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We introduce a new implicit iteration method for finding a solution for a variational inequality
involving Lipschitz continuous and strongly monotone mapping over the set of common fixed
points for a finite family of nonexpansive mappings on Hilbert spaces.

1. Introduction

Let C be a nonempty closed and convex subset of a real Hilbert space H with inner product
(-,-y and norm || - ||, and let F : H — H be a nonlinear mapping. The variational inequality
problem is formulated as finding a point p* € C such that

(F(p*),p-p*) 20, VpeC (1.1)

Variational inequalities were initially studied by Kinderlehrer and Stampacchia in [1]
and ever since have been widely investigated, since they cover as diverse disciplines as
partial differential equations, optimal control, optimization, mathematical programming,
mechanics, and finance (see [1-3]).
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It is well known that if F is an L-Lipschitz continuous and #-strongly monotone, that
is, F satisfies the following conditions:

|F(x)-F)|l <Ll|lx-y

7

(1.2)

2
7

(Fx) = F(y),x-y) 2n|x-y

where L and 7 are fixed positive numbers, then (1.1) has a unique solution. It is also known
that (1.1) is equivalent to the fixed-point equation

p=Pc(p-uF(p)), (1.3)

where Pc denotes the metric projection from x € H onto C and p is an arbitrarily fixed
positive constant.

Let {T;}Y, be a finite family of nonexpansive self-mappings of C. For finding an
element p € ﬂf\:’ 1 Fix(T;), Xu and Ori introduced in [4] the following implicit iteration process.
For xp € Cand {fi}{2; € (0,1), the sequence {xx} is generated as follows:

x1 = pixo+ (1 - p1)Tixa,
X2 = fox1 + (1= f2) Toxa,

(1.4)
xN = Pnxn-1 + (1= Bn)Tnxn,
XN+ = Pnaxn + (1= Bne1) Tixna,
The compact expression of the method is the form
x = Prxar + (L= ) Tgxe, k=1, (1.5)
where Tjy] = Ty mod N, for integer n > 1, with the mod function taking values in the set

{1,2,...,N}. They proved the following result.

Theorem 1.1. Let H be a real Hilbert space and C a nonempty closed convex subset of H. Let {T;} %,
be N nonexpansive self-maps of C such that ﬂgl Fix(T;) #0, where Fix(T;) = {x € C : Tiyx = x}. Let

xo € Cand {2, be a sequence in (0,1) such that limy _, o f = 0. Then, the sequence {xy} defined

implicitly by (1.5) converges weakly to a common fixed point of the mappings (T;}~,.
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Further, Zeng and Yao introduced in [5] the following implicit method. For an
arbitrary initial point xo € H, the sequence {xy }{2, is generated as follows:

x1 = Pixo + (1= p1) [Txy — MpF (Thixy)],
x2 = Poxy + (1= fo) [Toxa — MoptF (Toxs)],

(1.6)
xn = Pnxn-1 + (1= Bn) [Tnxn — AnpF(Tnxn)],
N+t = PNaxn + (1= Prer) [Tixna — AnsapF (Tixnaa)],
The scheme is written in a compact form as
X = ﬂkxk_l + (1 - ﬁk) [T[k]xk - )Lk‘uF(T[k]xk)], k> 1. (1.7)

They proved the following result.

Theorem 1.2. Let H be a real Hilbert spaceand F : H — H a mapping such that for some constants
L,n > 0, F is L-Lipschitz continuous and r-strongly monotone. Let {T;}Y; be N nonexpansive self-
maps of H such that C = NN, Fix(T;) # 0. Let p € (0,21/L?), and let xo € H, with {\x};2; C [0,1)
and {Pr}ie, C (0,1) satisfying the conditions: > Ay < oo and a < P < B, k > 1, for some
a,p € (0,1). Then, the sequence {xi} defined by (1.7) converges weakly to a common fixed point of
the mappings {T;}~,. The convergence is strong if and only if liminfy _, o, d(xx, C) = 0.

Recently, Ceng et al. [6] extended the above result to a finite family of asymptotically
self-maps.

Clearly, from Z,;";l Ax < oo we have that A4 — 0 as k — oo. To obtain strong
convergence without the condition >;°; Ax < oo, in this paper we propose the following
implicit algorithm:

xi=Tx, T =TTk ---Ti, te(0,1), (1.8)
where T} are defined by

Tix=(1-p)x+fTix, i=1,..,N, Ty=(I-LuF)y, xyeH,  (19)

1

I denotes the identity mapping of H, and the parameters {\;}, {fi} C (0,1) forall t € (0,1)
satisfy the following conditions: \; — 0ast — 0and 0 < liminf;_,of; < limsup, i <1, i =
1,...,N.



4 Fixed Point Theory and Applications
2. Main Result
We formulate the following facts for the proof of our results.

Lemma 2.1 (see [7]). () x+yl* < |x|* + 2(y,x + y) and for any fixed t € [0,1],
(i) [1(1=-6)x+tyl* = A= B)llxl* + Hlyl* = (1= Otl|x =yl for all x,y € H.

Put T*x = Tx - A\uF(Tx), x € H, A € [0,1]; for any nonexpansive mapping T of H,
we have the following lemma.

Lemma 2.2 (see [8]). |[T*x — T*y|| < (1 = A7)||lx = y||, for all x,y € H and for a fixed number
u € (0,2n/L?), where Tt =1 —1/1 - u(2n - uL?) € (0,1).

Lemma 2.3 (Demiclosedness Principle [9]). Assume that T is a nonexpansive self-mapping of a
closed convex subset K of a Hibert space H. If T has a fixed point, then I — T is demiclosed; that is,
whenever {xi} is a sequence in K weakly converging to some x € K and the sequence {(I — T)x}
strongly converges to some y, it follows that (I - T)x = y.

Now, we are in a position to prove the following result.

Theorem 2.4. Let H be a real Hilbert space and F : H — H a mapping such that for some constants
L,n > 0, F is L-Lipschitz continuous and n-strongly monotone. Let {T;}Y, be N nonexpansive self-
maps of H such that C = Y, Fix(T;) #0. Let p € (0,2n7/L?) and let t € (0,1), {A}, {Bi} € (0,1),
such that

A —0, ast—0, 0<1imtinf0ﬁ;'ghmsupp;'<1, i=1,...,N. (2.1)

t—0

Then, the net {x;} defined by (1.8)-(1.9) converges strongly to the unique element p* in (1.1).

Proof. By using Lemma 2.2 with T = Té, thatis, T = I, we have that

[T = T'y[| < (1= L) || Ty - Thx = Ty - Thy |
<(1 —/\tT)”Tit . -~T1tx— Tit Tlty” (2.2)
<A-M7)||Tix-Tiy|| < Q- M7)||x-y| VxyeH.

So, T' is a contraction in H. By Banach’s Contraction Principle, there exists a unique element
x; € H such that x; = T'x; for all t € (0,1).
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Next, we show that {x;} is bounded. Indeed, for a fixed point p € C, we have that
Tip=pfori=1,...,N, and hence

I =pll = IT'x = pll = | T'x: = Ty - Tip|
= [|(T = MpF)Ty - Tixe = (1 = ApF) Ty - Tip = L (p) |
S A=MD)|Ty - Tixe =Ty - Tip[| + Ml E () |
S =MD Thoy - Tixe = Ty - Tip [l + 4l E () |

(2.3)
< (L= M) T] - Tioee = T - Tip|| + ep|F (0) |
< (1= 4n)||Tixe = Tip|| + Lpl[F (p) ||
< (1= 1) ||xe = p|| + L | F (p) |-
Therefore,
U
b= pll < ZIF @) (24
that implies the boundedness of {x:}. So, are the nets (F(y")}, {y;}, i=1,...,N.
Put
yi = (1 - ﬂ})xt +BiTixy,
vi = (1-B)vi + BTy,
(2.5)

vi=(1-B)vi" + BT,

v = (1-) g+ BN TNy
Then,

xi = (I-\puF)yl. (2.6)



6

Moreover,

Thus,
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e~ plI* = || (1= dee)y |
= ool 2P () =) < 0 | ()|

<[l = p| - 2P (), - )+ 8 ()|

<[lvi - p|| - 20 (F (), 0 - p) + 2302 | F () |

< ”xt_PHZ_Z)LtP‘<F<y£\]>’ygV_P>+)L?‘uznp<ytN>”2'

=[]+ (Fo¥ —p) < P

Further, for the sake of simplicity, we put y? = x; and prove that

-t o

ast - Ofori=1,...,N.

Let {tx} C (0,1) be an arbitrary sequence converging to zero as k — oo and xj = xy,.
We have to prove that |ly; ! - Tiyi | — 0, where y! are defined by (2.5) with t = #; and
Yi =Yy, Let {x;} be a subsequence of {xi} such that

e L B A
k— o0 — o0

Let {x, } be a subsequence of {x;} such that

lim sup ||xx —p|| = lim ”xk]. - p“
k— oo ]

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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From (2.6) and Lemma 2.1, it implies that

O N [N |

<o ol -2 (), -)

J-) )+ 2 ()
-2 (F () %= p)

<(1-#Y)
-2 (F () %= p)

<[ -l 20 (F () 25 -p)

<< |wk - P“2 =201 (F () i~ p)

o e )

Y R LR R

Hence,

1im||xk/.—p“=1im||y;'cj—p||, i=1,...,N. (2.13)

]—)OO ]—)OO

By Lemma 2.1,

i, Il = (=) lvist ol + i vkt -l
-6, (-8 o - T
< (=)o ol i i el
-5, (1-5)
vi' ol - (1-5)
N Ly AU 9] vl |

i=1,..., N.

(2.14)

i1 io1||?
Y, _Ti]/kj

2
i1 i1
LS _Tiyk,- ”

= [ =l =1, (1) o -
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Without loss of generality, we can assume that a < i < f for some a, € (0,1). Then, we have

el | e e a1

This together with (2.13) implies that

2
=0, i=1,...,N. (2.16)

tim [l - Ty

jooo

It means that ||y;'*1 - Tiyf’lll — Qast — Ofori=1,...,N.
Next, we show that ||x; — T;x¢|| — 0ast — 0. In fact, in the case that i = 1 we have
y? = x:. S0, ||x; — Tix|| — Oast — 0. Further, since

o - o = (1= B e = Tuel, (2.17)

and [x; - Tix¢|| — 0, we have that ||y} — Tix|| — 0. Therefore, from

”xt - y}” < ey = Toxe|| + ”Tlxt - ytl , (2.18)

it follows that ||x; — /|| — Oast — 0. On the other hand, since

|2 - Tasi ]| = (1= 82) i - o | — 0,
Hyf - xt“ < <1 - ﬂf) ”%1 - xt” + ﬂf”sz} - xtH (2.19)

< (=)t =] + et i + o -

we obtain that ||y? - x;|| — 0ast — 0. Now, from

—_

7

b ol < 52+ o7 - T+ [ o -
2.20

2 2 1 1
S S N e B

and ||x: — 2, ly? - Tyt lly} — x|l — 0, it follows that ||x; — Tox;|| — 0. Similarly, we obtain
that [|lx; - Tixy|| — 0,fori=1,...,Nand |ly"N - x| — Oast — 0.

Let {xi} be any sequence of {x;} converging weakly to p as k — oo. Then, ||xx —
Tixk|| — 0, fori=1,...,N and { y}(\[ } also converges weakly to p. By Lemma 2.3, we have
p € C =Y, Fix(T;) and from (2.8), it follows that

(F(p).p-p)20 VYpeC. (221)
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Since p,p € C, by replacing p by tp + (1 — t)p in the last inequality, dividing by t and taking
t — 0in the just obtained inequality, we obtain

(F(p),p-p)20 VpeC. (2.22)

The uniqueness of p* in (1.1) guarantees that p = p*. Again, replacing p in (2.8) by p*, we
obtain the strong convergence for {x;}. This completes the proof. O

3. Application

Recall that a mapping S : H — H is called a y-strictly pseudocontractive if there exists a
constant y € [0,1) such that

Vx,y € H. (3.1)

It is well known [10] thata mapping T : H — H by Tx = ax+(1-a)Sx with a fixed a € [y, 1)
for all x € H is a nonexpansive mapping and Fix(T) = Fix(S). Using this fact, we can extend
our result to the case C = ﬂg 1 Fix(S;), where S; is y;-strictly pseudocontractive as follows.

Let a; € [y;,1) be fixed numbers. Then, C = ﬁgl Fix(ﬁ-) with Tiy =ay+(1-a;)Siy, a
nonexpansive mapping, fori =1,..., N, and hence

Tt < ﬂt)y +ﬂtTy

| . (32)
= (1-B(-a))y+p(1-a)Sy, i=1,...N.

So, we have the following result.

Theorem 3.1. Let H be a real Hilbert space and F : H — H a mapping such that for some
constants L, 1 > 0, F is L-Lipschitz continuous and 1-strongly monotone. Let {S;}~, be N y;-strictly
pseudocontractive self maps of H such that C = nf\zfl Fix(S;) #0. Let a; € [y;,1), p € (0,217/L?) and
lett € (0,1), { ﬂt } € (0,1), such that

A — 0, ast—0, O<hm1nfﬁt<hmsupﬂt<1 i=1,...,N. (3.3)
t—0

Then, the net {x;} defined by

X = Ttxt, Tt = Téf"]t\, . flt, te(0,1), (3.4)

where Tit, fori=1,...,N, are defined by (3.2) and Tjx = (I — \yuF)x, converges strongly to the
unique element p* in (1.1).

It is known in [11] that Fix(S) = C where S = Zl 1&Siwithg > 0and SN & =1
for N y;-strictly pseudocontractions {S;}2;. Moreover, S is y-strictly pseudocontractive with
y =max{y; : 1 <i < N}. So, we also have the following result.



10 Fixed Point Theory and Applications

Theorem 3.2. Let H be a real Hilbert space and F : H — H a mapping such that for some
constants L,y > 0, F is L-Lipschitz continuous and n-strongly monotone. Let {S;}r; be N y;-
strictly pseudocontractive self-maps of H such that C = N~ Fix(S;) #0. Let a € [y, 1), where
y=max{yi: 1<i< N}, pe(0,2n/L%),and let t € (0,1), {\s}, {Bt} C (0,1), such that

M —0, ast—0, 0 <lim tin% P < limsup fr < 1. (3.5)
- t—0

Then, the net {x;}, defined by
B B N
Xt = Ttxt, Tt = Té <(1 - ﬂt(l - oc))I + ﬁt(l - a)ngiSi), te (0, 1), (36)
i=1
where Ty = (I - \4pF), & > 0, and SN & =1, converges strongly to the unique element p* in (1.1).
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