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We observe that the notion of common property (E.A.) relaxes the required containment of range of
one mapping into the range of other which is utilized to construct the sequence of joint iterates. As
a consequence, a multitude of recent fixed point theorems of the existing literature are sharpened
and enriched.

1. Introduction and Preliminaries

The evolution of fuzzy mathematics solely rests on the notion of fuzzy sets which was
introduced by Zadeh [1] in 1965 with a view to represent the vagueness in everyday life.
In mathematical programming, the problems are often expressed as optimizing some goal
functions equipped with specific constraints suggested by some concrete practical situations.
There exist many real-life problems that consider multiple objectives, and generally, it is
very difficult to get a feasible solution that brings us to the optimum of all the objective
functions. Thus, a feasible method of resolving such problems is the use of fuzzy sets
[2]. In fact, the richness of applications has engineered the all round development of
fuzzy mathematics. Then, the study of fuzzy metric spaces has been carried out in several
ways (e.g., [3, 4]). George and Veeramani [5] modified the concept of fuzzy metric space
introduced by Kramosil and Michálek [6] with a view to obtain a Hausdorff topology on
fuzzymetric spaces, and this has recently found very fruitful applications in quantum particle
physics, particularly in connection with both string and ε∞ theory (see [7] and references
cited therein). In recent years, many authors have proved fixed point and common fixed
point theorems in fuzzy metric spaces. To mention a few, we cite [2, 8–15]. As patterned
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in Jungck [16], a metrical common fixed point theorem generally involves conditions on
commutatively, continuity, completeness together with a suitable condition on containment
of ranges of involved mappings by an appropriate contraction condition. Thus, research in
this domain is aimed at weakening one or more of these conditions. In this paper, we observe
that the notion of common property (E.A.) relatively relaxes the required containment of the
range of one mapping into the range of other which is utilized to construct the sequence of
joint iterates. Consequently, we obtain some common fixed point theorems in fuzzy metric
spaces which improve many known earlier results (e.g., [11, 15, 17]).

Before presenting our results, we collect relevant background material as follows.

Definition 1.1 (see [18]). Let X be any set. A fuzzy set in X is a function with domain X and
values in [0, 1].

Definition 1.2 (see [6]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if
it satisfies the following conditions:

(i) ∗ is associative and commutative,

(ii) ∗ is continuous,
(iii) a ∗ 1 = a for every a ∈ [0, 1],

(iv) a ∗ b ≤ c ∗ d if a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 1.3 (see [5]). A triplet (X,M, ∗) is a fuzzy metric space whenever X is an arbitrary
set, ∗ is a continuous t-norm, and M is a fuzzy set on X × X × (0,+∞) satisfying, for every
x, y, z ∈ X and s, t > 0, the following conditions:

(i) M(x, y, t) > 0,

(ii) M(x, y, t) = 1 if and only if x = y,

(iii) M(x, y, t) = M(y, x, t),

(iv) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),

(v) M(x, y, ·) : (0,+∞) → [0, 1] is continuous.

Note that M(x, y, t) can be realized as the measure of nearness between x and y with
respect to t. It is known that M(x, y, ·) is nondecreasing for all x, y ∈ X. Let (X,M, ∗) be a
fuzzy metric space. For t > 0, the open ball B(x, r, t) with center x ∈ X and radius 0 < r < 1
is defined by B(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r}. Now, the collection {B(x, r, t) : x ∈ X,
0 < r < 1, t > 0} is a neighborhood system for a topology τ on X induced by the fuzzy metric
M. This topology is Hausdorff and first countable.

Definition 1.4 (see [5]). A sequence {xn} in X converges to x if and only if for each ε > 0 and
each t > 0, there exists n0 ∈ N such that M(xn, x, t) > 1 − ε for all n ≥ n0.

Remark 1.5 (see [5]). Let (X, d) be a metric space. We define a ∗ b = ab for all a, b ∈ [0, 1] and
Md(x, y, t) = t/(t + d(x, y)) for every (x, y, t) ∈ X × X × (0,+∞), then (X,Md, ∗) is a fuzzy
metric space. The fuzzy metric space (X,Md, ∗) is complete if and only if the metric space
(X, d) is complete.

With a view to accommodate a wider class of mappings in the context of common fixed
point theorems, Sessa [19] introduced the notion of weakly commuting mappings which was
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further enlarged by Jungck [20] by defining compatible mappings. After this, there came a
host of such definitions which are scattered throughout the recent literature whose survey
and illustration (up to 2001) is available in Murthy [21]. Here, we enlist the only those weak
commutatively conditions which are relevant to presentation.

Definition 1.6 (see [20]). A pair of self-mappings (f, g) defined on a fuzzy metric space
(X,M, ∗) is said to be compatible (or asymptotically commuting) if for all t > 0,

lim
n→+∞

M
(
fgxn, gfxn, t

)
= 1, (1.1)

whenever {xn} is a sequence in X such that limn→+∞fxn = limn→+∞gxn = z, for some z ∈ X.
Also, the pair (f, g) is called noncompatible, if there exists a sequence {xn} in X such that
limn→+∞fxn = limn→+∞gxn = z, but either limn→+∞M(fgxn, gfxn, t)/= 1 or the limit does
not exist.

Definition 1.7 (see [10]). A pair of self-mappings (f, g) defined on a fuzzy metric space
(X,M, ∗) is said to satisfy the property (E.A.) if there exists a sequence {xn} in X such that
limn→+∞fxn = limn→+∞gxn = z for some z ∈ X.

Clearly, compatible as well as noncompatible pairs satisfy the property (E.A.).

Definition 1.8 (see [10]). Two pairs of self mappings (A,S) and (B, T) defined on a fuzzy
metric space (X,M, ∗) are said to share common property (E.A.) if there exist sequences {xn}
and {yn} in X such that limn→+∞Axn = limn→+∞Sxn = limn→+∞Byn = limn→+∞Tyn = z for
some z ∈ X.

For more on properties (E.A.) and common (E.A.), one can consult [22] and [10],
respectively.

Definition 1.9. Two self mappings f and g on a fuzzy metric space (X,M, ∗) are called weakly
compatible if they commute at their point of coincidence; that is, fx = gx implies fgx = gfx.

Definition 1.10 (see [23]). Two finite families of self mappings {Ai} and {Bj} are said to be
pairwise commuting if

(i) AiAj = AjAi, i, j ∈ {1, 2, . . . , m},
(ii) BiBj = BjBi, i, j ∈ {1, 2, . . . , n},
(iii) AiBj = BjAi, i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n},

The following definitions will be utilized to state various results in Section 3.

Definition 1.11 (see [15]). Let (X,M, ∗) be a fuzzy metric space and f, g : X → X a pair of
mappings. The mapping f is called a fuzzy contraction with respect to g if there exists an
upper semicontinuous function r : [0,+∞) → [0,+∞)with r(τ) < τ for every τ > 0 such that

1
M
(
fx, fy, t

) − 1 ≤ r

(
1

m
(
f, g, x, y, t

) − 1

)

, (1.2)
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for every x, y ∈ X and each t > 0, where

m
(
f, g, x, y, t

)
= min

{
M
(
gx, gy, t

)
,M
(
fx, gx, t

)
,M
(
fy, gy, t

)}
. (1.3)

Definition 1.12 (see [15]). Let (X,M, ∗) be a fuzzy metric space and f, g : X → X a pair
of mappings. The mapping f is called a fuzzy k-contraction with respect to g if there exists
k ∈ (0, 1), such that

1
M
(
fx, fy, t

) − 1 ≤ k

(
1

m
(
f, g, x, y, t

) − 1

)

, (1.4)

for every x, y ∈ X and each t > 0, where

m
(
f, g, x, y, t

)
= min

{
M
(
gx, gy, t

)
,M
(
fx, gx, t

)
,M
(
fy, gy, t

)}
. (1.5)

Definition 1.13. Let A,B, S and T be four self mappings of a fuzzy metric space (X,M, ∗).
Then, the mappings A and B are called a generalized fuzzy contraction with respect to S and
T if there exists an upper semicontinuous function r : [0,+∞) → [0,+∞), with r(τ) < τ for
every τ > 0 such that for each x, y ∈ X and t > 0,

1
M
(
Ax,By, t

) − 1 ≤ r

(
1

min
{
M
(
Sx, Ty, t

)
,M(Ax, Sx, t),M

(
By, Ty, t

)} − 1

)

. (1.6)

2. Main Results

Now, we state and prove our main theorem as follows.

Theorem 2.1. Let A,B,S and T be self mappings of a fuzzy metric space (X,M, ∗) such that the
mappings A and B are a generalized fuzzy contraction with respect to mappings S and T . Suppose
that the pairs (A,S) and (B, T) share the common property (E.A.) and S(X) and T(X) are closed
subsets of X. Then, the pair (A,S) as well as (B, T) have a point of coincidence each. Further, A,B, S
and T have a unique common fixed point provided that both the pairs (A,S) and (B, T) are weakly
compatible.

Proof. Since the pairs (A,S) and (B, T) share the common property (E.A.), there exist
sequences {xn} and {yn} in X such that for some z ∈ X,

lim
n→+∞

Axn = lim
n→+∞

Sxn = lim
n→+∞

Byn = lim
n→+∞

Tyn = z. (2.1)

Since S(X) is a closed subset of X, therefore limn→+∞Sxn = z ∈ S(X), and henceforth, there
exists a point u ∈ X such that Su = z.

Now, we assert that Au = Su. If not, then by (1.6), we have

1
M
(
Au,Byn, t

) − 1 ≤ r

(
1

min
{
M
(
Su, Tyn, t

)
,M(Au, Su, t),M

(
Byn, Tyn, t

)} − 1

)

, (2.2)
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which on making n → +∞, for every t > 0, reduces to

1
M(Au, z, t)

− 1 ≤ r

(
1

min{M(Au, z, t)} − 1
)

(2.3)

that is a contradiction yielding thereby Au = Su. Therefore, u is a coincidence point of the
pair (A,S).

If T(X) is a closed subset of X, then limn→+∞Tyn = z ∈ T(X). Therefore, there exists a
point w ∈ X such that Tw = z.

Now, we assert that Bw = Tw. If not, then according to (1.6), we have

1
M(Axn, Bw, t)

− 1 ≤ r

(
1

min{M(Sxn, Tw, t),M(Axn, Sxn, t),M(Bw, Tw, t)} − 1
)
, (2.4)

which on making n → +∞, for every t > 0, reduces to

1
M(z, Bw, t)

− 1 ≤ r

(
1

min{M(z, Bw, t)} − 1
)
, (2.5)

which is a contradiction as earlier. It follows that Bw = Tw which shows that w is a point of
coincidence of the pair (B, T). Since the pair (A,S) is weakly compatible and Au = Su, hence
Az = ASu = SAu = Sz.

Now, we assert that z is a common fixed point of the pair (A,S). Suppose that Az/= z,
then using again (1.6), we have for all t > 0,

1
M(Az, Bw, t)

− 1 ≤ r

(
1

min{M(Az, Bw, t)} − 1
)
, (2.6)

implying thereby that Az = Bw = z.
Finally, using the notion of weak compatibility of the pair (B, T) together with (1.6),

we get Bz = z = Tz. Hence, z is a common fixed point of both the pairs (A,S) and
(B, T).

Uniqueness of the common fixed point z is an easy consequence of condition (1.6).

The following example is utilized to highlight the utility of Theorem 2.1 over earlier
relevant results.

Example 2.2. Let X = [2, 20] and (X,M, ∗) be a fuzzy metric space defined as

M
(
x, y, t

)
=

t

t +
∣∣x − y

∣∣ if t > 0, x, y ∈ X. (2.7)
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Define A,B, S, T : X → X by

Ax =

⎧
⎨

⎩

2 if x = 2,

3 if x > 2,
Sx =

⎧
⎨

⎩

2 if x = 2,

6 if x > 2,

Bx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if x = 2,

6 if 2 < x ≤ 5,

3 if x > 5,

Tx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if x = 2,

18 if 2 < x ≤ 5,

12 if x > 5.

(2.8)

Then, A,B, S and T satisfy all the conditions of the Theorem 2.1 with r(τ) = kτ , where
k ∈ (4/9, 1) and have a unique common fixed point x = 2 which also remains a point of
discontinuity.

Moreover, it can be seen that A(X) = {2, 3}/⊂{2, 12, 18} = T(X) and B(X) =
{2, 3, 6}/⊂{2, 6} = S(X). Here, it is worth noting that none of the earlier theorems (with rare
possible exceptions) can be used in the context of this example as most of earlier theorems
require conditions on the containment of range of one mapping into the range of other.

In the foregoing theorem, if we set r(τ) = kτ , k ∈ (0, 1), andM(x, y, t) = t/(t+ |x − y|),
then we get the following result which improves and generalizes the result of Jungck [16,
Corollary 3.2] in metric space.

Corollary 2.3. Let A,B, S and T be self mappings of a metric space (X, d) such that

d
(
Ax,By

) ≤ kmax
{
d
(
Sx, Ty

)
, d(Ax, Sx), d

(
By, Ty

)}
, (2.9)

for every x, y ∈ X, k ∈ (0, 1). Suppose that the pairs (A,S) and (B, T) share the common property
(E.A.) and S(X) and T(X) are closed subsets ofX. Then, the pair (A,S) as well as (B, T) have a point
of coincidence each. Further, A,B, S and T have a unique common fixed point provided that both the
pairs (A,S) and (B, T) are weakly compatible.

By choosing A,B, S and T suitably, one can deduce corollaries for a pair as well as for
two different trios of mappings. For the sake of brevity, we deduce, by setting A = B and
S = T , a corollary for a pair of mappings which is an improvement over the result of C. Vetro
and P. Vetro [15, Theorem 2].

Corollary 2.4. Let (A,S) be a pair of self mappings of a fuzzy metric space (X,M, ∗) such that (A,S)
satisfies the property (E.A.), A is a fuzzy contraction with respect to S and S(X) is a closed subset
of X. Then, the pair (A,S) has a point of coincidence, whereas the pair (A,S) has a unique common
fixed point provided that it is weakly compatible.

Now, we know that A fuzzy k-contraction with respect to S implies A fuzzy
contraction with respect to S. Thus, we get the following corollary which sharpen of [15,
Theorem 4 ].

Corollary 2.5. Let A and S be self mappings of a fuzzy metric space (X,M, ∗) such that the pair
(A,S) enjoys the property (E.A.), A is a fuzzy k-contraction with respect to S, and S(X) is a closed
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subset of X. Then, the pair (A,S) has a point of coincidence. Further,A and S have a unique common
fixed point provided that the pair (A,S) is weakly compatible.

3. Implicit Functions and Common Fixed Point

We recall the following two implicit functions defined and studied in [14] and [23],
respectively.

Firstly, following Singh and Jain [14], let Φ be the set of all real continuous functions
φ : [0, 1]4 → R, non decreasing in first argument, and satisfying the following conditions:

(i) for u, v ≥ 0, φ(u, v, u, v) ≥ 0, or φ(u, v, v, u) ≥ 0 implies that u ≥ v,

(ii) φ(u, u, 1, 1) ≥ 0 implies that u ≥ 1.

Example 3.1. Define φ(t1, t2, t3, t4) = 15t1 − 13t2 + 5t3 − 7t4. Then, φ ∈ Φ.

Secondly, following Imdad and Ali [23], let Ψ denote the family of all continuous
functions F : [0, 1]4 → R satisfying the following conditions:

(i) F1: for every u > 0, v ≥ 0 with F(u, v, u, v) ≥ 0 or F(u, v, v, u) ≥ 0, we have u > v,

(ii) F2: F(u, u, 1, 1) < 0, for each 0 < u < 1.

The following examples of functions F ∈ Ψ are essentially contained in [23].

Example 3.2. Define F : [0, 1]4 → R as F(t1, t2, t3, t4) = t1−φ(min{t2, t3, t4}),where φ : [0, 1] →
[0, 1] is a continuous function such that φ(s) > s for 0 < s < 1.

Example 3.3. Define F : [0, 1]4 → R as F(t1, t2, t3, t4) = t1 − kmin{t2, t3, t4}, where k > 1.

Example 3.4. Define F : [0, 1]4 → R as F(t1, t2, t3, t4) = t1 − kt2 −min{t3, t4}, where k > 0.

Example 3.5. Define F : [0, 1]4 → R as F(t1, t2, t3, t4) = t1 − at2 − bt3 − ct4, where a > 1 and
b, c ≥ 0 (b, c /= 1).

Example 3.6. Define F : [0, 1]4 → R as F(t1, t2, t3, t4) = t1 − at2 − b(t3 + t4), where a > 1 and
0 ≤ b < 1.

Example 3.7. Define F : [0, 1]4 → R as F(t1, t2, t3, t4) = t31 − kt2t3t4, where k > 1.

Before proving our results, it may be noted that above-mentioned classes of functions
Φ and Ψ are independent classes as the implicit function F(t1, t2, t3, t4) = t1 − kmin{t2, t3, t4},
where k > 1 (belonging to Ψ ) does not belongs to Φ as F(u, u, 1, 1) < 0 for all u > 0, whereas
implicit function φ(t1, t2, t3, t4) = 15t1 − 13t2 + 5t3 − 7t4 (belonging to Φ) does not belongs to Ψ
as F(u, v, u, v) = 0 implies u = v instead of u > v.

The following lemma interrelates the property (E.A.) with the common property
(E.A.).

Lemma 3.8. LetA,B, S and T be self mappings of a fuzzy metric space (X,M, ∗). Assume that there
exists F ∈ Ψ such that

F
(
M
(
Ax,By, t

)
,M
(
Sx, Ty, t

)
,M(Sx,Ax, t),M

(
By, Ty, t

)) ≥ 0, (3.1)
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for all x, y ∈ X and t > 0. Suppose that pair (A,S) (or (B, T)) satisfies the property (E.A.),
and A(X) ⊂ T(X) (or B(X) ⊂ S(X)). If for each {xn}, {yn} in X such that limn→+∞Axn =
limn→+∞Sxn (or limn→+∞Byn = limn→+∞Tyn), we have liminfn→+∞M(Axn, Byn, t) > 0 for all
t > 0, then, the pairs (A,S) and (B, T) share the common property (E.A.).

Proof. If the pair (A,S) enjoys the property (E.A.), then there exists a sequence {xn} inX such
that limn→+∞Axn = limn→+∞Sxn = z for some z ∈ X. Since A(X) ⊂ T(X), hence for each xn

there exists yn in X such that Axn = Tyn, henceforth limn→+∞Axn = limn→+∞Tyn = z. Thus,
we have Axn → z, Sxn → z and Tyn → z.

Now, we assert that Byn → z. We note that Byn → z if and only if M(Axn, Byn, t) →
1. Assume that there exists t0 > 0 such that M(Axn, Byn, t0) � 1, then by hypothesis there
exists a subsequence of {xn}, say {xnk}, such that

M
(
Axnk , Bynk , t0

) → lim inf
n→+∞

M
(
Axn, Byn, t0

)
= u > 0. (3.2)

By (3.1), we have

F
(
M
(
Axnk , Bynk , t

)
,M
(
Sxnk , Tynk , t

)
,M(Sxnk ,Axnk , t),M

(
Bynk , Tynk , t

)) ≥ 0, (3.3)

which on making k → +∞, reduces to

F(u, 1, 1, u) ≥ 0, (3.4)

implying thereby that u > 1, which is a contradiction. Hence limn→+∞Byn = z which shows
that the pairs (A,S) and (B, T) share the common property (E.A.).

With a view to generalize some fixed point theorems contained in Imdad and Ali [11,
23] we prove the following fixed point theorem which in turn generalizes several previously
known results due to Chugh and Kumar [24], Turkoglu et al. [25], Vasuki [18], and some
others.

Theorem 3.9. Let A,B, S and T be self mappings of a fuzzy metric space (X,M, ∗). Assume that
there exists F ∈ Ψ such that

F
(
M
(
Ax,By, t

)
,M
(
Sx, Ty, t

)
,M(Sx,Ax, t),M

(
By, Ty, t

)) ≥ 0, (3.5)

for all x, y ∈ X and t > 0. Suppose that the pairs (A,S) and (B, T) share the common property
(E.A.) and S(X) and T(X) are closed subsets ofX. Then, the pair (A,S) as well as (B, T) have a point
of coincidence each. Further, A,B, S and T have a unique common fixed point provided that both the
pairs (A,S) and (B, T) are weakly compatible.

Proof. Since the pairs (A,S) and (B, T) share the common property (E.A.), then there exist
two sequences {xn} and {yn} in X such that

lim
n→+∞

Axn = lim
n→+∞

Sxn = lim
n→+∞

Byn = lim
n→+∞

Tyn = z, (3.6)

for some z ∈ X.



Fixed Point Theory and Applications 9

Since S(X) is a closed subset of X, then limn→+∞Sxn = z ∈ S(X). Therefore, there
exists a point u ∈ X such that Su = z. Then, by (3.5)we have

F
(
M
(
Au,Byn, t

)
,M
(
Su, Tyn, t

)
,M(Su,Au, t),M

(
Byn, Tyn, t

)) ≥ 0, (3.7)

which on making n → +∞ reduces to

F(M(Au, z, t),M(Su, z, t),M(Su,Au, t),M(z, z, t)) ≥ 0, (3.8)

or, equivalently,

F(M(Au, z, t), 1,M(Au, z, t), 1) ≥ 0, (3.9)

which gives M(Au, z, t) = 1 for all t > 0, that is, Au = z. Hence, Au = Su. Therefore, u is a
point of coincidence of the pair (A,S).

Since T(X) is a closed subset of X, then limn→+∞Tyn = z ∈ T(X). Therefore, there
exists a pointw ∈ X such that Tw = z. Now, we assert that Bw = z. Indeed, again using (3.5),
we have

F(M(Axn, Bw, t),M(Sxn, Tw, t),M(Sxn,Axn, t),M(Bw, z, t)) ≥ 0. (3.10)

On making n → +∞, this inequality reduces to

F(M(z, Bw, t),M(z, z, t),M(z, z, t),M(Bw, z, t)) ≥ 0, (3.11)

that is,

F(M(z, Bw, t), 1, 1,M(z, Bw, t)) ≥ 0, (3.12)

implying thereby that M(z, Bw, t) > 1, for all t > 0. Hence Tw = Bw = z, which shows that
w is a point of coincidence of the pair (B, T). Since the pair (A,S) is weakly compatible and
Au = Su, we deduce that Az = ASu = SAu = Sz.

Now, we assert that z is a common fixed point of the pair (A,S). Using (3.5), we have

F(M(Az, Bw, t),M(Sz, Tw, t),M(Sz,Az, t),M(Bw, Tw, t)) ≥ 0, (3.13)

that is F(M(Az, z, t),M(Az, z, t), 1, 1) ≥ 0. Hence, M(Az, z, t) = 1 for all t > 0 and therefore
Az = z.

Now, using the notion of the weak compatibility of the pair (B, T) and (3.5), we get
Bz = z = Tz. Hence, z is a common fixed point of both the pairs (A,S) and (B, T). Uniqueness
of z is an easy consequence of (3.5).

Example 3.10. In the setting of Example 2.2, retain the same mappings A,B, S and T and
define F : [0, 1]4 → R as F(t1, t2, t3, t4) = t1 − φ(min{t2, t3, t4}) with φ(r) =

√
r.
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Then, A,B, S and T satisfy all the conditions of Theorem 3.9 and have a unique
common fixed point x = 2 which also remains a point of discontinuity.

Further, we remark that Theorem 2 of Imdad andAli [23] cannot be used in the context
of this example, as the required conditions on containment in respect of ranges of the involved
mappings are not satisfied.

Corollary 3.11. The conclusions of Theorem 3.9 remain true if (3.5) is replaced by one of the following
conditions:

(i) M(Ax,By, t)≥φ(min{M(Sx, Ty, t),M(Sx,Ax, t),M(By, Ty, t)}), where φ : [0, 1] →
[0, 1] is a continuous function such that φ(s) > s for all 0 < s < 1.

(ii) M(Ax,By, t) ≥ k(min{M(Sx, Ty, t),M(Sx,Ax, t),M(By, Ty, t)}), where k > 1.

(iii) M(Ax,By, t) ≥ kM(Sx, Ty, t) +min{M(Sx,Ax, t),M(By, Ty, t)}), where k > 0.

(iv) M(Ax,By, t) ≥ aM(Sx, Ty, t) + bM(Sx,Ax, t) + cM(By, Ty, t), where a > 1 and
b, c ≥ 0 (b, c /= 1).

(v) M(Ax,By, t) ≥ aM(Sx, Ty, t) + b[M(Sx,Ax, t) + M(By, Ty, t)], where a > 1 and
0 ≤ b < 1.

(vi) M(Ax,By, t) ≥ kM(Sx, Ty, t)M(Sx,Ax, t)M(By, Ty, t), where k > 1.

Proof. The proof of various corollaries corresponding to contractive conditions (i)–(vi)
follows from Theorem 3.9 and Examples 3.2–3.7.

Remark 3.12. Corollary 3.11 corresponding to condition (i) is a result due to Imdad and Ali
[11], whereas Corollary 3.11 corresponding to various conditions presents a sharpened form
of Corollary 2 of Imdad andAli [23]. Similar to this corollary, one can also deduce generalized
versions of certain results contained in [17, 18, 24].

The following theorem generalizes a theorem contained in Singh and Jain [14].

Theorem 3.13. Let A,B, S and T be self mappings of a fuzzy metric space (X,M, ∗). Assume that
there exists φ ∈ Φ such that

φ
(
M
(
Ax,By, kt

)
,M
(
Sx, Ty, t

)
,M(Ax, Sx, t),M

(
By, Ty, kt

)) ≥ 0,

φ
(
M
(
Ax,By, kt

)
,M
(
Sx, Ty, t

)
,M(Ax, Sx, kt),M

(
By, Ty, t

)) ≥ 0,
(3.14)

for all x, y ∈ X, k ∈ (0, 1) and t > 0. Suppose that the pairs (A,S) and (B, T) enjoy the common
property (E.A.) and S(X) and T(X) are closed subsets of X. Then, the pairs (A,S) and (B, T) have a
point of coincidence each. Further,A,B, S and T have a unique common fixed point provided that both
the pairs (A,S) and (B, T) are weakly compatible.

Proof. The proof of this theorem can be completed on the lines of the proof of Theorem 3.9,
hence details are omitted.

Example 3.14. In the setting of Example 2.2, we define φ(t1, t2, t3, t4) = 15t1 − 13t2 + 5t3 − 7t4,
besides retaining the rest of the example as it stands.

Then, all the conditions of Theorem 3.13 with k ∈ (1/4, 1) are satisfied.



Fixed Point Theory and Applications 11

Notice that 2 is the unique common fixed point of A,B, S and T , but this example
cannot be covered by Theorem 3.1 due to Singh and Jain [14] as A(X) = {2, 3}/⊂{2, 12, 18} =
T(X) and B(X) = {2, 3, 6}/⊂{2, 6} = S(X). This example cannot also be covered by Theorem 3.9
of this paper as φ(u, u, 1, 1) = 2(u − 1) implies φ(1, 1, 1, 1) = 0 which contradicts F1.

Now, we state (without proof) the following result.

Theorem 3.15. Let {A1, A2, . . . , Am}, {B1, B2, . . . , Bn}, {S1, S2, . . . , Sp}, and {T1, T2, . . . , Tq} be
four finite families of self mappings of a fuzzy metric space (X,M, ∗) such that the mappings A =
A1A2 · · ·Am,B = B1B2 · · ·Bn, S = S1S2 · · ·Sp and T = T1T2 · · · Tq satisfy (3.5). Suppose that the
pairs (A,S) and (B, T) share the common property (E.A.) and S(X) as well as T(X) are closed subsets
of X. Then, the pairs (A,S) and (B, T) have a point of coincidence each. Further, provided the pairs of
families ({Ai}, {Sk}) and ({Br}, {Tt}) commute pairwise, where i ∈ {1, . . . , m}, k ∈ {1, . . . , n}, r ∈
{1, . . . , p}, and t ∈ {1, . . . , q}, then Ai, Sk, Br and Tt have a unique common fixed point.

Proof. The proof of this theorem can be completed on the lines of Theorem 3.1 due to Imdad
et al. [26], hence details are avoided.

By setting A = A1 = A2 = · · · = Am,B = B1 = B2 = · · · = Bn, S = S1 = S2 = · · · = Sp

and T = T1 = T2 = · · · = Tq in Theorem 3.15, one can deduce the following result for certain
iterates of mappings which is a partial generalization of Theorem 3.9.

Corollary 3.16. Let A,B, S and T be four self mappings of a fuzzy metric space (X,M, ∗) such that
Am,Bn, Sp and Tq satisfy the condition (3.5). Suppose that the pairs (Am, Sp) and (Bn, Tq) share
the common property (E.A.) and Sp(X) as well as Tq(X) are closed subsets of X. Then, the pairs
(Am, Sp) and (Bn, Tq) have a point of coincidence each. Further,A,B, S and T have a unique common
fixed point provided that the pairs (A,S) and (B, T) commute pairwise.

Remark 3.17. Results similar to Corollary 3.11 as well as Corollary 3.16 can be outlined in
respect of Theorem 3.13, Theorem 3.15, and Corollary 3.16. But due to the repetition, details
are avoided.

Now, we conclude this note by deriving the following results of integral type.

Corollary 3.18. Let A,B, S and T be four self mappings of a fuzzy metric space (X,M, ∗). Assume
that there exist a Lebesgue integrable function ϕ : R → R and a function φ : [0, 1]4 → R such that

∫φ(u,1,u,1)

0
ϕ(s)ds ≥ 0,

∫φ(u,1,1,u)

0
ϕ(s)ds ≥ 0, or

∫φ(u,u,1,1)

0
ϕ(s)ds ≥ 0 (3.15)

implies u = 1. Suppose that the pairs (A,S) and (B, T) share the common property (E.A.) and S(X)
and T(X) are closed subsets of X. If

∫φ(M(Ax,By,t),M(Sx,Ty,t),M(Sx,Ax,t),M(By,Ty,t))

0
ϕ(s)ds ≥ 0 ∀ x, y ∈ X and t > 0, (3.16)

then the pairs (A,S) and (B, T) have a point of coincidence each. Further,A,B, S and T have a unique
common fixed point provided that both the pairs (A,S) and (B, T) are weakly compatible.
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Proof. Since the pairs (A,S) and (B, T) share the common property (E.A.), then there exist
two sequences {xn} and {yn} in X such that

lim
n→+∞

Axn = lim
n→+∞

Sxn = lim
n→+∞

Byn = lim
n→+∞

Tyn = z, (3.17)

for some z ∈ X. Since S(X) is a closed subset of X, then limn→+∞Sxn = z ∈ S(X). Therefore,
there exists a point u ∈ X such that Su = z. Now, we assert that Au = Su. Indeed, by (3.16),
we have

∫φ(M(Au,Byn,t),M(Su,Tyn,t),M(Su,Au,t),M(Byn,Tyn,t))

0
ϕ(s)ds ≥ 0. (3.18)

On making n → +∞, it reduces to

∫φ(M(Au,z,t),1,M(z,Au,t),1)

0
ϕ(s)ds ≥ 0, (3.19)

which implies M(Au, z, t) = 1, and so Au = z.
Being T(X) a closed subset of X, repeating the same argument, we deduce that there

exists a point w ∈ X such that Bw = Tw.
Since the pair (A,S) is weakly compatible and Au = Su, we deduce that Az = ASu =

SAu = Sz.
Now, we assert that z is a common fixed point of the pair (A,S). Using (3.16), with

x = z and y = w, we have

∫φ(M(Az,z,t), M(Az,z,t),1,1)

0
ϕ(s)ds ≥ 0, (3.20)

that implies M(Az, z, t) = 1. Hence Az = z. Similarly, we prove that Bz = Tz = z and so
z is a common fixed point of A,B, S and T . Uniqueness of z is a consequence of condition
(3.16).

Corollary 3.19. Let A,B, S and T be four self mappings of a fuzzy metric space (X,M, ∗). Assume
that there exist a Lebesgue integrable function ϕ : R → R+ and a function φ : [0, 1]4 → R, where
φ ∈ Φ, such that

∫φ(M(Ax,By,t),M(Sx,Ty,t),M(Sx,Ax,t),M(By,Ty,t))

0
ϕ(s)ds ≥ 0, ∀x, y ∈ X, t > 0,

∫φ(u,u,1,1)

0
ϕ(s)ds ≥ 0, ∀u ∈ (0, 1).

(3.21)

Suppose that the pairs (A,S) and (B, T) enjoy the common property (E.A.) and S(X) and T(X)
are closed subsets of X. Then, the pairs (A,S) and (B, T) have a point of coincidence each. Further,
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A,B, S and T have a unique common fixed point provided that both the pairs (A,S) and (B, T) are
weakly compatible.

Proof. The proof is the same of Corollary 3.18, so details are omitted.
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