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Green’s function G(x, y) of the clamped boundary value problem for the differential operator
(−1)M(d/dx)2M on the interval (−s, s) is obtained. The best constant of corresponding Sobolev
inequality is given by max|y|≤sG(y, y). In addition, it is shown that a reverse of the Sobolev best
constant is the one which appears in the generalized Lyapunov inequality by Das and Vatsala
(1975).

1. Introduction

ForM = 1, 2, 3, . . ., s > 0, letH(= HM
0 (−s, s)) be a Sobolev (Hilbert) space associated with the

inner product (·, ·)M:

H = H(M) =
{
u | u(M) ∈ L2(−s, s), u(i)(±s) = 0 (0 ≤ i ≤ M − 1)

}
,

(u, v)M =
∫ s
−s
u(M)(x)v(M)(x)dx, ‖u‖2M = (u, u)M.

(1.1)
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The fact that (·, ·)M induces the equivalent norm to the standard norm of the Sobolev (Hilbert)
space of Mth order follows from Poincaré inequality. Let us introduce the functional S(u) as
follows:

S(u) =

(
sup|y|≤s

∣∣u(y)∣∣
)2

‖u‖2M
. (1.2)

To obtain the supremum of S (i.e., the best constant of Sobolev inequality), we consider the
following clamped boundary value problem:

(−1)Mu(2M) = f(x) (−s < x < s),

u(i)(±s) = 0 (0 ≤ i ≤ M − 1).
(BVP(M))

Concerning the uniqueness and existence of the solution to (BVP(M)), we have the following
proposition. The result is expressed by the monomial Kj(x):

Kj(x) = Kj(M;x) =

⎧
⎪⎪⎨
⎪⎪⎩

x2M−1−j
(
2M − 1 − j

)
!

(
0 ≤ j ≤ 2M − 1

)
,

0
(
2M ≤ j

)
.

(1.3)

Proposition 1.1. For any bounded continuous function f(x) on an interval −s < x < s, (BVP(M))
has a unique classical solution u(x) expressed by

u(x) =
∫s
−s
G
(
x, y
)
f
(
y
)
dy (−s < x < s), (1.4)

where Green’s function G(x, y) = G(M;x, y) (−s < x, y < s) is given by

G
(
x, y
)

=
(−1)M

2

[
K0
(∣∣x − y

∣∣) +D−1
{∣∣∣∣∣

Ki+j(2s) Ki

(
s − y
)

Kj(s + x) 0

∣∣∣∣∣ +
∣∣∣∣∣
Ki+j(2s) Ki

(
s + y
)

Kj(s − x) 0

∣∣∣∣∣

}]

(1.5)

= (−1)MD−1
∣∣∣∣∣

Ki+j(2s) Ki

(
s + x ∧ y

)

Kj

(
s − x ∨ y

)
0

∣∣∣∣∣
(−s < x, y < s

)
. (1.6)

D is the determinant of M × M matrix (Ki+j)(2s) (0 ≤ i, j ≤ M − 1), x ∧ y = min(x, y), and
x ∨ y = max(x, y).
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With the aid of Proposition 1.1, we obtain the following theorem. The proof of
Proposition 1.1 is shown in Appendices A and B.

Theorem 1.2. (i) The supremum C(M;−s, s) (abbreviated as C(M) if there is no confusion) of the
Sobolev functional S is given by

C(M;−s, s) = sup
u∈H, u/≡ 0

S(u) = max
|y|≤s

G
(
y, y
)
= G(0, 0) =

s2M−1

22M−1(2M − 1){(M − 1)!}2 . (1.7)

Concretely,

C(1,−s, s) = s

2
, C(2,−s, s) = s3

24
, C(3,−s, s) = s5

640
, C(4,−s, s) = s7

32256
, . . . . (1.8)

(ii) C(M;−s, s) is attained by u = G(x, 0), that is, S(G(x, 0)) = C(M;−s, s).

Clearly, Theorem 1.2(i), (ii) is rewritten equivalently as follows.

Corollary 1.3. Let u ∈ H , then the best constant of Sobolev inequality (corresponding to the
embedding ofH into L∞(−s, s))

(
sup
|y|≤s

∣∣u(y)∣∣
)2

≤ C

∫ s
−s

∣∣∣u(M)(x)
∣∣∣
2
dx, (1.9)

is C(M;−s, s). Moreover the best constant C(M;−s, s) is attained by u(x) = cG(x, 0), where c is an
arbitrary complex number.

Next, we introduce a connection between the best constant of Sobolev- and Lyapunov-
type inequalities. Let us consider the second-order differential equation

u′′ + p(x)u = 0 (−s ≤ x ≤ s), (1.10)

where p(x) ∈ L1(−s, s) ∩ C[−s, s]. If the above equation has two points s1 and s2 in [−s, s]
satisfying u(s1) = 0 = u(s2), then these points are said to be conjugate. It is wellknown that if
there exists a pair of conjugate points in [−s, s], then the classical Lyapunov inequality

∫ s
−s
p+(x)dx >

2
s
, (1.11)

holds, where p+(x) := max(p(x), 0). Various extensions and improvements for the above
result have been attempted; see, for example, Ha [1], Yang [2], and references there in.
Among these extensions, Levin [3] and Das and Vatsala [4] extended the result for higher
order equation

(−1)Mu(2M) − p(x)u = 0 (−s ≤ x ≤ s). (1.12)
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For this case, we again call two distinct points s1 and s2 conjugate if there exists a nontrivial
C2M(−s, s) ∩ CM−1[−s, s] solution of (1.12) satisfying

u(i)(s1) = 0 = u(i)(s2) (i = 0, . . . ,M − 1). (1.13)

We point out that the constant which appears in the generalized Lyapunov inequality by
Levin [3] and Das and Vatsala [4] is the reverse of the Sobolev best embedding constant.

Corollary 1.4. If there exists a pair of conjugate points on [−s, s] with respect to (1.12), then
∫ s
−s
p+(x)dx >

1
C(M;−s, s) , (1.14)

where C(M;−s, s) is the best constant of the Sobolev inequality (1.9).

Without introducing auxiliary equation u(2M) + (−1)M−1p+u = 0 and the existence
result of conjugate points as [2, 4], we can prove this corollary directly through the Sobolev
inequality (the idea of the proof origins to Brown and Hinton [5, page 5]).

Proof of Corollary 1.4. Consider

∫ s2
s1

(
u(M)(x)

)2
dx =

∫ s2
s1

p(x)(u(x))2dx ≤
(

sup
s1≤x≤s2

|u(x)|
)2 ∫ s2

s1

p+(x)dx

≤ C(M; s1, s2)
∫ s2
s1

(
u(M)(x)

)2
dx

∫ s2
s1

p+(x)dx.

(1.15)

In the second inequality, the equality holds for the function which attains the Sobolev best
constant, so especially it is not a constant function. Thus, for this function, the first inequality
is strict, and hence we obtain

1
C(M; s1, s2)

<

∫ s2
s1

p+(x)dx. (1.16)

Since

1
C(M;−s, s) ≤ 1

C(M; s1, s2)
<

∫ s2
−s1

p+(x)dx ≤
∫ s
−s
p+(x)dx, (1.17)

we obtain the result.

Here, at the end of this section, we would like to mention some remarks about
(1.12). The generalized Lyapunov inequality of the form (1.14) was firstly obtained by
Levin [3] without proof; see Section 4 of Reid [6]. Later, Das and Vatsala [4] obtained
the same inequality (1.14) by constructing Green’s function for (BVP(M)). The expression
of the Green’s function of Proposition 1.1 is different from that of [4]. The expression of
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[4, Theorem 2.1] is given by some finite series of x and y on the other hand, the expression
of Proposition 1.1 is by the determinant. This complements the results of [7–9], where the
concrete expressions of Green’s functions for the equation (−1)Mu(2M) = f but different
boundary conditions are given, and all of them are expressed by determinants of certain
matrices as Proposition 1.1.

2. Reproducing Kernel

First we enumerate the properties of Green’s function G(x, y) of (BVP(M)). G(x, y) has the
following properties.

Lemma 2.1. Consider the following:

(1)

∂2Mx G
(
x, y
)
= 0
(−s < x, y < s, x /=y

)
, (2.1)

(2)

∂ixG
(
x, y
)∣∣∣

x=±s
= 0
(
0 ≤ i ≤ M − 1, −s < y < s

)
, (2.2)

(3)

∂ixG
(
x, y
)∣∣∣

y=x−0
− ∂ixG

(
x, y
)∣∣∣

y=x+0
=

⎧
⎪⎨
⎪⎩
0 (0 ≤ i ≤ 2M − 2),

(−1)M (i = 2M − 1) (−s < x < s),
(2.3)

(4)

∂ixG
(
x, y
)∣∣∣

x=y+0
− ∂ixG

(
x, y
)∣∣∣

x=y−0
=

⎧
⎪⎨
⎪⎩
0 (0 ≤ i ≤ 2M − 2),

(−1)M (i = 2M − 1)
(−s < y < s

)
.

(2.4)

Proof. For k (1 ≤ k ≤ 2M) and −s < x, y < s, x /=y, we have from (1.5)

∂kxG
(
x, y
)
=
(−1)M

2

[
(
sgn
(
x − y

))k
Kk

(∣∣x − y
∣∣)

+D−1
{∣∣∣∣∣

Ki+j(2s) Ki

(
s − y
)

Kk+j(s + x) 0

∣∣∣∣∣ +
∣∣∣∣∣

Ki+j(2s) Ki

(
s + y
)

(−1)kKk+j(s − x) 0

∣∣∣∣∣

}]
.

(2.5)
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For k = 2M, noting the fact Kj(x) = 0 (2M ≤ j), we have (1). Next, for 0 ≤ k ≤ M − 1 and
−s < y < s, we have from (2.5)

∂kxG
(
x, y
)∣∣∣

x=−s

=
(−1)M

2

[
(−1)kKk

(
s + y
)
+D−1

{∣∣∣∣∣
Ki+j(2s) Ki

(
s − y
)

Kk+j(0) 0

∣∣∣∣∣ +
∣∣∣∣∣

Ki+j(2s) Ki

(
s + y
)

(−1)kKk+j(2s) 0

∣∣∣∣∣

}]
.

(2.6)

Since (Kk(0), . . . , Kk+M−1(0)) = (0, . . . , 0), we have

(−1)M+k2 ∂kxG
(
x, y
)∣∣∣

x=−s
= Kk

(
s + y
)
+D−1

∣∣∣∣∣
Ki+j(2s) Ki

(
s + y
)

Kk+j(2s) 0

∣∣∣∣∣

= Kk

(
s + y
)
+D−1

∣∣∣∣∣
Ki+j(2s) Ki

(
s + y
)

0 · · · 0 −Kk

(
s + y
)
∣∣∣∣∣ = 0.

(2.7)

Note that subtracting the kth row from Mth row, the second equality holds. Equation
∂kxG(x, y)|x=s = 0 is shown by the same way. Hence, we have (2). For 0 ≤ k ≤ 2M − 1, we
have

∂kxG
(
x, y
)∣∣∣

y=x−0
− ∂kxG

(
x, y
)∣∣∣

y=x+0

=
(−1)M

2

(
1 − (−1)k

)
Kk(0) =

⎧
⎪⎨
⎪⎩
0 (0 ≤ k ≤ 2M − 2),

(−1)M (k = 2M − 1) (−s < x < s),

(2.8)

where we used the factKk(0) = 0 (k /= 2M−1), 1 (k = 2M−1). So we have (3), and (4) follows
from (3).

Using Lemma 2.1, we prove that the functional space H associated with inner norm
(·, ·)M is a reproducing kernel Hilbert space.

Lemma 2.2. For any u ∈ H , one has the reproducing property

u
(
y
)
=
(
u(·), G(·, y))M =

∫s
−s
u(M)(x)∂Mx G

(
x, y
)
dx

(−s ≤ y ≤ s
)
. (2.9)

Proof. For functions u = u(x) and v = v(x) = G(x, y) with y arbitrarily fixed in −s ≤ y ≤ s, we
have

u(M)v(M) − u(−1)Mv(2M) =

⎛
⎝

M−1∑
j=0

(−1)M−1−j u(j)v(2M−1−j)

⎞
⎠

′

. (2.10)



Boundary Value Problems 7

Integrating this with respect to x on intervals −s < x < y and y < x < s, we have

∫ s
−s
u(M)(x)v(M)(x)dx −

∫ s
−s
u(x)(−1)Mv(2M)(x)dx

=

⎡
⎣

M−1∑
j=0

(−1)M−1−ju(j)(x)v(2M−1−j)(x)

⎤
⎦
{∣∣∣x=y−0x=−s +

∣∣∣x=sx=y+0

}

=
M−1∑
j=0

(−1)M−1−j
[
u(j)(s)v(2M−1−j)(s) − u(j)(−s) v(2M−1−j)(−s)

]

+
M−1∑
j=0

(−1)M−1−ju(j)(y)
[
v(2M−1−j)(y − 0

) − v(2M−1−j)(y + 0
)]
.

(2.11)

Using (1), (2), and (4) in Lemma 2.1, we have (2.9).

3. Sobolev Inequality

In this section, we give a proof of Theorem 1.2 and Corollary 1.3.

Proof of Theorem 1.2 and Corollary 1.3. Applying Schwarz inequality to (2.9), we have

∣∣u(y)∣∣2 ≤
∫ s
−s

∣∣∣∂Mx G
(
x, y
)∣∣∣

2
dx

∫ s
−s

∣∣∣u(M)(x)
∣∣∣
2
dx = G

(
y, y
) ∫ s

−s

∣∣∣u(M)(x)
∣∣∣
2
dx. (3.1)

Note that the last equality holds from (2.9); that is, substituting (2.9), u(·) = G(·, y). Let us
assume that

C(M;−s, s) = C(M) = max
|y|≤s

G
(
y, y
)
= G(0, 0), (3.2)

holds (this will be proved in the next section). From definition of C(M), we have

(
sup
|y|≤s

|u(y)|
)2

≤ C(M)
∫s
−s

∣∣∣u(M)(x)
∣∣∣
2
dx. (3.3)

Substituting u(x) = G(x, 0) ∈ H in to the above inequality, we have

(
sup
|y|≤s

|G(y, 0)|
)2

≤ C(M)
∫ s
−s

∣∣∣∂Mx G(x, 0)
∣∣∣
2
dx = (C(M))2. (3.4)
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Combining this and trivial inequality (C(M))2 = (G(0, 0))2 ≤ (sup|y|≤s|G(y, 0)|)2, we have

(C(M))2 ≤
(
sup
|y|≤s

∣∣G(y, 0)∣∣
)2

≤ C(M)
∫s
−s

∣∣∣∂Mx G(x, 0)
∣∣∣
2
dx = (C(M))2. (3.5)

Hence, we have

(
sup
|y|≤s

|G(y, 0)|
)2

= C(M)
∫ s
−s

∣∣∣∂Mx G(x, 0)
∣∣∣
2
dx, (3.6)

which completes the proof of Theorem 1.2 and Corollary 1.3.

Thus, all we have to do is to prove (3.2).

4. Diagonal Value of Green’s Function

In this section, we consider the diagonal value of Green’s function, that is, G(x, x). From
Proposition 1.1, we have forM = 1, 2, 3

G(1;x, x) =

(
s2 − x2)

2s
, G(2;x, x) =

(
s2 − x2)3
24s3

, G(2;x, x) =

(
s2 − x2)5
650s5

. (4.1)

Thus, we can expect thatG(x, x) takes the formG(M;x, x) = const. K0(M; 1+x)K0(M; 1−x).
Precisely, we have the following proposition.

Proposition 4.1. Consider

G(x, x) = (−1)MD−1
∣∣∣∣∣
Ki+j(2s) Ki(s − x)

Kj(s + x) 0

∣∣∣∣∣ =
(
2(M − 1)

M − 1

)
1

K0(2s)
K0(s + x)K0(s − x)

=

(
2(M − 1)

M − 1

)
1

K0(2s)

(
s2 − x2)2M−1

{(2M − 1)!}2
.

(4.2)

Hence,

C(M;−s, s) = sup
|x|≤s

G(x, x) = G(0, 0) = (−1)MD−1
∣∣∣∣∣
Ki+j(2s) Ki(s)

Kj(s) 0

∣∣∣∣∣

=
s2M−1

22M−1(2M − 1)!

(
2(M − 1)

M − 1

)
=

s2M−1

22M−1(2M − 1)((M − 1)!)2
,

(4.3)

where i, j satisfy 0 ≤ i, j ≤ M − 1.



Boundary Value Problems 9

To prove this proposition, we prepare the following two lemmas.

Lemma 4.2. Let u(x) = c1G(x, x), where

c−11 = (−1)M
(
2(2M − 1)

2M − 1

)
D−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
Ki+j(2s) 0

...
0

1 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.4)

(i, j satisfy 0 ≤ i, j ≤ M − 1), then it holds that

− u(2(2M−1)) = 1 (−s < x < s), (4.5)

u(i)(±s) = 0 (0 ≤ i ≤ 2M − 2), (4.6)

u(2M−1)(s) = −
(
2(M − 1)

M − 1

)
c1. (4.7)

Lemma 4.3. Let ũ(x) = c2K0(s + x)K0(s − x) (−s < x < s), where c−12 =
(

2(2M−1)
2M−1

)
, then it holds

that (4.6) and ũ(2M−1)(s) = −K0(2s)c2.

Proof of Proposition 4.1. From Lemmas 4.2 and 4.3, u(x) = c1G(x, x) and ũ(x) = c2K0(s +
x)K0(s − x) satisfy BVP(2M − 1) (in case of f(x) = 1(−s < x < s)). So we have

c1G(x, x) = c2K0(s + x)K0(s − x) (−s < x < s), (4.8)

(
2(M − 1)

M − 1

)
c1 = K0(2s)c2. (4.9)

Inserting (4.9) into (4.8), we have Proposition 4.1.

Proof of Lemma 4.2. Let

u(x) = c1G(x, x) = c1(−1)MD−1v(x), v(x) =

∣∣∣∣∣
Ki+j(2s) Ki(s − x)

Kj(s + x) 0

∣∣∣∣∣, (4.10)

then differentiating v(x) k times we have

v(k)(x) =
k∑
l=0

(−1)l
(
k

l

)
wk,l(x), wk,l(x) =

∣∣∣∣∣
Ki+j(2s) Kl+i(s − x)

Kk−l+j(s + x) 0

∣∣∣∣∣. (4.11)
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At first, for k = 2(2M − 1), we have

v(2(2M−1))(x) =
2(2M−1)∑

l=0

(−1)l
(
2(2M − 1)

l

)
w2(2M−1),l(x)

=
2M−2∑
l=0

(−1)l
(
2(2M − 1)

l

)
w2(2M−1),l(x) −

(
2(2M − 1)

2M − 1

)
w2(2M−1),2M−1(x)

+
2(2M−1)∑
l=2M

(−1)l
(
2(2M − 1)

l

)
w2(2M−1),l(x).

(4.12)

The first term vanishes because

K2(2M−1)−l+j(s + x) = K2M+(2M−2−l+j)(s + x) = 0 (0 ≤ l ≤ 2M − 2). (4.13)

The third term also vanishes because

Kl+i(s − x) = 0 (2M ≤ l ≤ 2(2M − 1)). (4.14)

Thus, we have

v(2(2M−1))(x) = −
(
2(2M − 1)

2M − 1

)
w2(2M−1),2M−1(x),

w2(2M−1),2M−1(x) =

∣∣∣∣∣
Ki+j(2s) K2M−1+i(s − x)

K2M−1+j(s + x) 0

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

Ki+j(2s) 0

...

0

1 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(4.15)

Hence, we have

− u(2(2M−1))(x) = − c1(−1)MD−1 v(2(2M−1))(x) = 1, (4.16)

by which we obtain (4.5). Next, for 0 ≤ k ≤ M − 1, we have

v(k)(s) =
k∑
l=0

(−1)l
(
k

l

)
wk,l(s), wk,l(s) =

∣∣∣∣∣
Ki+j(2s) Kl+i(0)

Kk−l+j(2s) 0

∣∣∣∣∣. (4.17)
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Since 0 ≤ l + i ≤ 2M − 2, we have wk,l(s) = 0. Thus, we have v(k)(s) = 0 (0 ≤ k ≤ M − 1). For
M ≤ k ≤ 2M − 2, we have

v(k)(s) =
M−1∑
l=0

(−1)l
(
k

l

)
wk,l(s) +

k∑
l=M

(−1)l
(
k

l

)
wk,l(s). (4.18)

The first term vanishes because Kl+i(0) = 0 (0 ≤ l ≤ M − 1). Next, we show that the second
term also vanishes. Let

wk,l(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Kj(2s) 0
...

...
K2M−2−l+j(2s) 0
K2M−1−l+j(2s) 1
K2M−l+j(2s) 0

...
...

KM−1+j(2s) 0

Kk−l+j(2s) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(M ≤ l ≤ k ≤ 2M − 2). (4.19)

Since 0 ≤ k − l ≤ 2M − 2 − l, two rows, including the last row, coincide, and hence we have
wk,l(s) = 0. Thus, we have v(k)(s) = 0 (M ≤ k ≤ 2M−2). So we have obtained u(k)(s) = 0 (0 ≤
k ≤ 2M − 2). By the same argument, we have u(k)(−s) = 0 (0 ≤ k ≤ 2M − 2). Hence, we have
(4.6). Finally, we will show (4.7). For k = 2M − 1, noting Kl+i(0) = 0 (0 ≤ l ≤ M − 1), we have

v(2M−1)(s) =
2M−1∑
l=M

(−1)l
(
2M − 1

l

)
w2M−1,l(s), (4.20)

where

w2M−1,l(s) =

∣∣∣∣∣
Ki+j(2s) Kl+i(0)

K2M−1−l+j(2s) 0

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Kj(2s) 0
...

...
K2M−2−l+j(2s) 0
K2M−1−l+j(2s) 1
K2M−l+j(2s) 0

...
...

KM−1+j(2s) 0

K2M−1−l+j(2s) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Kj(2s) 0
...

...
K2M−2−l+j(2s) 0
K2M−1−l+j(2s) 1
K2M−l+j(2s) 0

...
...

KM−1+j(2s) 0

0 · · · 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −D.

(4.21)
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Thus, we obtainw2M−1,l(s) = −D (M ≤ l ≤ 2M − 1). Hence we have

v(2M−1)(1) =
2M−1∑
l=M

(−1)l
(
2M − 1

l

)
w2M−1,l(s) = − D

2M−1∑
l=M

(−1)l
(
2M − 1

l

)

= −D
2M−2∑
l=M

(−1)l
{(

2M − 2

l − 1

)
+

(
2M − 2

l

)}
+D = (−1)M+1D

(
2(M − 1)

M − 1

)
,

(4.22)

that is,

u(2M−1)(s) = c1(−1)MD−1v(2M−1)(s) = −
(
2(M − 1)

M − 1

)
c1. (4.23)

This completes the proof of Lemma 4.2.

Proof of Lemma 4.3. Let

u(x) = c2K0(s + x)K0(s − x) =
c2

((2M − 1)!)2
(
s2 − x2

)2M−1
. (4.24)

Differentiating u(x) k times, we have

u(k)(x) = c2
k∑
l=0

(−1)l
(
k

l

)
Kk−l(s + x)Kl(s − x). (4.25)

For k = 2(2M−1), notingK2(2M−1)−l(s+x) = 0 (0 ≤ l ≤ 2M−2),K2M−1(s+x) = K2M−1(s−x) = 1,
and Kl(s − x) = 0 (2M ≤ l ≤ 2(2M − 1)), we have

− u(2(2M−1))(x) = c2

(
2(2M − 1)

2M − 1

)
= 1. (4.26)

Thus, we have (4.5). If 0 ≤ k ≤ 2M − 2, then we have

u(k)(s) = c2
k∑
l=0

(−1)l
(
k

l

)
Kk−l(2s)Kl(0) = 0. (4.27)

Since u(k)(−x) = (−1)ku(k)(x), we have u(k)(−s) = 0 (0 ≤ k ≤ 2M − 2). Hence, we have (4.6). If
k = 2M − 1, then we have

u(2M−1)(s) = c2
2M−1∑
l=0

(−1)l
(
2M − 1

l

)
K2M−1−l(2s)Kl(0) = − c2K0(2s). (4.28)

This proves Lemma 4.3.
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Appendices

A. Deduction of (1.5)

In this section, (1.5) in Proposition 1.1 is deduced. Suppose that (BVP(M)) has a classical
solution u(x). Introducing the following notations:

u = t(u0, . . . , u2M−1), ui = u(i) (0 ≤ i ≤ 2M − 1),

e = t(0, . . . , 0, 1) (2M × 1 matrix),

N =

⎛
⎜⎜⎜⎝

0 1
0

. . .

. . . 1
0

⎞
⎟⎟⎟⎠
(
2M × 2M nilpotent matrix

)
,

(A.1)

(BVP(M)) is rewritten as

u′ = Nu + e(−1)Mf(x) (−s < x < s),

ui(±s) = 0 (0 ≤ i ≤ M − 1).
(A.2)

Let the fundamental solution E(x) be expressed as E(x) = exp(Nx) = K(x)K(0)−1, where

K(x) =
(
Ki+j
)
(x), K(0) =

⎛
⎝

1
· · ·

1

⎞
⎠ = K(0)−1, (A.3)

then i, j satisfy 0 ≤ i, j ≤ 2M − 1. E(x) satisfies the initial value problem E′ = NE, E(0) = I. I is
a unit matrix. Solving (A.2), we have

u(x) = E(x + s)u(−s) +
∫x
−s
E
(
x − y

)
e(−1)Mf

(
y
)
dy,

u(x) = E(x − s)u(s) −
∫ s
x

E
(
x − y

)
e(−1)Mf

(
y
)
dy,

(A.4)

or equivalently, for 0 ≤ i ≤ 2M − 1, we have

ui(x) =
2M−1∑
j=0

Ki+j(x + s)u2M−1−j(−s) +
∫x
−s
(−1)MKi

(
x − y

)
f
(
y
)
dy,

ui(x) =
2M−1∑
j=0

Ki+j(x − s)u2M−1−j(s) −
∫ s
x

(−1)MKi

(
x − y

)
f
(
y
)
dy.

(A.5)
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Employing the boundary conditions (A.2), we have

ui(x) =
M−1∑
j=0

Ki+j(x + s)u2M−1−j(−s) +
∫x
−s
(−1)MKi

(
x − y

)
f
(
y
)
dy,

ui(x) =
M−1∑
j=0

Ki+j(x − s)u2M−1−j(s) −
∫s
x

(−1)MKi

(
x − y

)
f
(
y
)
dy.

(A.6)

In particular, if i = 0, then we have

u0(x) =
M−1∑
j=0

Kj(x + s)u2M−1−j(−s) +
∫x
−s
(−1)MK0

(
x − y

)
f
(
y
)
dy,

u0(x) =
M−1∑
j=0

Kj(x − s)u2M−1−j(s) −
∫ s
x

(−1)MK0
(
x − y

)
f
(
y
)
dy.

(A.7)

On the other hand, using the boundary conditions (A.2) again, we have

0 = ui(s) =
M−1∑
j=0

Ki+j(2s)u2M−1−j(−s) +
∫ s
−s
(−1)MKi

(
s − y
)
f
(
y
)
dy,

0 = ui(−s) =
M−1∑
j=0

Ki+j(−2s)u2M−1−j(s) −
∫ s
−s
(−1)MKi

(−s − y
)
f
(
y
)
dy.

(A.8)

Solving the above linear system of equations with respect to u2M−1−i(−s),
u2M−1−i(s) (0 ≤ i ≤ M − 1), we have

(u2M−1−i)(−s) = −
∫ s
−s
(−1)M(Ki+j

)−1(2s)(Ki)
(
s − y
)
f
(
y
)
dy,

(u2M−1−i)(s) =
∫s
−s
(−1)M(Ki+j

)−1(−2s)(Ki)
(−s − y

)
f
(
y
)
dy.

(A.9)

Substituting (A.9) into (A.7), we have

u0(x) = −
∫ s
−s
(−1)M(Kj

)
(x + s)

(
Ki+j
)−1(2s)(Ki)

(
s − y
)
f
(
y
)
dy

+
∫x
−s
(−1)MK0

(∣∣x − y
∣∣)f(y)dy,

u0(x) =
∫ s
−s
(−1)M(Kj

)
(x − s)

(
Ki+j
)−1(−2s)(Ki)

(−s − y
)
f
(
y
)
dy

+
∫ s
x

(−1)MK0
(∣∣x − y

∣∣)f(y)dy.

(A.10)
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Taking an average of the above two expressions and noting u(x) = u0(x), we obtain (1.4),
where Green’s function G(x, y) is given by

G
(
x, y
)
=

(−1)M
2

[
K0
(∣∣x − y

∣∣) − (Kj

)
(x + s)

(
Ki+j
)−1(2s)(Ki)

(
s − y
)

+
(
Kj

)
(x − s)

(
Ki+j
)−1(−2s)(Ki)

(−s − y
)]
.

(A.11)

Using propertiesKi(−x) = (−1)i+1Ki(x), we have

(
Kj

)
(x − s) = − (Kj

)
(s − x)

(
(−1)iδij

)
,

(
Ki+j
)
(−2s) =

(
(−1)i+j+1Ki+j

)
(2s) = −

(
(−1)iδij

)(
Ki+j
)
(2s)
(
(−1)iδij

)
,

(Ki)
(−s − y

)
=
(
(−1)i+1Ki

)(
s + y
)
= −
(
(−1)iδij

)
(Ki)
(
s + y
)
,

(A.12)

where δij is Kronecker’s delta defined by δij = 1 (i = j), 0 (i /= j). Inserting these three
relations into (A.11), we have

G
(
x, y
)
=
(−1)M

2

[
K0
(∣∣x − y

∣∣) − (Kj

)
(s + x)

(
Ki+j
)−1(2s)(Ki)

(
s − y
)

−(Kj

)
(s − x)

(
Ki+j
)−1(2s)(Ki)

(
s + y
)]
.

(A.13)

Applying the relation

taA−1b = −

∣∣∣∣∣
A b
ta 0

∣∣∣∣∣
|A| , (A.14)

where A is any N ×N regular matrix and a and b are any N × 1 matrices, we have (1.5).

B. Deduction of (1.6)

To prove (1.6), we show

K0
(
x − y

)
= −D−1

{∣∣∣∣∣
Ki+j(2s) Ki

(
s − y
)

Kj(s + x) 0

∣∣∣∣∣ −
∣∣∣∣∣
Ki+j(2s) Ki

(
s + y
)

Kj(s − x) 0

∣∣∣∣∣

}
(−s < x, y < s

)
.

(B.1)
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Let x ≥ y. If (B.1) holds, substituting it to (1.5), replacing x with x ∨ y, y with x ∧ y, then we
obtain (1.6). The case x ≤ y is shown in a similar way. Let y (−s ≤ y ≤ s) be fixed, and let
u(x) = K0(x − y). Then u satisfies

u(2M) = 0 (−s < x < s),

u(i)(−s) = (−1)i+1Ki

(
s + y
)
, u(i)(s) = Ki

(
s − y
)

(0 ≤ i ≤ M − 1).
(B.2)

On the other hand, let

v(x) = − D−1
{∣∣∣∣∣

Ki+j(2s) Ki

(
s − y
)

Kj(s + x) 0

∣∣∣∣∣ −
∣∣∣∣∣
Ki+j(2s) Ki

(
s + y
)

Kj(s − x) 0

∣∣∣∣∣

}
. (B.3)

Differentiating v k times with respect to x, we have

v(k)(x) = − D−1
{∣∣∣∣∣

Ki+j(2s) Ki

(
s − y
)

Kk+j(s + x) 0

∣∣∣∣∣ − (−1)k
∣∣∣∣∣

Ki+j(2s) Ki

(
s + y
)

Kk+j(s − x) 0

∣∣∣∣∣

}
. (B.4)

For k = 2M, noticing Kk+j(s + x) = Kk+j(s − x) = 0, we have v(2M)(x) = 0. For 0 ≤ k ≤ M − 1,
we have

v(k)(−s) = − D−1
{∣∣∣∣∣

Ki+j(2s) Ki

(
s − y
)

Kk+j(0) 0

∣∣∣∣∣ − (−1)k
∣∣∣∣∣
Ki+j(2s) Ki

(
s + y
)

Kk+j(2s) 0

∣∣∣∣∣

}

= (−1)kD−1
∣∣∣∣∣
Ki+j(2s) Ki

(
s + y
)

0 · · · 0 −Kk

(
s + y
)
∣∣∣∣∣ = (−1)k+1Kk

(
s + y
)
,

(B.5)

where we used Kk+j(0) = 0. Similarly, for 0 ≤ k ≤ M − 1, we have v(k)(s) = Kk(s − y). So
v(x) satisfies

v(2M) = 0 (−s < x < s),

v(i)(−s) = (−1)i+1Ki

(
s + y
)
, v(i)(s) = Ki

(
s − y
)

(0 ≤ i ≤ M − 1).
(B.6)

which is the same equation as (B.2). Hence, we have v(x) = u(x).

References

[1] C.-W. Ha, “Eigenvalues of a Sturm-Liouville problem and inequalities of Lyapunov type,” Proceedings
of the American Mathematical Society, vol. 126, no. 12, pp. 3507–3511, 1998.

[2] X. Yang, “On inequalities of Lyapunov type,” Applied Mathematics and Computation, vol. 134, no. 2-3,
pp. 293–300, 2003.

[3] A. J. Levin, “Distribution of the zeros of solutions of a linear differential equation,” Soviet Mathematics,
vol. 5, pp. 818–821, 1964.



Boundary Value Problems 17

[4] K. M. Das and A. S. Vatsala, “Green’s function for n-n boundary value problem and an analogue of
Hartman’s result,” Journal of Mathematical Analysis and Applications, vol. 51, no. 3, pp. 670–677, 1975.

[5] R. C. Brown and D. B. Hinton, “Lyapunov inequalities and their applications,” in Survey on Classical
Inequalities, T. M. Rassias, Ed., vol. 517 of Math. Appl., pp. 1–25, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2000.

[6] W. T. Reid, “A generalized Liapunov inequality,” Journal of Differential Equations, vol. 13, pp. 182–196,
1973.

[7] Y. Kametaka, H. Yamagishi, K. Watanabe, A. Nagai, and K. Takemura, “Riemann zeta function,
Bernoulli polynomials and the best constant of Sobolev inequality,” Scientiae Mathematicae Japonicae,
vol. 65, no. 3, pp. 333–359, 2007.

[8] A. Nagai, K. Takemura, Y. Kametaka, K. Watanabe, and H. Yamagishi, “Green function for boundary
value problem of 2M-th order linear ordinary differential equations with free boundary condition,”
Far East Journal of Applied Mathematics, vol. 26, no. 3, pp. 393–406, 2007.

[9] Y. Kametaka, K. Watanabe, A. Nagai, and S. Pyatkov, “The best constant of Sobolev inequality in an n
dimensional Euclidean space,” Scientiae Mathematicae Japonicae, vol. 61, no. 1, pp. 15–23, 2005.


