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We study the existence of positive solutions to the following nonlocal boundary value problem
−K(‖u‖2)Δu = λus−1 +f(x, u) inΩ, u = 0 on ∂Ω, where s ∈]1, 2[, f : Ω×R+ → R is a Carathéodory
function,K : R+ → R is a positive continuous function, and λ is a real parameter. Direct variational
methods are used. In particular, the proof of the main result is based on a property of the infimum
on certain spheres of the energy functional associated to problem −K(‖u‖2)Δu = λus−1 in Ω,
u|∂Ω = 0.

1. Introduction

This paper aims to establish the existence of positive solutions in W1,2
0 (Ω) to the following

problem involving a nonlocal equation of Kirchhoff type:

−K
(
‖u‖2

)
Δu = λus−1 + f(x, u), in Ω,

u = 0 on ∂Ω.
(Pλ)

Here Ω is an open bounded set in R
N with smooth boundary ∂Ω, s ∈]1, 2[, f : Ω × [0,+∞[→

[0,+∞[ is a Carathéodory function, K : R+ → R is a positive continuous function, λ is a real
parameter, and ‖u‖ = (

∫
Ω |∇u|2dx)1/2 is the standard norm in W1,2

0 (Ω). In what follows, for
every real number t, we put t+ = (|t| + t)/2.

By a positive solution of (Pλ), we mean a positive function u ∈ W1,2
0 (Ω)∩C0(Ω)which

is a solution of (Pλ) in the weak sense, that is such that

K
(
‖u‖2

)∫

Ω
(∇u(x)∇v(x))dx −

∫

Ω

(
λu(x)s−1 + f(x, u(x))

)
v(x)dx = 0 (1.1)
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for all v ∈ W1,2
0 (Ω). Thus, the weak solutions of (Pλ) are exactly the positive critical points of

the associated energy functional

I(u) =
∫‖u‖2

0
K(τ)dτ −

∫

Ω

(
λu+(x)

s−1 +
∫u(x)

0
f(x, t)dt

)
dx, u ∈ W1,2

0 (Ω). (1.2)

When K(t) = a + bt (a, b > 0), the equation involved in problem (Pλ) is the stationary
analogue of the well-known equation proposed by Kirchhoff in [1]. This is one of the
motivations why problems like (Pλ) were studied by several authors beginning from the
seminal paper of Lions [2]. In particular, among the most recent papers, we cite [3–7] and
refer the reader to the references therein for a more complete overview on this topic.

The case λ = 0 was considered in [3] and [4], where the existence of at least
one positive solution is established under various hypotheses on f . In particular, in [3]
the nonlinearity f is supposed to satisfy the well-known Ambrosetti-Rabinowitz growth
condition; in [4] f satisfies certain growth conditions at 0 and ∞, and f(x, t)/t is
nondecreasing on ]0,+∞[ for all x ∈ Ω. Critical point theory and minimax methods are
used in [3] and [4]. For K(t) = a + bt and λ = 0, the existence of a nontrivial solution as
well as multiple solutions for problem (Pλ) is established in [5] and [7] by using critical
point theory and invariant sets of descent flow. In these papers, the nonlinearity f is again
satisfying suitable growth conditions at 0 and ∞. Finally, in [6], where the nonlinearity
ts−1+ is replaced by a more general h(x, t) and the nonlinearity f is multiplied by a positive
parameter μ, the existence of at least three solutions for all λ belonging to a suitable interval
depending on h and K and for all μ small enough (with upper bound depending on λ) is
established (see [6, Theorem 1]). However, we note that the nonlinearity ts−1+ does not meet
the conditions required in [6]. In particular, condition (a5) of [6, Theorem 1] is not satisfied
by ts−1+ . Moreover, in [6] the nonlinearity f is required to satisfy a subcritical growth at ∞
(and no other condition).

Our aim is to study the existence of positive solution to problem (Pλ), where, unlike
previous existence results (and, in particular, those of the aforementioned papers), no growth
condition is required on f . Indeed, we only require that on a certain interval [0, C] the
function f(x, ·) is bounded from above by a suitable constant a, uniformly in x ∈ Ω.
Moreover, we also provide a localization of the solution by showing that for all r > 0 we
can choose the constant a in such way that there exists a solution to (Pλ) whose distance
in W1,2

0 (Ω) from the unique solution of the unperturbed problem (that is problem (Pλ) with
f = 0) is less than r.

2. Results

Our first main result gives some conditions in order that the energy functional associated to
the unperturbed problem (Pλ) has a unique global minimum.

Theorem 2.1. Let s ∈]1, 2[ and λ > 0. Let K : [0,+∞[→ R be a continuous function satisfying the
following conditions:

(a1) inft≥0K(t) > 0;

(a2) the function t → (1/2)
∫ t
0 K(τ)dτ − (1/s)K(t)t is strictly monotone in [0,+∞[;

(a3) lim inft→+∞ t−2α
∫ t
0 K(τ)dτ > 0 for some α ∈](s/2), 1[.
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Then, the functional

Ψ(u) =
1
2

∫‖u‖2

0
K(τ)dτ − λ

s

∫

Ω
us
+dx, u ∈ W1,2

0 (Ω) (2.1)

admits a unique global minimum on W1,2
0 (Ω).

Proof. From condition (a3) we find positive constants C1, C2 such that

1
2

∫‖u‖2

0
K(τ)dτ ≥ C1‖u‖2α − C2, for every u ∈ W1,2

0 (Ω). (2.2)

Therefore, by Sobolev embedding theorems, there exists a positive constant C3 such that

Ψ(u) ≥ C1‖u‖2α − C2 − C3‖u‖s, for every u ∈ W1,2
0 (Ω). (2.3)

Since s ∈]0, 2α[, from the previous inequality we obtain

lim
‖u‖→+∞

Ψ(u) = +∞. (2.4)

By standard results, the functional

u ∈ W1,2
0 (Ω) −→ 1

s

∫

Ω
us
+dx (2.5)

is of class C1 and sequentially weakly continuous, and the functional

u ∈ W1,2
0 (Ω) −→ 1

2

∫‖u‖2

0
K(τ)dτ (2.6)

is of class C1 and sequentially weakly lower semicontinuous. Then, in view of the coercivity
condition (2.4), the functional Ψ attains its global minimum on W1,2

0 (Ω) at some point u0 ∈
W1,2

0 (Ω).
Now, let us to show that

inf
W1,2

0 (Ω)
Ψ < 0. (2.7)

Indeed, fix a nonzero and nonnegative function v ∈ C∞
0 (Ω), and put vε = εv. We have

Ψ(εv) ≤ ε2 max
t∈[0,ε2‖v‖2]

K(t)‖v‖2 − λεs

s

∫

Ω
vsdx. (2.8)
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Hence, taking into account that s < 2α < 2, for ε small enough, one has Ψ(vε) < 0. Thus,
inequality (2.7) holds.

At this point, we show that u0 is unique. To this end, let v0 ∈ W1,2
0 (Ω) be another global

minimum for Ψ. Since Ψ is a C1 functional with

Ψ′(u)(v) = K
(
‖u‖2

)∫

Ω
∇u∇v dx −

∫

Ω
us−1
+ v dx (2.9)

for all u, v ∈ W1,2
0 (Ω), we have that Ψ′(u0) = Ψ′(v0) = 0. Thus, u0 and v0 are weak solutions

of the following nonlocal problem:

−K
(
‖u‖2

)
Δu = λus−1

+ in Ω,

u = 0 on ∂Ω.

(2.10)

Moreover, in view of (2.7), u0 and v0 are nonzero. Therefore, from the Strong Maximum
Principle, u0 and v0 are positive in Ω as well. Now, it is well known that, for every μ > 0,
the problem

−Δu = μus−1
+ , in Ω,

u = 0, on ∂Ω.
(2.11)

admits a unique positive solution inW1,2
0 (Ω) (see, e.g., [8, Lemma 3.3]). Denote it by uμ. Then,

it is easy to realize that for every couple of positive parameters μ1, μ2, the functions uμ1 , uμ2

are related by the following identity:

uμ1 =
(
μ1

μ2

)1/(s−1)
uμ2 . (2.12)

From (2.12) and condition (a1), we infer that u0 and v0 are related by

u0 =

⎛
⎜⎝

K
(
‖v0‖2

)

K
(
‖u0‖2

)

⎞
⎟⎠

1/(s−1)

v0. (2.13)

Now, note that the identities

Ψ′(u0)(u0) = Ψ′(v0)(v0) = 0 (2.14)

lead to

K
(
‖u0‖2

)
‖u0‖2 = λ

∫

Ω
us
0dx, K

(
‖v0‖2

)
‖v0‖2 = λ

∫

Ω
vs
0dx (2.15)
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which, in turn, imply that

Ψ(u0) =
1
2

∫‖u0‖2

0
K(τ)dτ − 1

s
K
(
‖u0‖2

)
‖u0‖2,

Ψ(v0) =
1
2

∫‖v0‖2

0
K(τ)dτ − 1

s
K
(
‖v0‖2

)
‖v0‖2.

(2.16)

Now, since u0 and v0 are both global minima for Ψ, one has Ψ(u0) = Ψ(v0). It follows that

1
2

∫‖u0‖2

0
K(τ)dτ − 1

s
K
(
‖u0‖2

)
‖u0‖2 = 1

2

∫‖v0‖2

0
K(τ)dτ − 1

s
K
(
‖v0‖2

)
‖v0‖2. (2.17)

At this point, from condition (a2) and (2.17), we infer that

K
(
‖u0‖2

)
= K
(
‖v0‖2

)
(2.18)

which, in view of (2.13), clearly implies u0 = v0. This concludes the proof.

Remark 2.2. Note that condition (a2) is satisfied if, for instance,K is nondecreasing in [0,+∞[
and so, in particular, if K(t) = a + btwith a, b > 0.

From now on, whenever the function K satisfies the assumption of Theorem 2.1, we
denote by us the unique global minimum of the functional Ψ defined in (2.1). Moreover, for
every u ∈ W1,2

0 (Ω) and r > 0, we denote by Br(u) the closed ball in W1,2
0 (Ω) centered at u

with radius r. The next result shows that the global minimum us is strict in the sense that the
infimum of Ψ on every sphere centered in us is strictly greater than Ψ(us).

Theorem 2.3. Let K, λ, and s be as Theorem 2.1. Then, for every r > 0 one has

inf
‖v‖=r

Ψ(us + v) > Ψ(us). (2.19)

Proof. Put K̃(t) = (1/2)
∫ t
0 K(τ)dτ for every t ≥ 0, and let r > 0. Assume, by contradiction, that

inf
‖v‖=r

Ψ(us + v) = Ψ(us). (2.20)

Then,

inf
W1,2

0 (Ω)
Ψ = Ψ(us) = inf

‖v‖=r

[
K̃
(
r2 + ‖us‖2 + 2〈us, v〉

)
− λ

s

∫

Ω
(us + v)s+dx

]
. (2.21)

Now, it is easy to check that the functional

J(u) = K̃
(
r2 + ‖us‖2 + 2〈us, u〉

)
− λ

s

∫

Ω
(us + u)s+dx, u ∈ W1,2

0 (Ω) (2.22)
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is sequentially weakly continuous in W1,2
0 (Ω). Moreover, by the Eberlein-Smulian Theorem,

every closed ball inW1,2
0 (Ω) is sequentially weakly compact. Consequently, J attains its global

minimum in Br(0), and

inf
‖u‖≤r

J(u) = inf
‖u‖=r

J(u). (2.23)

Let v0 ∈ Br(0) be such that J(v0) = inf‖u‖=rJ(u). From assumption (a1), K̃ turns out to be a
strictly increasing function. Therefore, in view of (2.21), one has

Ψ(us) = J(v0) ≥ K̃
(
‖v0‖2 + ‖us‖2 + 2〈us, u〉

)
− λ

s

∫
Ω (us + u)s+dx = Ψ(us + v0). (2.24)

This inequality entails that us+v0 is a global minimum forΨ. Thus, thanks to Theorem 2.1, v0

must be identically 0. Using again the fact that K̃ is strictly increasing, from inequality (2.24),
we would get

Ψ(us) = J(v0) > Ψ(us + v0) (2.25)

which is impossible.

Whenever the function K is as in Theorem 2.1, we put

μr = inf
‖v‖=r

Ψ(us + v) −Ψ(us) (2.26)

for every r > 0. Theorem 2.3 says that every μr is a positive number.
Before stating our existence result for problem (Pλ), we have to recall the following

well-known Lemma which comes from [9, Theorems 8.16 and 8.30] and the regularity results
of [10].

Lemma 2.4. For every h ∈ L∞(Ω), denote by uh the (unique) solution of the problem

−Δu = h(x) in Ω,

u = 0 on ∂Ω.
(2.27)

Then, uh ∈ C1(Ω), and

sup
h∈L∞(Ω)\{0}

maxΩ|uh|
‖h‖L∞(Ω)

def= C0 < ∞, (2.28)

where the constant C0 depends only on N, |Ω|.
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Theorem 2.5 below guarantees, for every r > 0, the existence of at least one positive
solution ur for problem (Pλ) whose distance from us is less than r provided that the
perturbation term f is sufficiently small in Ω × [0, C] with

C > C̃0
def=
(
λC0

M

)1/(2−s)
. (2.29)

Here C0 is the constant defined in Lemma 2.4 and M = inft≥0K(t) > 0. Note that no growth
condition is required on f .

Theorem 2.5. Let K, λ, and s be as in Theorem 2.3. Moreover, fix any C > C̃0. Then, for every
r > 0, there exists a positive constant ar such that for every Carathéodory function f : Ω× [0,+∞[→
[0,+∞[ satisfying

ess sup
(x,t)∈Ω×[0,C]

f(x, t) < ar
def= min

{
λ
Cs−1

C̃2−s
0

(
C2−s − C̃2−s

0

)
,
μr

γr

}
, (2.30)

where μr is the constant defined in (2.26) and γ is the embedding constant of W1,2
0 (Ω) in L1(Ω),

problem (Pλ) admits at least a positive solution u ∈ W1,2
0 (Ω) ∩ C1(Ω) such that ‖ur − us‖ < r.

Proof. Fix C > C̃0. For every fixed r > 0 which, without loss of generality, we can suppose
such that r ≤ ‖us‖, let ar be the number defined in (2.30). Let f : Ω × [0,+∞[→ [0,+∞[ be a
Carathéodory function satisfying condition (2.30), and put

fC(x, t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f(x, 0), if(x, t) ∈ Ω × ]−∞, 0[,

f(x, t), if(x, t) ∈ Ω × [0, C],

f(x,C), if(x, t) ∈ Ω × ]C,+∞[,

(2.31)

as well as

a = ess sup
(x,t)∈Ω×[0,C]

f(x, t). (2.32)
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Moreover, for every u ∈ W1,2
0 (Ω), put Φ(u) =

∫
Ω(
∫u(x)
0 fC(x, t)dt)dx. By standard

results, the functional Φ is of class C1 in W1,2
0 (Ω) and sequentially weakly continuous. Now,

observe that thanks to (2.30), one has

sup
‖v‖≤r

(Φ(us + v) −Φ(us)) = sup
‖v‖≤r

∫

Ω

(∫us(x)+v(x)

us(x)
fC(x, t)dt

)
dx

≤ sup
‖v‖≤r

∫

Ω

(∫us(x)+|v(x)|

us(x)
fC(x, t)dt

)
dx

≤ asup
‖v‖≤r

∫

Ω
|v(x)|dx < arγr = μr.

(2.33)

Then, we can fix a number

σ ∈ ]Ψ(us),Ψ(us) + μr

[
(2.34)

in such way that

sup‖v‖≤r(Φ(us + v) −Φ(us))

σ −Ψ(us)
< 1. (2.35)

Applying [11, Theorem 2.1] to the restriction of the functionalsΨ and −Φ to the ball Br(us), it
follows that the functionalΨ−Φ admits a global minimum on the set Br(us)∩Ψ−1(]−∞, σ[).
Let us denote this latter by ur . Note that the particular choice of σ forces ur to be in the interior
of Br(us). This means that ur is actually a local minimum for Ψ −Φ, and so (Ψ −Φ)′(ur) = 0.
In other words, ur is a weak solution of problem (Pλ) with fC in place of f . Moreover, since
r ≤ ‖us‖ and ‖us − ur‖ < r, it follows that ur is nonzero. Then, by the Strong Maximum
Principle, ur is positive in Ω, and, by [10], ur ∈ C1(Ω) as well. To finish the proof is now
suffice to show that

max
Ω

u ≤ C. (2.36)

Arguing by contradiction, assume that

max
Ω

u > C. (2.37)

From Lemma 2.4 and condition (2.30) we have

max
Ω

u ≤ C0

K
(
‖u‖2

)
(
λmax

Ω
us−1 + ar

)
. (2.38)
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Therefore, using (2.30) (and recalling the notation M = inft≥0K(t) > 0), one has

max
Ω

u2−s ≤ C0

M

(
λ +

ar

maxΩ us−1

)
≤ C0

M

(
λ +

ar

Cs−1

)
≤ C2−s, (2.39)

that is absurd. The proof is now complete.

Remarks 2.6. To satisfy assumption (2.30) of Theorem 2.5, it is clearly useful to know some
lower estimation of ar . First of all, we observe that by standard comparison results, it is easily
seen that

C0 =max
x∈Ω

u0(x), (2.40)

where u0 is the unique positive solution of the problem

−Δu = 1, in Ω,
u = 0, on ∂Ω.

(2.41)

WhenΩ is a ball of radius R > 0 centered at x0 ∈ R
N , then u0(x) = (1/2N)(R2 − |x−x0|2), and

so C0 = R2/2N. More difficult is obtaining an estimate from below of μr : if r > ‖us‖, one has

inf
‖v‖=r

Ψ(us + v) ≥ 1
2
inf
t≥0

K(t)(r − ‖us‖)2 − λ

s
γss r

s, (2.42)

where γs is the embedding constant of Ls(Ω) in W1,2
0 (Ω). Therefore, μr grows as r2 at +∞. If

r ≤ ‖us‖, it seems somewhat hard to find a lower bound for μr . However, with regard to this
question, it could be interesting to study the behavior of μr on varying of the parameter λ for
every fixed r > 0. For instance, how does μr behave as λ → +∞? Another question that could
be interesting to investigate is finding the exact value of μr at least for some particular value
of r (for instance r = ‖us‖) even in the case of K ≡ 1.
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