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We regret making following mistake in the above-mentioned paper [1]. We would like to
correct it and explain some notations.

(1) In [1] we introduced a new concept of integral type contraction in cone metric
spaces and generalized Brancieri and Meir-Keeler theorems in such spaces. [1, Theorem 2.9]
is an extension of Brancieri’s theorem, and [1, Theorem 3.2] is an extension of Brancieri and
Meir-Keeler’s results. We asserted the following in [1, Theorem 2.9].

(i) ”Let (X, d) be a complete cone metric space and P be a normal cone. Suppose φ :
P → P is a non-vanishing map and a sub-additive cone integrable on each [a, b] ⊂
P such that for each ε � 0,

∫ε
0 φ dp � 0. If f : X → X is a map such that for all

x, y ∈ X

∫d(f(x),f(y))

0
φdp ≤ α

∫d(x,y)

0
φdp (1)

for some α ∈ (0, 1), then f has a unique fixed point in X.”
Also, we asserted in [1, Theorem 3.2] the following.

(ii) “Let (X, d) be a complete regular cone metric space and f be a mapping on X.
Assume that there exists a function θ from P into itself satisfying the following:

(B1) θ(0) = 0 and θ(t) � 0 for all t � 0.
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(B2) θ is nondecreasing and continuous function. Moreover, its inverse is continu-
ous.

(B3) For all 0/= ε ∈ P , there exists δ � 0 such that for all x, y ∈ X

θ
(
d
(
x, y

))
< ε + δ implies θ

(
d
(
fx, fy

))
< ε. (2)

(B4) For all x, y ∈ X

θ
(
x + y

) ≤ θ(x) + θ
(
y
)
. (3)

Then f has a unique fixed point.”
After this theorem, we asserted the following in [1, Remark 3.3] that:

(iii) “If φ : P → P is a non-vanishing map and a sub-additive cone integrable on each
[a, b] ⊂ P such that for each ε � 0,

∫ε
0 φ dp � 0 and θ(x) =

∫x
0 φ dP , then θ is satisfies

in all conditions of [1, Theorem 3.2]. Equivalently [1, Theorem 2.9] is concluded
from [1, Theorem 3.2].”

Note that, in (B2) of [1, Theorem 3.2] and [1, Remark 3.3], we have emphasized that
the map θ(x) =

∫x
0 φdP must have the continuous inverse, but unfortunately this assumption

has been forgotten mistakenly in [1, Theorem 2.9]. Note that this assumption is a necessary
condition to prove [1, Theorem 2.9].

(2) To prove [1, Theorem 3.2] and [1, Theorem 2.9], it is sufficient that θ(x) =
∫x
0 φdP

satisfy the following: for each sequence {xn} ⊂ P

θ(xn) −→ 0 implies xn −→ 0. (4)

On the other hand, (4) is equivalent to continuity of θ−1 at zero.
(3) In [2] the authors gave a counterexample on [1, Theorem 2.9] only for our misprint

that we have asserted it in the above as you have seen. They also gave a comment for us
at the end of their paper to correct such misprint and emphasized that θ must have the
continuous inverse. As you have seen, we have asserted and emphasized such note in (B2)
of [1, Theorem 3.2] and [1, Remark 3.3] before the authors in [2] mentioned it.

Nevertheless, we do apologize to the readers for this mistake.
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