For finite-difference schemes, discrete functions are defined in points xi ∈ [0, L] and
fi = f(xi). In this paper, we introduce meshes

ωh = {0 = x0 < x1 < · · · < xn = L},

ωh = ωh \ {x0, xn}, ω̃h = ωh \ {xn−1, xn}
(5.8)

with the step sizes hi = xi − xi−1, 1 ≤ i ≤ n, h0 = hn+1 = 0, and a semi-integer mesh

ωh
1/2 =

{

xi+1/2 | xi+1/2 =
xi + xi+1

2
, 0 ≤ i ≤ n − 1

}

(5.9)

with the step sizes hi+1/2 = (hi + hi+1)/2, 0 ≤ i ≤ n. We define the inner product

(U,V )ωh :=
n∑

i=0

UiVihi+1/2, (5.10)

where U,V ∈ F(ωh), and the following mesh operators:

(δZ)i+1/2 =
Zi+1 −Zi

hi+1
, Z ∈ F

(

ωh
)

, (δZ)i =
Zi+1/2 −Zi−1/2

hi+1/2
, Z ∈ F

(

ωh
1/2

)

. (5.11)

If A : F(ωh) → F(ω) and f ∈ F(ω), where ω = ωh,ωh, ω̃h, then we define the Green’s
function G ∈ F(ωh ×ω)

ui =
∑

j:xj∈ω
Gijfj , i ∈ Xn. (5.12)

For many applications another discrete Green’s function Gh is used [9, 11]

ui =
n∑

j=0

Gh
ijfjhj+1/2 =

(

Gh
i,·, f
)

ωh
, i ∈ Xn, (5.13)

where fj = 0 for xj ∈ ωh \ω. The relations between these functions are

Gh
ij =

Gij

hj+1/2
for j : xj ∈ ω, Gh

ij = 0 for j : xj ∈ ωh \ω. (5.14)

So, if we know the function Gij , then we can calculate Gh
ij , and vice versa. If hi ≡ 1 (L = n),

then Gh
ij coincides with Gij .



Boundary Value Problems 15

Note that the Wronskian determinant can be defined by the following formula (see
[10]):

Wh[u]j =

∣
∣
∣
∣
∣
∣

u1
j−1 u2

j−1
δu1

j−1/2 δu2
j−1/2

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

u1
j−1 u2

j−1
u1
j − u1

j−1
hj

u2
j − u2

j−1
hj

∣
∣
∣
∣
∣
∣
∣
∣

=
W[u]j
hj

, j = 1, . . . , n. (5.15)

5.2. Green’s Functions for a Linear Difference Equation with Additional
Conditions

Let us consider the nonhomogeneous equation (4.3) with the operator: L : U → F(X),
where additional homogeneous conditions define the subspace U = {u ∈ F(X) : 〈L1, u〉 =
0, 〈L2, u〉 = 0}.

Lemma 5.3. Green’s function for problem (4.3) with the homogeneous additional conditions
〈L1, u〉 = 0, 〈L2, u〉 = 0, where functionals L1 and L2 are linearly independent, is equal to

Gij =
D(L, δi)

[

u,Hθ
·,j
]

D(L)[u]
, i ∈ X, j ∈ X̃. (5.16)

Proof. In the previous section, we derived a formula of the solution (see Theorem 4.1 for
g1, g2 = 0)

ui =
(〈

δk
i − Lkvi, Hθ

k,·
〉

, f
)

X
, i ∈ X, (5.17)

where v1
i = D(δi, L2)/D(L), v2

i = D(L1, δi)/D(L). So, Green’s function is equal to

Gij =
〈

δk
i − Lkvi, Hθ

kj

〉

= Hθ
ij −
〈

Lk
1 ,H

θ
kj

〉D(δi, L2)
D(L)

−
〈

Lk
2 ,H

θ
kj

〉D(L1, δi)
D(L)

. (5.18)

We have

D(L, δi)
[

u,Hθ
·,j
]

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

〈

L1, u1〉 〈

L2, u1〉 u1
i

〈

L1, u2〉 〈

L2, u2〉 u2
i

〈

Lk
1 ,H

θ
kj

〉 〈

Lk
2 ,H

θ
kj

〉

Hθ
ij

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (5.19)

too. If we expand this determinant according to the last row and divide by D(L)[u], then we
get the right-hand side of (5.18). The lemma is proved.

If u = Pu, where P ∈ GL2(�), then we get that Green’s function Gij = G[u]ij = G[u]ij ,
that is, it is invariant with respect to the basis {u1, u2}.
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For the theoretical investigation of problems with NBCs, the next result about the
relations between Green’s functions Gu

ij and Gv
ij of two nonhomogeneous problems

Lu = f, Lv = f,

〈lm, u〉 = 0, m = 1, 2, 〈Lm, v〉 = 0, m = 1, 2,
(5.20)

with the same f , is useful.

Theorem 5.4. If Green’s function Gu exists and the functionals L1 and L2 are linearly independent,
then

Gv
ij =

D(L, δi)
[

u, Gu
·,j
]

D(L)[u]
, i ∈ X, j ∈ X̃. (5.21)

Proof. We have equality (4.26) (the case F1, F2 = 0)

v = u − 〈L1, u〉v1 − 〈L2, u〉v2. (5.22)

If ui = (Gu
i,·, f)X , then

vi = ui −
n∑

k=0

ukL
k
1v

1
i −

n∑

k=0

ukL
k
2v

2
i =

(

Gu
i,· −

n∑

k=0

Gu
k,·L

k
1v

1
i −

n∑

k=0

Gu
k,·L

k
2v

2
i , f

)

X

. (5.23)

So, Green’s function Gv is equal to

Gv
ij = Gu

ij −
n∑

k=0

Gu
kjL

k
1v

1
i −

n∑

k=0

Gu
kjL

k
2v

2
i

=
〈

δk
i − Lk

1v
1
i − Lk

2v
2
i , G

u
kj

〉

=
〈

δk
i − Lkvi, Gu

kj

〉

.

(5.24)

A further proof of this theorem repeats the proof of Lemma 5.3 (we have Gu instead of Hθ).

Remark 5.5. Instead of formula (5.18), we have

Gv
ij = Gu

ij − 〈Lk
1 , G

u
kj〉

D(δi, L2)
D(L)

− 〈Lk
2 , G

u
kj〉

D(L1, δi)
D(L)

. (5.25)

We can write the determinant in formula (5.21) in the explicit way

Gv
ij =

D(L, δi)
[

u, Gu
·,j
]

D(L)[u]
=

1
D(L)[u]

∣
∣
∣
∣
∣
∣
∣
∣
∣

〈

L1, u1〉 〈

L2, u1〉 u1
i

〈

L1, u2〉 〈

L2, u2〉 u2
i

〈

Lk
1 , G

u
kj

〉 〈

Lk
2 , G

u
kj

〉

Gu
ij

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (5.26)
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Formulaes (5.25) and (5.26) easily allow us to find Green’s function for an equation
with two additional conditions if we know Green’s function for the same equation, but with
other additional conditions. The formula

ui =
(

Gi,·, f
)

X
+ g1v

1
i + g2v

2
i , i ∈ X (5.27)

can be used to get the solutions of the equations with a difference operator with any two linear
additional (initial or boundary or nonlocal boundary) conditions if the general solution of a
homogeneous equation is known.

6. Applications to Problems with NBC

Let us investigate Green’s function for the problem with nonlocal boundary conditions

Lu := a2
i ui+2 + a1

i ui+1 + a0
i ui = fi, i ∈ X̃, (6.1)

〈L1, u〉 := 〈κ0, u〉 − γ0〈�0, u〉 = 0, (6.2)

〈L2, u〉 := 〈κ1, u〉 − γ1〈�1, u〉 = 0. (6.3)

We can write many problems with nonlocal boundary conditions (NBC) in this form, where
〈κm, u〉 := 〈κi

m, ui〉, m = 0, 1, is a classical part and 〈�m, u〉 := 〈�i
m, ui〉, m = 0, 1, is a nonlocal

part of boundary conditions.
If γ0, γ1 = 0, then problem (6.1)–(6.3) becomes classical. Suppose that there exists

Green’s function Gcl
ij for the classical case. Then Green’s function exists for problem (6.1)–

(6.3) if ϑ = D(L)[u]/= 0. For Lm = κm − γm�m, m = 0, 1, we derive

ϑ = D(κ0 · κ1)[u] − γ0D(�0 · κ1)[u] − γ1D(κ0 · �1)[u] + γ0γ1D(�0 · �1)[u]. (6.4)

Since 〈κk
m,G

cl
kj〉 = 0,m = 0, 1, we can rewrite formula (5.26) as

Gij = Gcl
ij + γ0v

1
i

〈

�
k
1 , G

cl
kj

〉

+ γ1v
2
i

〈

�
k
2 , G

cl
kj

〉

= Gcl
ij + γ0

〈

�
k
1 , G

cl
kj

〉D(δi, L2)
ϑ

+ γ1
〈

�
k
2 , G

cl
kj

〉D(L1, δi)
ϑ

=
1
ϑ

∣
∣
∣
∣
∣
∣
∣
∣
∣

〈

L1, u1〉 〈

L2, u1〉 u1
i

〈

L1, u2〉 〈

L2, u2〉 u2
i

−γ0
〈

�
k
1 , G

cl
kj

〉

−γ1
〈

�
k
2 , G

cl
kj

〉

Gcl
ij

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(6.5)

Example 6.1. Let us consider the differential equation with two nonlocal boundary conditions

−u′′ = f(x), x ∈ (0, 1),

u(0) = γ0u(ξ0), u(1) = γ1u(ξ1), 0 < ξ0, ξ1 < 1.
(6.6)
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We introduce a mesh ωh (see (5.8)). Denote ui = u(xi), fi = f(xi) for xi ∈ ωh. Then
problem (6.6) can be approximated by a finite-difference problem (scheme)

−δ2ui = fi, xi ∈ ωh, (6.7)

u0 = γ0us0 , un = γ1us1 . (6.8)

We suppose that the points ξ0, ξ1 are coincident with the grid points, that is, ξ0 = xs0 , ξ1 = xs1 .
We rewrite (6.7) in the following form:

a2
i ui+2 + a1

i ui+1 + a0
i ui = fi+1, i ∈ X̃, (6.9)

where

a2
i = − 1

hi+2hi+3/2
, a1

i =
2

hi+2hi+1
, a0

i = − 1
hi+1hi+3/2

, i ∈ X̃. (6.10)

We can take the following fundamental system: u1
i = 1, u2

i = xi. Then

D[u]ij =

∣
∣
∣
∣
∣

u1
i u1

j

u2
i u2

j

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1 1

xi xj

∣
∣
∣
∣
∣
= xj − xi, i, j ∈ X, Wj = hj , j = 1, . . . , n,

Hij =
xi − xj+1

hj+2
, j = −1, 0, 1, . . . , n − 2, Hi,n−1 = Hin = 0, i ∈ X.

(6.11)

As a result, we obtain

Hθ
ij =

θi−jHij

a2
j

= θi−j
(

xj+1 − xi

)

hj+3/2. (6.12)

For a problem with the boundary conditions u0 = un = 0 we haveD(L)[u] = 1,

D(L, δi)
[

u,Hθ
·,j
]

= Hθ
ij − xiH

θ
nj

= θi−j
(

xj+1 − xi

)

hj+3/2 − θn−jxi

(

xj+1 − 1
)

hj+3/2,

(6.13)

and we express Green’s function Gcl of the Dirichlet problem via Green’s function Hθ of the
initial problem

Gcl
ij = Hθ

ij − xiH
θ
nj . (6.14)
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We derive expressions for “classical” Green’s function

Gcl
ij = hj+3/2

(

θi−j
(

xj+1 − xi

)

+ θn−jxi

(

1 − xj+1
))

= hj+3/2

⎧

⎨

⎩

xi

(

1 − xj+1
)

, i ≤ j + 1,

xj+1(1 − xi), i ≥ j + 1,
i ∈ X, j ∈ X̃

(6.15)

or (see (5.7) and (5.13))

G
cl
ij = hj+1/2

⎧

⎨

⎩

xi

(

1 − xj

)

, xi ≤ xj ,

xj(1 − xi), xi ≥ xj ,
i ∈ X, j ∈ X

G
cl,h
ij =

⎧

⎨

⎩

xi

(

1 − xj

)

, 0 ≤ xi ≤ xj ≤ 1,

xj(1 − xi), 0 ≤ xj ≤ xi ≤ 1,
i, j ∈ X.

(6.16)

Remark 6.2. Note that the index of f on the right-hand side of (6.9) is shifted (cf. (6.1)).

Green’s function G
cl,h

is the same as in [10], and it is equal to Green’s function

G
cl(

x, y
)

=

⎧

⎨

⎩

x
(

1 − y
)

, 0 ≤ x ≤ y ≤ 1,

y(1 − x), 0 ≤ y ≤ x ≤ 1
(6.17)

for differential problem (6.6) at grid points in the case γ0 = γ1 = 0.
For a “nonlocal” problem with the boundary conditions u0 = γ0us0 , un = γ1us1 ,

ϑ : = D(L)[u] =

∣
∣
∣
∣
∣

〈L1, 1〉 〈L2, 1〉
〈L1, x〉 〈L2, x〉

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1 − γ0 · 1 1 − γ1 · 1
x0 − γ0xs0 xn − γ1xs1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1 − γ0 1 − γ1

−γ0ξ0 1 − γ1ξ1

∣
∣
∣
∣
∣
= 1 − γ0(1 − ξ0) − γ1ξ1 + γ0γ1(ξ1 − ξ0).

(6.18)

It follows from (6.5) that

G
h

ij = G
cl,h
ij + γ0

1 − xi + γ1(xi − ξ1)
ϑ

G
cl,h
s0j + γ1

xi − γ0(xi − ξ0)
ϑ

G
cl,h
s1j

(6.19)
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if ϑ/= 0. Green’s function does not exist for θ = 0. By substituting Green’s functionG
cl,h

for the
problem with the classical boundary conditions into the above equation, we obtain Green’s
function for the problem with nonlocal boundary conditions

G
h

ij =

⎧

⎨

⎩

xi

(

1 − xj

)

, xi ≤ xj ,

xj(1 − xi), xi ≥ xj,

+ γ0
1 − xi + γ1(xi − ξ1)

1 − γ0(1 − ξ0) − γ1ξ1 + γ0γ1(ξ1 − ξ0)

⎧

⎨

⎩

ξ0
(

1 − xj

)

, ξ0 ≤ xj ,

xj(1 − ξ0), ξ0 ≥ xj ,

+ γ1
xi − γ0(xi − ξ0)

1 − γ0(1 − ξ0) − γ1ξ1 + γ0γ1(ξ1 − ξ0)

⎧

⎨

⎩

ξ1
(

1 − xj

)

, ξ1 ≤ xj ,

xj(1 − ξ1), ξ1 ≥ xj .

(6.20)

This formula corresponds to the formula of Green’s function for differential problem (6.6)
(see [4])

G
(

x, y
)

=

⎧

⎨

⎩

x
(

1 − y
)

, x ≤ y,

xj(1 − x), x ≥ y,

+ γ0
1 − x + γ1(x − ξ1)

1 − γ0(1 − ξ0) − γ1ξ1 + γ0γ1(ξ1 − ξ0)

⎧

⎨

⎩

ξ0
(

1 − y
)

, ξ0 ≤ y

xj(1 − ξ0), ξ0 ≥ y,

+ γ1
x − γ0(x − ξ0)

1 − γ0(1 − ξ0) − γ1ξ1 + γ0γ1(ξ1 − ξ0)

⎧

⎨

⎩

ξ1
(

1 − y
)

, ξ1 ≤ y,

xj(1 − ξ1), ξ1 ≥ y.

(6.21)

Example 6.3. Let us consider the problem

−u′′ = f(x), x ∈ (0, 1),

u(0) = γ0

∫1

0
α0(x)u(x)dx, u(1) = γ1

∫1

0
α1(x)u(x)dx,

(6.22)

where α0, α1 ∈ L1(0, 1).

Problem (6.22) can be approximated by the difference problem

−δ2ui = fi, xi ∈ ωh,

u0 = γ0
(

A0, u
)

K
, un = γ1

(

A1, u
)

K
,

(6.23)

where A0, A1 are approximations of the weight functions α0, α1 in integral boundary
conditions, (A, u)K is a quadrature formula for the integral

∫1
0 A(x)u(x)dx approximation

(e.g., trapezoidal formula (A, u)trap :=
∑n

k=0 Akukhk+1/2).
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The expression of Green’s function for the problem with the classical boundary
conditions (γ0 = γ1 = 0, u1

i = 1, u2
i = xi) is described in Example 6.1. The existence condition

of Green’s function for problem (6.23) is ϑ/= 0, where

ϑ = D(L)[u] =

∣
∣
∣
∣
∣
∣

1 − γ0
(

A0, 1
)

K
1 − γ1

(

A1, 1
)

K

−γ0
(

A0, x
)

K
1 − γ1

(

A1, x
)

K

∣
∣
∣
∣
∣
∣

= 1 − γ0
(

A0, 1 − x
)

K
− γ1
(

A1, x
)

K
+ γ0γ1

∣
∣
∣
∣
∣

(

A0, 1 − x
)

K

(

A0, x
)

K
(

A1, 1 − x
)

K

(

A1, x
)

K

∣
∣
∣
∣
∣

(6.24)

(such a condition was obtained for problem (6.23) in [15, 16]) and Green’s function is equal
to (see Theorem 5.4)

Gij = Gcl
ij +

γ0
(

1 − xi + γ1
(

xi

(

A1, 1
)

K
− (A1, x

)

K

))(

A0, Gcl
·,j
)

K

ϑ

+
γ1
(

xi − γ0
(

xi

(

A0, 1
)

K − (A0, x
)

K

))(

A1, Gcl
·,j
)

K

ϑ
,

(6.25)

where Gcl
ij is defined by (6.15).

Green’s function for differential problem (6.22) was derived in [8]. For this problem

ϑ = 1 − γ0

∫1

0
α0(x)(1 − x)dx − γ1

∫1

0
α1(x)xdx

− γ0γ1

∫∫1

0
α0(x)α1

(

y
)(

x − y
)

dx dy,

G
(

x, y
)

= G
cl(

x, y
)

+
γ0
(

1 − x + γ1
∫1
0 α1(t)(x − t)dt

)

ϑ
·
∫1

0
α0(t)G

cl(
t, y
)

dt

+
γ1
(

x − γ0
∫1
0 α0(t)(x − t)dt

)

ϑ
·
∫1

0
α1(t)G

cl(
t, y
)

dt

(6.26)

if ϑ/= 0, where G
cl
(x, y) is defined by formula (6.17).

Remark 6.4. We could substitute (6.15) into (6.25) and obtain an explicit expression of Green’s
function. However, it would be quite complicated, and we will not write it out. Note that,
if (A0, u)K = us0 , (A

1, u)K = us1 , then discrete problem (6.23) is the same as (6.7)-(6.8). For
example, it happens if a trapezoidal formula is used for the approximation αl, l = 0, 1 and we
take Al

i = δsl
i /hsl+1/2. It is easy to see that we could obtain the same expression for Green’s

function (6.19) in this case.
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Example 6.5. Let us consider a difference problem

−δ2ui = fi, xi ∈ ωh,

u0 = α0u1 + γ0un−1, un = α1u1 + γ1un−1.
(6.27)

A condition for the existence of the Green’s function (fundamental system {1 − x, x}) is

ϑ := D(L)[u] =

∣
∣
∣
∣
∣

1 − α0(1 − h1) − γ0hn −α1(1 − h1) − γ1hn

−α0h1 − γ0(1 − hn) 1 − hn − α1h1 − γ1(1 − hn)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1 − α0 γ0

α1 1 − γ1

∣
∣
∣
∣
∣
+ h1

∣
∣
∣
∣
∣

α0 1 − γ0

α1 1 − γ1

∣
∣
∣
∣
∣
+ hn

∣
∣
∣
∣
∣

1 − α0 γ0

1 − α1 γ1

∣
∣
∣
∣
∣
/= 0.

(6.28)

We consider three types (α0 = γ1 = 0, γ0 = α1 = 1; α0 = α1 = (1 + h1/hn)
−1, γ0 = γ1 =

(1 + hn/h1)
−1; α0 = 0, γ0 = 1, α1 = hn/h1, γ1 = (1 − hn/h1) of discrete boundary conditions

u0 = un−1, u1 = un,

u0 = un, δu1/2 = δun−1/2,

u0 = un−1, δu1/2 = δun−1/2.

(6.29)

All the cases yield ϑ = 0. Consequently, Green’s function for the three problems does not
exist.

7. Conclusions

Green’s function for problems with additional conditions is related with Green’s function of
a similar problem, and this relation is expressed by formulae (5.26). Green’s function exists if
ϑ = D(L)[u]/= 0. If we know Green’s function for the problem with additional conditions and
the fundamental basis of a homogeneous difference equation, then we can obtain Green’s
function for a problem with the same equation but with other additional conditions. It is
shown by a few examples for problems with NBCs that but formulae (5.26) can be applied
to a very wide class of problems with various boundary conditions as well as additional
conditions.

All the results of this paper can be easily generalized to the n-order difference equation
with n additional functional conditions. The obtained results are similar to a differential case
[8, 17].
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Rutkauskas, and A. Štikonas, Eds., pp. 123–130, Kaunas University of Technology, 2009.

[6] J.-P. Sun and J. Wei, “Existence of positive solution for semipositone second-order three-point
boundary-value problem,” Electronic Journal of Differential Equations, vol. 2008, no. 41, pp. 1–7, 2008.

[7] Z. Zhao, “Positive solutions for singular three-point boundary-value problems,” Electronic Journal of
Differential Equations, vol. 2007, no. 156, pp. 1–8, 2007.
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