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We introduce the concept of asymptotic center of maps and consider relation between asymptotic
center and fixed point of nonexpansive maps in a Banach space.

1. Introduction

Many topics and techniques regarding asymptotic centers and asymptotic radius were
studied by Edelstein [1], Bose and Laskar [2], Downing and Kirk [3], Goebel and Kirk [4],
and Lan and Webb [5]. Now, We recall that definitions of asymptotic center and asymptotic
radius.

Let C be a nonempty subset of a Banach space X and {xn} a bounded sequence in X.
Consider the functional ra(·, {xn}) : X → R

+ defined by

ra(x, {xn}) = lim sup
n→∞

‖xn − x‖, x ∈ X. (1.1)

The infimum of ra(·, {xn}) over C is said to be the asymptotic radius of {xn}with respect to C
and is denoted by ra(C, {xn}). A point z ∈ C is said to be an asymptotic center of the sequence
{xn}with respect to C if

ra(z, {xn}) = inf{ra(x, {xn}) : x ∈ C}. (1.2)

The set of all asymptotic centers of {xn}with respect to C is denoted by Za(C, {xn}).
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We present new definitions of asymptotic center and asymptotic radius that is for a
mapping and obtain new results.

Definition 1.1. Let C be a bounded closed convex subset of X. A sequence {xn} ⊆ X is said to
be an asymptotic center for a mapping T : C → X if, for each x ∈ C,

lim sup
n→∞

‖Tx − xn‖ ≤ lim sup
n→∞

‖xn − x‖. (1.3)

Definition 1.2. LetC be a nonempty subset ofX.We say thatC has the fixed-point property for
continuous mappings of C with asymptotic center if every continuous mapping T : C → C
admitting an asymptotic center has a fixed point.

Definition 1.3. Let C be a nonempty subset of X. We say that C has Property (Z) if for every
bounded sequence {xn} ⊂ X \ C, the set Za(C, {xn}) is a nonempty and compact subset of C.

Example 1.4. Let X be a normed space and C a nonempty subset of X. It is clear that

(i) ifC is a compact set, thenZa(C, {xn}) in nonempty compact set and so has Property
(Z);

(ii) if C is a open set, since Za(C, {xn}) ⊂ ∂C, therefore Za(C, {xn}) is empty and so fail
to have Property (Z).

2. Main Results

Our new results are presented in this section.

Proposition 2.1. LetX be a Banach space and let C be a nonempty closed bounded and convex subset
ofX. IfC satisfies Property (Z), then every continuous mapping T : C → C asymptotically admitting
a center in C has a fixed point.

Proof. Assume that T : C → C is a continuous mapping and {xn} is a asymptotic center. Let
{xn} ⊂ X \ C has set of asymptotic center Za(C, {xn}). Since C has Property (Z), Za(C, {xn})
is nonempty and compact and it is easy to see that it is also convex. In order to obtain the
result, it will be enough to show that Za(C, {xn}) is T -invariant since in this case we may
apply Schauder’s Fixed-Point Theorem [4, Theorem 18.10]. Indeed, let y ∈ Za(C, {xn}). Since
{xn} is a asymptotic center for T , we have

ra(C, {xn}) ≤ lim sup
n→∞

∥
∥Ty − xn

∥
∥ ≤ lim sup

n→∞

∥
∥xn − y

∥
∥ = ra(C, {xn}). (2.1)

Therefore Ty ∈ Za(C, {xn}).

Theorem 2.2. Let X be a Banach space and let C be a nonempty closed bounded and convex subset of
X. If C has the fixed-point property for continuous mappings admitting an asymptotic center, then C
has Property (Z).

Proof. Suppose that C fails to have Property (Z). There exists {xn} ⊂ X such that either
Za(C, {xn}) = ∅ or Za(C, {xn}) is noncompact. In the second case, by Klee’s theorem in
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[6] there exists a continuous function S : Za(C, {xn}) → Za(C, {xn}) without fixed points
(Sx = x). Since a closed convex subset of a normed space is a retract of the space, there exists
a continuous mapping r : C → Za(C, {xn}) such that r(x) = x for all x ∈ Za(C, {xn}). Define
T : C → Za(C, {xn}) by T(x) = S(r(x)). Clearly T is a continuous mapping. Moreover,

lim sup
n→∞

‖T(x) − xn‖ = lim sup
n→∞

‖xn − S(r(x))‖

= lim sup
n→∞

‖xn − r(x)‖

≤ lim sup
n→∞

‖xn − x‖,

(2.2)

that is, {xn} is an asymptotic center for T . Therefore, by Proposition 2.1, T has a fixed point in
C, T(x) = x ∈ Za(C, {xn}). Hence x = S(r(x)) = S(x) sets a contradiction.

Concerning the first case we proceed as follows.
Let d := ra(C, {xn}) > ◦. We take a > 0 such that a+d < sup{‖x−xn‖ : x ∈ C}. For each

positive integer n, we consider the following nonempty sets:

Bm := B

[

{xn}, d +
a

m

]

∩ C, (2.3)

where B[{xn}, r] := {x ∈ X : lim supn→∞‖xn − x‖ < r}

Am := Bm \ Bm+1,

Sm :=
{

x ∈ C : lim sup
n→∞

‖x − xn‖ = d +
a

m

}

.
(2.4)

Since Za(C, {xn}) = ∅, we have that

B1 =
∞⋃

m=1

Am. (2.5)

Fix an arbitrary x1 ∈ S1 and define, by induction, a sequence {ym} such that {ym} ∈ Sm

and the segment (ym+1, ym] does not meet Bm+1. Given x ∈ B1, there exists a unique positive
integer n such that x ∈ An. In this case we define

S(x) =
lim supn→∞‖x − xn‖ − (d + a/(m + 1))

a/m(m + 1)
ym+1

+
(

1 − lim supn→∞‖x − xn‖ − (d + a/(m + 1))
a/m(m + 1)

)

ym+2.

(2.6)

It is a routine to check that S is a continuous mapping from B1 to B1. Furthermore,
S(Am) ⊂ (ym+2, ym+1] ⊂ Am+1 for every m ≥ 1.
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Let r be a continuous retraction from C into the closed convex subset B1. We can define
T : C → C by T(x) = S(r(x)). It is clear that {xn} is a asymptotic center for T and that T is
fixed-point free.

Proposition 2.1 (Theorem 2.2) is a generalizations of Theorem 3.1 (Theorem 3.3) in [1].
It can be verified that definition of L(τ) space is not necessary here.

As an easy consequence of both Proposition 2.1 and Theorem 2.2, we deduce the
following result.

Corollary 2.3. Let C be a nonempty closed bounded and convex subset of a Banach space X. The
following conditions are equivalent.

(1) C has the fixed-point property for continuous mappings admitting asymptotic center in C.

(2) C has Property (Z).

Let C be a nonempty closed convex bounded subset of a Banach space X. By KC(C)
we denote the family of all nonempty compact convex subsets of C. On KC(C) we consider
the well-known Hausdorff metric H. Recall that a mapping T : C → KC(C) is said to be
nonexpansive whenever

H
(

Tx, Ty
) ≤ d

(

x, y
)

, x, y ∈ C. (2.7)

Theorem 2.4. Let X be a Banach space and let C be a nonempty closed convex and bounded subset of
X satisfying Property (Z). If T : C → KC(C) is a nonexpansive mapping, then T has a fixed point.

Proof. Let T : C → KC(C) be a nonexpansive mapping. The multivalued analog of Banach’s
Contraction Principle allows us to find a sequence {xn} in C such that d(xn, Txn) → 0.

For each n ≥ 1, the compactness of Txn guarantees that there exists yn ∈ Txn satisfying
‖xn − yn‖ = d(xn, Txn).

Now we are going to show that for every z ∈ Za(C, {xn}),

Za(C, {xn}) ∩ Tz/= ∅. (2.8)

Taking any z ∈ Za(C, {xn}), from the compactness of Tzwe can find zn ∈ Tz such that

∥
∥yn − zn

∥
∥ = d

(

yn, Tz
) ≤ H(Txn, Tz) ≤ ‖xn − z‖. (2.9)

By compactness again we can assume that {zn} converges to a point w0 ∈ Tz. From above it
follows that

lim sup
n→∞

‖xn −w0‖ ≤ lim sup
n→∞

∥
∥yn −w0

∥
∥ ≤ lim sup

n→∞

∥
∥yn − zn

∥
∥ ≤ lim sup

n→∞
‖xn − z‖. (2.10)

Therefore w0 ∈ Za(C, {xn}).
Now we define the mapping S : Za(C, {xn}) → KC(Za(C, {xn})) by S(z) =

Za(C, {xn}) ∩ T(z). Since the mapping S is upper semicontinuous and S(z) for every z ∈
Za(C, {xn}) is a compact convex set we can apply the Kakutani-Bohnenblust-Karlin Theorem
in [5] to obtain a fixed point for S(z) and hence for T .
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Let X be a metric space and T : X → X a mapping. Then a sequence {xn} in X is said
to be an approximating fixed-point sequence of T if limn→∞ d(xn, Txn) = 0.

Let C be a bounded closed and convex subset of a Banach space X, T : C → C a
nonexpansive mapping and α ∈ (0, 1). Then a mappings Tα : C → C define by Tα(x) = αx +
(1−α)Tx is always asymptotically regular, that is, for every x ∈ C, limn→∞‖Tn+1

α x − Tn
α x‖ = 0.

Proposition 2.5. Let X be a Banach space and C a closed bounded convex subset of X, x0 ∈ C and
α ∈ (0, 1). If T : C → C is a nonexpansive mapping, then the sequence {Tn

α x0} is an asymptotic
center for T .

Proof. The above comments guarantee that {Tn
α x0} is an approximated fixed-point sequence

for Tn
α . Let us see that the sequence {Tn

α x0} an asymptotic center for T . Given x ∈ C we have

lim sup
n→∞

‖Tx − Tn
α x0‖ ≤ lim sup

n→∞
‖Tx − T(Tn

α x0)‖ + lim sup
n→∞

‖T(Tn
α x0) − Tn

α x0‖

= lim sup
n→∞

‖Tx − T(Tn
α x0)‖

≤ lim sup
n→∞

‖x − Tn
α x0‖.

(2.11)

Therefore {Tn
α x0} is asymptotic center for T .

Theorem 2.6. LetX be a normed space, T : X → X a nonexpansive mapping with an approximating
fixed point sequence {xn} ⊆ X and C be a nonempty subset of X such that Za(C, {xn}) is a nonempty
star-shaped subset of X. Then T has an approximating fixed-point sequence in Za(C, {xn}).

Proof. Suppose y ∈ Za(C, {xn}). Therefore

lim sup
n→∞

∥
∥Ty − xn

∥
∥ ≤ lim sup

n→∞

∥
∥Ty − Txn

∥
∥ + lim sup

n→∞
‖Txn − xn‖

= lim sup
n→∞

∥
∥Ty − Txn

∥
∥

≤ lim sup
n→∞

∥
∥y − xn

∥
∥ = ra(C, {xn}),

(2.12)

and so Ty ∈ Za(C, {xn}).
Now, let p be the star center of Za(C, {xn}). For every n ∈ N define Tn : Za(C, {xn}) →

Za(C, {xn}) by

Tn(x) =
(

1 − 1
n

)

Tx +
1
n
p. (2.13)

For every n ∈ N, Tn is a contraction, so there exists exactly one fixed point yn of Tn. Now

∥
∥yn − Tyn

∥
∥ =

(

1 − 1
n

)
∥
∥Tyn − p

∥
∥ =

(

1 − 1
n

)

k −→ 0. (2.14)

Therefore {yn} is the approximating fixed-point sequence in Za(C, {xn}) of T .
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Corollary 2.7. LetX be a normed space, T : X → X a nonexpansive mapping with an approximating
fixed-point sequence {xn} ⊆ X and C be a nonempty subset of X such that Za(C, {xn})/= ∅. Suppose
Za(C, {xn}) is a nonempty weakly compact star-shaped subset ofK. If I − T is demiclosed, then T has
a fixed point in Za(C, {xn}).

Proof. By the last theorem, T has an approximating fixed-point sequence {yn} ∈ Za(C, {xn}).
Because Za(C, {xn}) is weakly compact, there exists a subsequence {yni} of {yn} such that
yni → z ∈ Za(C, {xn}). Since I −T is demiclosed on Za(C, {xn}) and yni −Tyni → 0, it follows
that z ∈ F(T). Therefore, Za(C, {xn}) ∩ F(T)/= ∅.
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