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In the setting of quasimetric spaces, we prove some new results on the existence of fixed points for
contractive type maps with respect to Q-function. Our results either improve or generalize many
known results in the literature.

1. Introduction and Preliminaries

Let X be a metric space with metric d. We use S(X) to denote the collection of all nonempty
subsets of X,Cl(X) for the collection of all nonempty closed subsets of X,CB(X) for the
collection of all nonempty closed bounded subsets of X, and H for the Hausdorff metric
on CB(X), that is,

H(A,B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b,A)

}
, A, B ∈ CB(X), (1.1)

where d(a, B) = inf{d(a, b) : b ∈ B} is the distance from the point a to the subset B.
For a multivalued map T : X → CB(X), we say
(a)T is contraction [1] if there exists a constant λ ∈ (0, 1), such that for all x, y ∈ X,

H
(
T(x), T

(
y
)) ≤ λd

(
x, y

)
, (1.2)

(b)T is weakly contractive [2] if there exist constants h, b ∈ (0, 1), h < b, such that for
any x ∈ X, there is y ∈ Ix

b
satisfying

d
(
y, T

(
y
)) ≤ hd

(
x, y

)
, (1.3)

where Ix
b
= {y ∈ T(x) : bd(x, y) ≤ d(x, T(x))}.
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A point x ∈ X is called a fixed point of a multivalued map T : X → S(X) if x ∈ T(x).
We denote Fix(T) = {x ∈ X : x ∈ T(x)}.

A sequence {xn} in X is called an orbit of T at x0 ∈ X if xn ∈ T(xn−1) for all integer
n ≥ 1. A real valued function f onX is called lower semicontinuous if for any sequence {xn} ⊂ X
with xn → x ∈ X implies that f(x) ≤ lim infn→∞f(xn).

Using the Hausdorffmetric, Nadler Jr. [1] has established a multivalued version of the
well-known Banach contraction principle in the setting of metric spaces as follows.

Theorem 1.1. Let (X, d) be a complete metric space, then each contraction map T : X → CB(X)
has a fixed point.

Without using the Hausdorff metric, Feng and Liu [2] generalized Nadler’s
contraction principle as follows.

Theorem 1.2. Let (X, d) be a complete metric space and let T : X → Cl(X) be a weakly contractive
map, then T has a fixed point in X provided the real valued function f(x) = d(x, T(x)) on X is a
lower semicontinuous.

In [3], Kada et al. introduced the concept of w-distance in the setting of metric spaces
as follows.

A function ω : X ×X → [0,∞) is called aw-distance on X if it satisfies the following:

(w1) ω(x, z) ≤ ω(x, y) +ω(y, z), for all x, y, z ∈ X;

(w2) ω is lower semicontinuous in its second variable;

(w3) for any ε > 0, there exists δ > 0, such that ω(z, x) ≤ δ and ω(z, y) ≤ δ imply
d(x, y) ≤ ε.

Note that in general for x, y ∈ X, ω(x, y)/=ω(y, x) and not either of the implications
ω(x, y) = 0 ⇔ x = y necessarily holds. Clearly, the metric d is aw-distance on X. Many other
examples and properties of w-distances are given in [3].

In [4], Suzuki and Takahashi improved Nadler contraction principle (Theorem 1.1) as
follows.

Theorem 1.3. Let (X, d) be a complete metric space and let T : X → Cl(X). If there exist a w-
distance ω on X and a constant λ ∈ (0, 1), such that for each x, y ∈ X and u ∈ T(x), there is
v ∈ T(y) satisfying

ω(u, v) ≤ λω
(
x, y

)
, (1.4)

then T has a fixed point.

Recently, Latif and Albar [5] generalized Theorem 1.2 with respect tow-distance (see,
Theorem 3.3 in [5]), and Latif [6] proved a fixed point result with respect tow-distance ( see,
Theorem 2.2 in [6])which contains Theorem 1.3 as a special case.

A nonempty set X together with a quasimetric d (i.e., not necessarily symmetric)
is called a quasimetric space. In the setting of a quasimetric spaces, Al-Homidan et al. [7]
introduced the concept of a Q-function on quasimetric spaces which generalizes the notion
of a w-distance.



Fixed Point Theory and Applications 3

A function q : X × X → [0,∞) is called a Q-function on X if it satisfies the following
conditions:

(Q1) q(x, z) ≤ q(x, y) + q(y, z), for all x, y, z ∈ X;

(Q2) If {yn} is a sequence in X such that yn → y ∈ X and for x ∈ X, q(x, yn) ≤ M for
some M = M(x) > 0, then q(x, y) ≤ M,

(Q3) for any ε > 0, there exists δ > 0, such that q(x, y) ≤ δ and q(x, z) ≤ δ imply
d(y, z) ≤ ε.

Note that every w-distance is a Q-function, but the converse is not true in general [7].
Now, we state some useful properties of Q-function as given in [7].

Lemma 1.4. Let (X, d) be a complete quasimetric space and let q be aQ-function on X. Let {xn} and
{yn} be sequences in X. Let {αn} and {βn} be sequences in [0,∞) converging to 0, then the following
hold for any x, y, z ∈ X:

(i) if q(xn, y) ≤ αn and q(xn, z) ≤ βn for all n ≥ 1, then y = z; in particular, if q(x, y) = 0
and q(x, z) = 0, then y = z;

(ii) if q(xn, yn) ≤ αn and q(xn, z) ≤ βn for all n ≥ 1, then {yn} converges to z;
(iii) if q(xn, xm) ≤ αn for any n,m ≥ 1 withm > n, then {xn} is a Cauchy sequence;

(iv) if q(y, xn) ≤ αn for any n ≥ 1, then {xn} is a Cauchy sequence.

Using the concept Q-function, Al-Homidan et al. [7] recently studied an equilibrium
version of the Ekeland-type variational principle. They also generalized Nadler’s fixed point
theorem (Theorem 1.1) in the setting of quasimetric spaces as follows.

Theorem 1.5. Let (X, d) be a complete quasimetric space and let T : X → Cl(X). If there exist
Q-function q on X and a constant λ ∈ (0, 1), such that for each x, y ∈ X and u ∈ T(x), there is
v ∈ T(y) satisfying

q(u, v) ≤ λq
(
x, y

)
, (1.5)

then T has a fixed point.

In the sequel, we consider X as a quasimetric space with quasimetric d.
Considering a multivalued map T : X → S(X), we say
(c) T is weakly q-contractive if there exist Q-function q on X and constants h, b ∈ (0, 1),

h < b, such that for any x ∈ X, there is y ∈ Jxb satisfying

q
(
y, T

(
y
)) ≤ hq

(
x, y

)
, (1.6)

where Jx
b
= {y ∈ T(x) : bq(x, y) ≤ q(x, T(x))} and q(x, T(x)) = inf{q(x, y) : y ∈ T(x)};

(d) T is generalized q-contractive if there exists a Q-function q on X, such that for each
x, y ∈ X and u ∈ T(x), there is v ∈ T(y) satisfying

q(u, v) ≤ k
(
q
(
x, y

))
q
(
x, y

)
, (1.7)

where k is a function of [0,∞) to [0, 1), such that lim supr→ t+k(r) < 1 for all t ≥ 0.
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Clearly, the class of weakly q-contractive maps contains the class of weakly contractive
maps, and the class of generalized q-contractive maps contains the classes of generalized
ω-contraction maps [6], ω-contractive maps [4], and q-contractive maps [7].

In this paper, we prove some new fixed point results in the setting of quasimetric
spaces for weakly q-contractive and generalized q-contractive multivalued maps. Conse-
quently, our results either improve or generalize many known results including the above
stated fixed point results.

2. The Results

First, we prove a fixed point theorem for weakly q-contractive maps in the setting of
quasimetric spaces.

Theorem 2.1. Let X be a complete quasimetric space and let T : X → Cl(X) be a weakly q-
contractive map. If a real valued function f(x) = q(x, T(x)) on X is lower semicontinuous, then
there exists vo ∈ X, such that q(vo, T(vo)) = 0. Further, if q(vo, vo) = 0, then v0 is a fixed point of
T .

Proof. Let xo ∈ X. Since T is weakly contractive, there is x1 ∈ Jxo

b ⊆ T(xo), such that

q(x1, T(x1)) ≤ hq(xo, x1), (2.1)

where h < b. Continuing this process, we can get an orbit {xn} of T at xo satisfying xn+1 ∈ Jxn

b
and

q(xn+1, T(xn+1)) ≤ h(xn, xn+1), n = 0, 1, 2, . . . . (2.2)

Since bq(xn, xn+1) ≤ q(xn, T(xn)) and h < b < 1, thus we get

q(xn+1, T(xn+1)) ≤ q(xn, T(xn)). (2.3)

If we put a = h/b, then also we have

q(xn+1, T(xn+1)) ≤ aq(xn, T(xn)). (2.4)

Thus, we obtain

q(xn, T(xn)) ≤ anq(xo, T(x0)), n = 0, 1, 2, . . . , (2.5)

and since 0 < a < 1, hence the sequence {f(xn)} = {q(xn, T(xn))}, which is decreasing,
converges to 0. Now, we show that {xn} is a Cauchy sequence. Note that

q(xn, xn+1) ≤ anq(xo, x1), n = 0, 1, 2, . . . . (2.6)
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Now, for any integer n,m ≥ 1 with m > n, we have

q(xn, xm) ≤ q(xn, xn+1) + q(xn+1, xn+2) + · · · + q(xm−1, xm)

≤ anq(xo, x1) + an+1q(xo, x1) + · · · + am−1q(xo, x1)

≤ an

1 − a
q(xo, x1),

(2.7)

and thus by Lemma 1.4, {xn} is a Cauchy sequence. Due to the completeness ofX, there exists
some v0 ∈ X, such that limn→∞xn = vo. Now, since f is lower semicontinuous, we have

0 ≤ f(vo) ≤ lim inf
n→∞

f(xn) = 0, (2.8)

and thus, f(vo) = q(vo, T(vo)) = 0. It follows that there exists a sequence {vn} in T(v0),
such that q(v0, vn) → 0. Now, if q(vo, vo) = 0, then by Lemma 1.4, vn → v0. Since T(v0) is
closed, we get v0 ∈ T(v0).

Now, we prove the following useful lemma.

Lemma 2.2. Let (X, d) be a complete quasimetric space and let T : X → Cl(X) be a generalized
q-contractive map, then there exists an orbit {xn} of T at x0, such that the sequence of nonnegative
numbers {q(xn, xn+1)} is decreasing to zero and {xn} is a Cauchy sequence.

Proof. Let xo be an arbitrary but fixed element of X and let x1 ∈ T(x0). Since T is generalized
as a q-contractive, there is x2 ∈ T(x1), such that

q(x1, x2) ≤ k
(
q(xo, x1)

)
q(xo, x1). (2.9)

Continuing this process, we get a sequence {xn} in X, such that xn+1 ∈ T(xn) and

q(xn, xn+1) ≤ k
(
q(xn−1, xn)

)
q(xn−1, xn). (2.10)

Thus, for all n ≥ 1, we have

q(xn, xn+1) < q(xn−1, xn). (2.11)

Write tn = q(xn, xn+1). Suppose that limn→∞tn = λ > 0, then we have

tn ≤ k(tn−1)tn−1. (2.12)

Now, taking limits as n → ∞ on both sides, we get

λ ≤ lim sup
n→∞

k(tn−1)λ < λ, (2.13)
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which is not possible, and hence the sequence of nonnegative numbers {tn}, which is
decreasing, converges to 0. Finally, we show that {xn} is a Cauchy sequence. Let α =
lim supr→ 0+k(r) < 1. There exists real number β such that α < β < 1. Then for sufficiently
large n, k(tn) < β, and thus for sufficiently large n, we have tn < βtn−1. Consequently, we
obtain tn < βnt0, that is,

q(xn, xn+1) < βnq(xo, x1), n = 0, 1, 2, . . . . (2.14)

Now, for any integers n,m ≥ 1, m > n,

q(xn, xm) ≤ q(xn, xn+1) + q(xn+1, xn+2) + · · · + q(xm−1, xm)

< βnq(xo, x1) + βn+1q(xo, x1) + · · · + βm−1q(xo, x1)

<
βn

1 − β
q(xo, x1),

(2.15)

and thus by Lemma 1.4, {xn} is a Cauchy sequence.

Applying Lemma 2.2, we prove a fixed point result for generalized q-contractivemaps.

Theorem 2.3. Let (X, d) be a complete quasimetric space then each generalized q -contractive map
T : X → Cl(X) has a fixed point.

Proof. It follows from Lemma 2.2 that there exists a Cauchy sequence {xn} in X such that the
decreasing sequence {q(xn, xn+1)} converges to 0. Due to the completeness of X, there exists
some v0 ∈ X such that limn→∞xn = vo. Let n be arbitrary fixed positive integer then for all
positive integers mwith m > n, we have

q(xn, xm) ≤
βn

1 − β
q(xo, x1). (2.16)

Let M = (βn/(1 − β))q(x0, x1), thenM ≥ 0. Now, note that

q(xn, xm) ≤ M =⇒ q(xn, v0) ≤ M. (2.17)

Since n was arbitrary fixed, we have

q(xn, v0) ≤
βn

1 − β
q(xo, x1), for all positive integer n. (2.18)

Note that q(xn, vo) converges to 0. Now, since xn ∈ T(xn−1) and T is a generalized q-
contractive map, then there is un ∈ T(v0), such that

q(xn, un) ≤ k
(
q(xn−1, v0)

)
q(xn−1, v0). (2.19)
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And for large n, we obtain

q(xn, un) ≤ k
(
q(xn−1, v0)

)
q(xn−1, v0) < βq(xn−1, v0), (2.20)

thus, we get

q(xn, un) < βq(xn−1, v0) ≤
βn

1 − β
q(xo, x1). (2.21)

Thus, it follows from Lemma 1.4 that un → v0. Since T(v0) is closed, we get v0 ∈ T(v0).

Corollary 2.4. Let (X, d) be a complete quasimetric space and q a Q-function on X. Let T : X →
Cl(X) be a multivalued map, such that for any x, y ∈ X and u ∈ T(x), there is v ∈ T(y) with

q(u, v) ≤ k
(
q
(
x, y

))
q
(
x, y

)
, (2.22)

where k is a monotonic increasing function from (0,∞) to [0, 1), then T has a fixed point.

Finally, we conclude with the following remarks concerning our results related to the
known fixed point results.

Remark 2.5. (1)Theorem 2.1 generalizes Theorem 1.2 according to Feng and Liu [2] and Latif
and Albar [5, Theorem 3.3].

(2)Theorem 2.3 generalizes Theorem 1.3 according to Suzuki and Takahashi [4] and
Theorem 1.5 according to Al-Homidan et al. [7] and contains Latif’s Theorem 2.2 in [6].

(3)Theorem 2.3 also generalizes Theorem 2.1 in [8] in several ways.
(4)Corollary 2.4 improves and generalizes Theorem 1 in [9].
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