Hindawi Publishing Corporation

Fixed Point Theory and Applications
Volume 2011, Article ID 347204, 30 pages
doi:10.1155/2011 /347204

Research Article

Approximation of Common Solutions to
System of Mixed Equilibrium Problems,
Variational Inequality Problem, and Strict
Pseudo-Contractive Mappings

Poom Kumam?'? and Chaichana Jaiboon?3

I Department of Mathematics, Faculty of Science, King Mongkut's University of
Technology Thonburi (KMUTT), Bangkok 10140, Thailand

2 Centre of Excellence in Mathematics, CHE, Si Ayuthaya Road, Bangkok 10400, Thailand

3 Department of Mathematics, Faculty of Liberal Arts, Rajamangala University of
Technology Rattanakosin (RMUTR), Bangkok 10100, Thailand

Correspondence should be addressed to Chaichana Jaiboon, chaichana j@rmutr.ac.th
Received 3 October 2010; Accepted 5 March 2011
Academic Editor: Jong Kim

Copyright © 2011 P. Kumam and C. Jaiboon. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We introduce an iterative algorithm for finding a common element of the set of fixed points of strict
pseudocontractions mapping, the set of common solutions of a system of two mixed equilibrium
problems and the set of common solutions of the variational inequalities with inverse strongly
monotone mappings. Strong convergence theorems are established in the framework of Hilbert
spaces. Finally, we apply our results for solving convex feasibility problems in Hilbert spaces. Our
results improve and extend the corresponding results announced by many others recently.

1. Introduction

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively. Let H be a real Hilbert space with inner product (-,-) and norm ||-||, and let Ebe a
nonempty closed convex subset of H. We denote weak convergence and strong convergence
by notations — and —, respectively. Recall that a mapping f : E — E is an a-contraction on
E if there exists a constant & € (0,1) such that ||f(x) — f(y)|| < a|lx — y| forall x,y € E. Let
S : E — E be a mapping. In the sequel, we will use F(S) to denote the set of fixed points of S;
thatis, F(S) = {x € E : Sx = x}. In addition, let a mapping S : E — E be called nonexpansive,
if ||Sx - Sy|| < |lx — y||, for all x,y € E. It is well known that if E C H is nonempty, bounded,
closed, and convex and S is a nonexpansive self-mapping on E, then F(S) is nonempty; see,
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for example, [1]. Recall that a mapping S : E — E is called strictly pseudo-contraction if there
exists a constant k € [0,1) such that

||Sx—S]/||2 < ||x—]/||2 +k||(I-S)x-(I-S)y >, Vx,y€E, (1.1)

where I denotes the identity operator on E. Note that if k = 0, then S is a nonexpansive
mapping. The class of strict pseudo-contractions is one of the most important classes of
mappings among nonlinear mappings. Within the past several decades, many authors have
been devoted to the studies on the existence and convergence of fixed points for strict pseudo-
contractions. In 1967, Browder and Petryshyn [2] introduced a convex combination method
to study strict pseudo-contractions in Hilbert spaces. On the other hand, Marino and Xu [3]
and Zhou [4] developed some iterative scheme for finding a fixed point of a strict pseudo-
contraction mapping. More precisely, take k € (0,1) and define a mapping S by

Skx=kx+ (1-k)Sx, Vx€E, (1.2)

where S is a strict pseudo-contraction. Under appropriate restrictions on k, it is proved
that the mapping Sk is nonexpansive. Therefore, the techniques of studying nonexpansive
mappings can be applied to study more general strict pseudo-contractions.

Letp : E — R U {+o0} be a proper extended real-valued function and let ¢ be a
bifunction of E x E into R such that E N dom ¢ #@, where R is the set of real numbers and
dome = {x € E: ¢p(x) < +oo}. Ceng and Yao [5] considered the following mixed equilibrium
problems for finding x € E such that

$(x,y) +¢(y) -9(x) 20, Vy€eE. (1.3)
The set of solutions of (1.3) is denoted by MEP(¢, ¢), that is,
MEP(¢,¢) = {x € E: ¢(x,y) +¢(y) - 9(x) 20, Vy € E}. (1.4)

We see that x is a solution of a problem (1.3) that implies that x € dom¢ = {x € E :
p(x) < +oo}.

Special Examples

(1) If ¢ = 0, then the mixed equilibrium problem (1.3) becomes to be the equilibrium problem
which is to find x € E such that

$(x,y) >0, VyeE. (1.5)

The set of solutions of (1.5) is denoted by EP(¢).
(2)Ifp=0and ¢(x,y) = (Bx,y — x) forall x,y € E, where B: E — H is a nonlinear
mapping, then problem (1.5) becomes to be the variational inequality problems which is to

find x € E such that

(Bx,y—x)>0, VyeE. (1.6)
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The set of solutions of (1.6) is denoted by VI(E, B). The variational inequality has been
extensively studied in the literature. See, for example, [6-8] and the references therein.

The mixed equilibrium problems include fixed point problems, variational inequality
problems, optimization problems, Nash equilibrium problems, and the equilibrium problem
as special cases. Numerous problems in physics, optimization, and economics reduce to
find a solution of (1.3). Some authors have proposed some useful methods for solving the
MEP(¢, ) and EP(¢); see, for instance [5, 9-27]. In 1997, Combettes and Hirstoaga [10]
introduced an iterative scheme of finding the best approximation to initial data when EP(¢)
is nonempty and proved a strong convergence theorem. Next, we recall some definitions.

Definition 1.1. Let B: E — H be nonlinear mappings. Then B is called

(1) monotone if

(Bx-By,x-y)>0, Vx,y€E, (1.7)

(2) p-strongly monotone if there exists a constant p > 0 such that

> Vx,y€E, (1.8)

(Bx-By,x-y) >p|lx-y
(3) n-Lipschitz continuous if there exists a constant # > 0 such that

|Bx-Byll <nllx-vl, VxyeE, (19)

(4) p-inverse strongly monotone if there exists a constant § > 0 such that

(Bx - By, x —y) > p||Bx - By 2 Vx,y € E. (1.10)

Remark 1.2. It is obvious that any p-inverse strongly monotone mappings B is monotone and
(1/p)-Lipschitz continuous.

(5) A set-valued mapping T : H — 2H is called a monotone if, for all x,y€H, feTx
and g € Ty imply (x -y, f —g) > 0.

(6) A monotone mapping T : H — 2H is a maximal if the graph of G(T) of T is not
properly contained in the graph of any other monotone mapping. It is known that a
monotone mapping T is maximal if and only if for (x, f) e HxH, (x -y, f—g) >0
for every (v, g) € G(T) implies f € Tx.

Let B be a monotone map of E into H, 7-Lipschitz continuous mapping and let Ng&
be the normal cone to E when & € E, that is,

Negd={weH:(u-9%w)>0,VueE} (1.11)
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and define a mapping T on E by

B8+ Nrd, O€E,
T = (1.12)

0, 8¢ E.

Then T is the maximal monotone and 0 € Td if and only if & € VI(E, B); see [28].

For finding a common element of the set of fixed points of a nonexpansive mapping
and the set of solution of variational inequalities for -inverse strongly monotone, Takahashi
and Toyoda [29] first introduced the following iterative scheme:

xo € E chosen arbitrary,
(1.13)
Xp1 = apXy + (1 — ) SPe(x, — AyBxy,), VYn >0,

where B is an f-inverse strongly monotone, {a,} is a sequence in (0, 1), and {A,} is a sequence
in (0,2p). They showed that if F(S) N VI(E, B) is nonempty, then the sequence {x,} generated
by (1.13) converges weakly to some g € F(S) N VI(E, B).

Further, Y. Yao and J.-C. Yao [30] introduced the following iterative scheme:

x1 =x € E chosen arbitrary,
Yn = PE(xn - )Lann)/ (114)
Xn+1 = ApX + ﬂnxn + YnSPE (yn - -)LnByn)/ Vn2>1,
where B is an p-inverse strongly monotone, {a,}, {f.}, {y.} are three sequences in [0, 1],
and {\,} is a sequence in (0,2f). They showed that if F(S) N VI(E, B) is nonempty, then the
sequence {x,} generated by (1.14) converges strongly to some g € F(S) N VI(E, B).

A map A: H — H is said to be strongly positive if there exists a constant y > 0 such
that

(Ax,x) >¥||lx|>, VYxeH. (1.15)

A typical problem is to minimize a quadratic function over the set of the fixed points of some
nonexpansive mapping on a real Hilbert space H:

minl(Ax,x> —(x,b), (1.16)
xeE 2

where A is some linear, E is the fixed point set of a nonexpansive mapping S on H and b is a
point in H. Let A be a strongly positive linear bounded map on H with coefficient y. In 2006,
Marino and Xu [31] studied the following general iterative method:

Xne1 = €nY f(xn) + (1 — €,A)Sx. (1.17)
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They proved that if the sequence ¢, of parameters appropriate conditions, then the sequence
x, generated by (1.17) converges strongly to g = Pr(s)(I — A+yf)(g). Recently, Plubtieng and
Punpaeng [32] proposed the following iterative algorithm:

d(un,y) + l(y —Up, Up —Xn) >0, Vye€H,
n (1.18)

Xn+1 = EnY f(xn) + (I — €,A)Suy,.

They proved that if the sequences {e,} and {r,} of parameters satisfy appropriate condition,
then both sequences {x,} and {u,} converge to the unique solution g of the variational
inequality

((A-yf)a,x-q) 20, VYx€F(S)NEP(p), (1.19)

which is the optimality condition for the minimization problem

. 1
xeF(ISr’}%rgP@)z (Ax,x) — h(x), (1.20)

where h is a potential function for yf (i.e., h'(x) = yf(x) for x € H).

On the other hand, for finding a common element of the set of fixed points of a k-
strict pseudo-contraction mapping and the set of solutions of an equilibrium problem in a
real Hilbert space, Liu [33] introduced the following iterative scheme:

¢ (un,y) + %(y— U, U —Xn) >0, Vy€E,

Yn = Puttn + (1 = P,,) Suy, (1.21)

Xni1 = €nY f(xn) + (I — €A Uy, Yn2>1,

where S is a k-strict pseudo-contraction mapping and {e,}, {$,.} are sequences in [0, 1]. They
proved that under certain appropriate conditions over {e,}, {$,}, and {r,}, the sequences
{xn} and {u,} converge strongly to some q € F(S) N EP(¢), which solves some variational
inequality problems.

In 2008, Ceng and Yao [5] introduced an iterative scheme for finding a common fixed
point of a finite family of nonexpansive mappings and the set of solutions of a problem (1.3)
in Hilbert spaces and obtained the strong convergence theorem which used the following
condjition:

(H) K : E — R is n-strongly convex with constant 0 > 0 and its derivative K’ is
sequentially continuous from weak topology to strong topology. We note that the condition
(H) for the function K : E — R is a very strong condition. We also note that the condition
(H) does not cover the case K(x) = ||x||*/2 and 7(x,y) = x — y for each (x,y) € E x E.
Very recently, R. Wangkeeree and R. Wangkeeree [34] introduced a general iterative method
for finding a common element of the set of solutions of the mixed equilibrium problems,
the set of fixed point of a k-strict pseudo-contraction mapping, and the set of solutions of
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the variational inequality for an inverse strongly monotone mapping in Hilbert spaces. They
obtained a strong convergence theorem except the condition (H) for the sequences generated
by these processes.

In 2009, Qin et al. [35] introduced a general iterative scheme for finding a common
element of the set of common solution of generalized equilibrium problems, the set of a
common fixed point of a family of infinite nonexpansive mappings in Hilbert spaces. Let
{x,} be the sequence generated iterative by the following algorithm:

x1€E, unEE, vnEEl

1
1 (U, u) + (Cxp,u —uy) + ;(u—un,un —-x,) >0, Yu€eekE,

¢2(vy, V) + (Bxy, v —vy) + é(v —Up, Uy —%xy) >0, VUEE, (122)

Yn = 5nun + (1 - 6n)vnr

Xn+l = enf(xn) + ﬁnxn + Yanynr Vn > 1.

They proved that under certain appropriate conditions imposed on {e,}, {f.}, {y»} and {64},
the sequence {x,} generated by (1.22) converges strongly to g € N, F(T,,) N EP(¢1,C) N
EP(¢», B), where q = Pz F(1,)nEP(¢1,C)nEP(¢2,B) f (4)-

In the present paper, motivated and inspired by Qin et al. [35], Plubtieng and
Punpaeng [32], Peng and Yao [17], R. Wangkeeree and R. Wangkeeree [34], and Y. Yao and
J.-C. Yao [30], we introduce a new approximation iterative scheme for finding a common
element of the set of fixed points of strict pseudo-contractions, the set of common solutions
of the system of a mixed equilibrium problem, and the set of common solutions of the
variational inequalities with inverse strongly monotone mappings in Hilbert spaces. We
obtain a strong convergence theorem for the sequences generated by these processes under
some parameter controlling conditions. Moreover, we apply our results for solving convex
feasibility problems in Hilbert spaces. The results in this paper extend and improve some
well-known results in [17, 30, 32, 34, 35].

2. Preliminaries

Let H be a real Hilbert space and E be a closed convex subset of H. In a real Hilbert space H,
it is well known that

[ + (1= D)y = Al + (1= D) |[y|* = 2 = D)||x - y||> (2.1)

forall x,y € Hand A € [0,1].
For any x € H, there exists a unique nearest point in E, denoted by Pgx, such that

lx — Pex|| < ||x-vy||, VyeE. (2.2)

The mapping P is called the metric projection of H onto E.
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It is well known that P is a firmly nonexpansive mapping of H onto E, that is,
(x -y, Pex — Pgy) > || Pex - ng”z, Vx,y € H. (2.3)

Further, forany x € Hand z € E, z = Ppxifand only if (x —z,z—y) >0, forall y € E.
Moreover, Pgx is characterized by the following properties: Prx € E and

(x = Ppx,y — Pgx) <0, (2.4)

= Il 2 lx = Pex| + ||y - Pex| (25)

forallx e H, y € E.
It is easy to see that the following is true:

u € VI(E,B) & u = Pp(u—-\Bu), A>0. (2.6)

The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1 (see [36]). Let (E, (:,-)) be an inner product space. Then, forall x,y,z € Eand a, B,y €
[0,1] with a + p+y = 1, one has

llax + py + yz* = allxl + Blly|I” + vlizI® - apllx - y|I* ~ aylx - =I? = pylly — =l 27)

Lemma 2.2 (see [31]). Assume that A is a strongly positive linear bounded operator on H with
coefficient y > 0and 0 < p < ||A[|"Y. Then ||I — pA|| <1 - py.

Lemma 2.3 (see [4]). Let E be a nonempty closed convex subset of a real Hilbert space H and let
S : E — E be a k-strict pseudo-contraction with a fixed point. Then F(S) is closed and convex.
Define Sy : E — E by Sk = kx + (1 — k)Sx for each x € E. Then Sy is nonexpansive such that
E(Sk) = F(S).

Lemma 2.4 (see [37]). Let X be a uniformly convex Banach spaces, E be a nonempty closed convex
subset of X and S : E — E be a nonexpansive mapping. Then I — S is demi-closed at zero.

Lemma 2.5 (see [38]). Let E be a nonempty closed convex subset of strictly convex Banach space X.
Let {T, : n € N} be a sequence of nonexpansive mappings on E. Suppose N, F(T,) is nonempty. Let
6n be a sequence of positive numbers with 3.2, 6, = 1. Then a mapping S on E can be defined by

Sx = ZénTnx (28)

n=1

for x € E is well defined, nonexpansive and F(S) = N5, F(T,,) holds.
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In order to solve the mixed equilibrium problem, the following assumptions are given
for the bifunction ¢, ¢ and the set E:
(Al) ¢(x,x) =0forall x € E;
(A2) ¢ is monotone, thatis, ¢(x,y) + ¢(y,x) <Oforall x,y € E;
(A3
(A4

(A5) foreach y € E, x — ¢(x, y) is weakly upper semicontinuous;

foreach x,y,z € E, limy_op(tz + (1 - t)x,y) < p(x,y);

for each x € E, y +— ¢(x,y) is convex and lower semicontinuous;

)
)
)
)
)
)

(B1) for each x € H and r > 0, there exist abounded subset D, C E and y, € E such that
forany z € E\ Dy,

P(zyx) +o(yx) —p(2) + %(yx -z,z-x)<0; (2.9)

(B2) E is a bounded set.

Lemma 2.6 (see [39]). Let E be a nonempty closed convex subset of H. Let ¢ : ExE — R bea
bifunction satisfies (A1)—(A5) and let ¢ : E — R U {+oo} be a proper lower semicontinuous and
convex function. Assume that either (B1) or (B2) holds. For r > 0 and x € H, define a mapping

T . H = E as follows:
T (x) = {z €E:Pp(zy) +9(y) - 9(2) + %(y -z,z-x)20,Vy € E} (2.10)

forall z € H. Then, the following holds:

(i) for each x € H, Tr((‘b’q’)(x) #0;
(ii) T,(M’) is single-valued;

(iii) T,(¢"P) is firmly nonexpansive, that is, for any x,y € H,

T %~ Ty < <Tr(¢’“’)x ~Ty, x - y>; (2.11)

(iv) F(T;"") = MEP(¢, ¢);
(v) MEP(9, o) is closed and convex.

Remark 2.7. 1f ¢ = 0, then T%) is rewritten as T?.

Remark 2.8. We remark that Lemma 2.6 is not a consequence of Lemma 3.1 in [5], because the
condition of the sequential continuity from the weak topology to the strong topology for the
derivative K’ of the function K : E — R does not cover the case K (x) = ||x||*/2.

Lemma 2.9 (see [40]). Let {x,} and {l,} be bounded sequences in a Banach space X and let {B,} be
a sequence in [0,1] with 0 <liminf, _ ,p, <limsup, , _f, < 1. Suppose xp1 = (1~ fp)ly + Pnxn
for all integers n > 1 and lim Supn—>oo(||ln+1 = Inll = [[xn+1 = xnll) < 0. Then, limy, -, oo|[ln — xn|| = 0.
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Lemma 2.10 (see [41]). Assume that {a,} is a sequence of nonnegative real numbers such that

ap1 < (1-Qu)an+0,, n>1, (2.12)

where {9, } is a sequence in (0,1) and {0, } is a sequence in R such that
(1) Z;.zozl QOn = 0O,
(2) limsup,, _,_ (0,/9un) <00r 372 [On] < 0.

Then lim,, _, xa, = 0.

Lemma 2.11. Let H be a real Hilbert space. Then forall x,y € H,

llx + v < %)% +2(y, x + y). (2.13)

3. Main Results

In this section, we will use the new approximation iterative method to prove a strong
convergence theorem for finding a common element of the set of fixed points of strict pseudo-
contractions, the set of common solutions of the system of a mixed equilibrium problem and
the set of a common solutions of the variational inequalities with inverse strongly monotone
mappings in a real Hilbert space.

Theorem 3.1. Let E be a nonempty closed convex subset of a real Hilbert space H. Let ¢y and ¢, be
two bifunctions from E x E to R satisfying (A1)—(A5) and let ¢ : E — R U {+oo} be a proper lower
semicontinuous and convex function. Let C : E — H be an ¢-inverse strongly monotone mapping
and B : E — H be an p-inverse strongly monotone mapping. Let f : E — E be a contraction
mapping with coefficient & (0 < a < 1) and let A be a strongly positive linear bounded operator on H
with coefficient y > 0and 0 <y <y/a. Let S : E — E be a k-strict pseudo-contraction with a fixed
point. Define a mapping Sx : E — E by Skx = kx + (1 — k)Sx, for all x € E. Assume that

© := F(S) N VI(E, C) N VI(E, B) " MEP(¢1, ) N MEP(¢ha, ) # 0. (3.1)

Assume that either (B1) or (B2). Let {x,} be a sequence generated by the following iterative algorithm:

x1€E, u,€E, wv,€E,
Uy = Tr((l)w))xn/

v, = T x,,
zn = Pg(un — pnCuy), (3.2)
Yn = Pe(v, — 1Boy),
kn = anSkxn + buYn + cnzn,

X1 = EnY f (Xn) + Puxn + (1= ) — €,A)ky, Vn>1,
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where {€n}, {Pn}, {an}, {bn}, and {c,} are sequences in (0,1) and {1}, {un} are positive sequences.
Assume that the control sequences satisfy the following restrictions:

(Cl)ap,+b,+c, =1,

(C2) limy,—, o€ = 0and 3771 €y = 00,

(C4 lin'lneoo|)‘n+l - )‘n| = hmneoo|/4n+1 - /’ln| =0,

)
)
(C3) 0 < liminf, . p, <limsup, ,_pn <1,
)
(C5) d <Ay, £2P, e < py < 28, where d, e are two positive constants,
)

(C6) limy, —, na, = a, lim, _, b, = b and lim, _, ,c, = ¢, for some a,b,c € (0,1).
Then, {x,} converges strongly to a point q € © which is the unique solution of the variational
inequality

((A-yf)gx-g)>0, Vxe© (3.3)

or equivalent q = Po(I — A +yf)(q), where P is a metric projection mapping form H onto ©.

Proof. Since €, — 0, as n — oo, we may assume, without loss of generality, that ¢, < (1 -
Bn)|| Al for all n € N. By Lemma 2.2, we know that if 0 < p < ||A|| ™, then ||I - pA|| < 1 - pY.
We will assume that ||I - A|| < 1 -7. Since A is a strongly positive bounded linear operator
on H, we have

| All = sup{[(Ax, x)| : x € H, ||x]| = 1}. (3.4)

Observe that
((A=-B)I-€enA)x,x) =1- P, — ex(Ax, x)
>1-pn—enllAll (3.5)

>0,
so this shows that (1 - 3,)I — €, A is positive. It follows that

[[ (1= u)T - enA|| = sup{[(((1 = fu)] - enA)x,x)| : x € H, ||x]| = 1}
=sup{l -, —es(Ax,x) : x € H,||x|| = 1} (3.6)

Sl_ﬁn_en?'

We divide the proof into seven steps.

Step 1. We claim that the mapping Po(I — A + yf) where © := F(S) n VI(E,C) N VI(E, B) N
MEP(¢1, ) N MEP(¢,, ) has a unique fixed point.
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Since f be a contraction of H into itself with a € (0,1). Then, we have

[Po(I-A+yf)(x) -Po(I-A+y/)()| < |I-A+yf)(0) - (I-A+yf) ()|
< |1 =Alllx =yl +ylf(x) = fFw)l
<@-Dlx -yl +yalx-y
=(1-F-rao)lx-yll, vxyeH

(3.7)

Since 0 < 1-(y—ya) < 1, it follows that Po(I-A+y f) is a contraction of H into itself. Therefore
the Banach Contraction Mapping Principle implies that there exists a unique element g € H
such thatg=Po(I - A+7yf)(q).

Step 2. We claim that I — 1, B is nonexpansive.

Indeed, from the f-inverse strongly monotone mapping definition on B and condition
(C5), we have

1 = uB)x = (I = LB)y||* = || (x = ) = Aa(Bx - By)|’
= ||lx - y|I* - 2Au(x - y, Bx - By) + A2||Bx - By||?
< [lx = y|I* - 20,l|Bx - By]| + 12| Bx - By (38)

= [lx = yII” + 4u (s~ 26) | Bx ~ By]|®

2
7

<|lx-y

where A, < 2f, for all n € N implies that the mapping I — 1,,B is nonexpansive and so is,
I-p,C.

Step 3. We claim that {x,} is bounded.
Indeed, let p € © and Lemma 2.6, we obtain

p=Pe(p—1Bp) = Pe(p - uaCp) = T, "'p = T""p. (3.9)

Note that u,, = Tr((pl’(’))xn € domg and v, = Ts(¢2’(”) xn € dom ¢, we have

e =pll = [ 720 = T < [ =l

(3.10)

o pll = |7 2, - T#p | < 12 - pll.
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Since I — ,,B and I — p,,C are nonexpansive and from (2.6), we have

20 = Il = | Pe (tn = puCoin) = Pe(p — pnCp) |
< || (un = puCun) = (p = pnCp) ||
= | (I = unC1an = (I = puCp| (3.11)
< lun=pll < [lxa—p

|y = pll = || Pe(@n = AuBoy) = Pe(p = LuBp) || < [|lon —p|| < ||2x - p]|-

7

From Lemma 2.3, we have that Sk is nonexpansive with F(Sk) = F(S). It follows that

Ik = p|| = ||anSkxn + buyn + cnza — ||
< an|Skxtn = pl| + bullyn = p|| + cullza - p| (3.12)

< anl|%n = | + ballxn = pll + eullxn = Pl = [l = |

It follows that

[l = Il = len(yf (xn) = Ap) + fu(xtn = p) + ((1 = fu) I = €xA) (kn = p) |
< (1= Pu=en¥) Ikn = pll + Pullcn = pll + enlly f (xn) - Apl|
< (1= Bu—ea)||xn = pll + Bullxn = pll + enllyf (xn) - Ap|
< (I-en))||lxn = pll +eny [l fen) = f(P) | +enllyf (p) - Apl

- 3.13
< (1)l —pll + enyallxa —pll +enllyf () - 4] e
. - Ivf(p) - Ap|
=(1-(y-ay)e)||xn—p||+ (Y —ay)en———"—"—
(1= = an)enllon —pll+ (7 - an)en ==
-A
Smax{”xn_p,Ilrfgp) P”}_
y-ay
By simple induction, we have
-A
||xn—p||Smax{”xl—p”,W}, Vn e N. (3.14)

Hence, {x,} is bounded, so are {u,}, {vn}, {2z}, {yn}, {kn}, {f(xn)}, {Cu,}, and {Bov,}.
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Step 4. We claim that lim,, _, oo || X1 — x| = 0.

Tr(¢1,<p) Tr(qbl,tp)

Observing that u, = X, € dome and u,. = Xn+1 € domye, by the

nonexpansiveness of Tr@1 P we get

Trf(pl,q))xn-#l - Tr@ll(ﬂ)xn

l4mr = uall = | < e = Xl (3.15)

— TS(¢2r‘P)

Similarly, let v, X, € dom ¢ and vy = Ts(¢2"”)xn+1 € dom ¢, we have

ot = vall = | T 01 = TP, | <l = xall (3.16)

From z, = Pg(u, — p,Cu,) and y, = Pe(v, — 1,,Bv,), we compute

Zne1 = Znll = || Pe (uns1 = pne1Cina1) — P (ttn — pnCuiy) ||
< | (uner = pnar Cetnsr) = (un = puCutn) |
= || (ns1 = pns1 Cttsr) = (s = pus1 Citn) + (pn = pns) Cit |
< || (o1 = pni1 Cttnia) = (tn = prwsa Citn) || + [ptn = pran || Crt| (3.17)
= [|(I = pua C)ttmsa = (T = pnsr )t || + |ptn = s || Citt|
< utnsr = unll + |t = pns || Ctn|

< || xps1 — Xl + |,un _lfin+1|||cun||-
Similarly, we have

||yn+1 - ]/n” = ||Pe(Uns1 = Xns1BUns1) = Pe(vn — A Boy) ||
< [lona = onll + [An = Anaa ||| Boall (3.18)

< lxnsr = xall + [Xn = Apaa[l|Bonl-

Observing that
kn = aySikxp + bpyn + Cnzn,
(3.19)
kpi1 = ane1Skxne1 + bn+1]/n+1 + Cn+1Zn+1,
we obtain
lkns1 = knll € @ns1llSkxns1 = SkxXull + |@ns1 = @nll|Skxn|l + bri ||]/n+l - yn”
+ |bn+1 - bn|”yn” + Cn+1||zn+1 - Zn” + |Cn+1 - Cn|||zn||

(3.20)

< A1 || Xni1 — x|l + |@ns1 — anll| Skl + bn+1”yn+1 - ]/n”

+ |bn+1 - bn|”yn” + Cn+1||zn+1 - Zn” + |Cn+1 - Cn|||zn||-



14 Fixed Point Theory and Applications

Substituting (3.17) and (3.18) into (3.20), we have

lkns1 = knll < ansallxni = xXnll + |@ne1 = anll|Skxall + bpsr {13001 = x|l + [An = Apsa || Bon|[}
+ Cn+1{”xn+1 - xn” + |,un _lfln+1|||cun||} + |bn+1 - bnlllyn” + |Cn+1 - Cn|||zn||

< “xn+1 - xn” + M1(|an+1 - an| + |bn+1 - bnl + |Cn+1 - Cnl + p‘n - )Ln+1| + |,un _ﬂn+1|)/
(3.21)

where M; is an appropriate constant such that M; = max{sup,.,||Skxull, |yl [Izxll, | Boxl,
Cutall}-
Putting x,41 = (1 — Bu)ly + Pnxy, for all n > 1, we have

L T =B enrf() + (1= o)l = end)bn (3.22)

1-pn 1-pn

Then, we compute

€”+1Yf(xn+1) + ((1 _ﬂn+1)I - €n+1A)kn+1

ln+l - ln = 1- ﬂn+1
earf) + (LB - Ak,
1- pn
€n+l
= n n) + ky k,
1 _ﬁn+1 Yf(x +1) ﬁ Yf(x ) +1 — (323)
€n+1
Ak, — Ak,
1 pn - ﬂn+1 o
€n
=1z ﬁﬂ (vf(xni1) = Akpi1) + (Ak —yf(xn))
+ kn+1 - kn-
It follows from (3.21) and (3.23), that
a1 = Lall = 121 = Xl
< T (G AKual) + 12 (1Al + [ o))
+ [[kns1 = Kall = 1041 = Xal| (3.24)

€n+
<{-5 ﬁl (I f Cena) | + Ak ) + 7=

+ Ml(lanﬂ = an| + |bps1 = bul +[Cni1 = cul + [An = Apia| + |ﬂn - ,un+1|)-

g, Akl + v f Genll)
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This together with (C2), (C3), (C4), and (C6) imply that

tim sup (et — ball = %1 = xl)) < 0.
n— oo

Hence, by Lemma 2.9, we obtain ||I, — x,|| — 0asn — oo. It follows that
nlgr(}o”xnﬂ - xn” = nlgrc}o(l _ﬁn)”ln - xn” =0.
So, we also get

lim ||tpe1 — Uyl = Iim ||Ug41 — 0yl = im ||Zpe1 — 24|
n— oo n— oo n— oo

= nhl%o”]/ml - ¥l = nhjr;o”knﬂ = knll = 0.

Observe that
Xni1 = Xn = €n (Y f (xn) = Axn) + (1 = P — €aY) (kn — x)-
By condition (C2) and (3.26), we have

limy oo || — 2| = 0.

Step 5. We claim that the following statements hold:

(s1) limy, . o[y — 04l = 0;
(s2) limy, —, oo ||y — uy|| = 0;
(s3) limy, -, oo || xn — yn” =0;
(

s4) lim,, o ||y, — 24| = 0.

Indeed, pick any p € ©, to obtain
[ R e A
< <Tr(¢1’q))xn _ T,(d)l’(p)p, Xy — P>
= (= p, 0 - p)
= (U = I+l = I - B~ ).
Therefore,

|t = pII* < |0 = pII* = ll2tn = wall™

15

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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Similarly, we have
lon =PI < llxa = pII* = [l = 0all” (3.32)
Note that

s =PI = llanSks + By + ez - Il
< a5k ~pIP + bl - I + callza - pIP (339)

< aul|xa = p|I* + bullon = |l + eullua — p]-
Substituting (3.31) and (3.32) into (3.33), we obtain

lIkn = pII* < @nlln = plI* + ballon = pl + cullun - pl|
< ap||xn —p||2 + bn{ ||xn — p||2 — |lan — ’0,,||2} + cn{ | —p”2 — |lxn — un||2} (3.34)

= [lxu =PI = Bullxa = 0l = callx =
From Lemma 2.1, (3.2) and (3.34), we obtain

||x"+1 - p”Z = ||€"(Yf(xn) - AP) + ﬁn(xn - P) + ((1 - ﬁn)I - enA)(kn —P)||2
< enllyf(xn) = Ap|” + Bullxn = pII* + (1= Bu = ea?) I kn ~ pI°
< eullyf (o) = Ap||* + ullx ~ p |’
+ (1 _ﬁ" - €n7){||x" - p”Z = byllxy - ’()n”2 = cnllxn = un||2}
(3.35)
= enllyf(xn) - Ap”2 + (1—enY) || xn —p||2 ~ (1= Bu — €xY) bull2xn — vnl?
- (1 - ﬁn - €n7)cn“xn - unllz
< €"||Yf(xﬂ) - AP”2 + ”x" _P”z - (1 - ﬂn - €n]_f)bn”xn - Un||2

— (1= Bu = €xy)callXn —
It follows that

(1= B = aT) calln = wnl® < €ally £ (xn) = Ap|* + [0 = 17 = | %0e1 - I

< €n||Yf(xn) _APHZ + x4 = xn“("xn _P” + ”xn+1 _P”)
(3.36)
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From (C2), (C6), and (3.26), we also have
im [l = un | = 0. (3.37)
Similarly, using (3.35) again, we have

(1= B = €aT)bulln = vall® < €nlly £ (xn) = Ap|* + |0 = pII” = |21 — ||

< enlly f ) = Ap||” + Ixmst = 2l ([[xn = pl| + [l =D

(3.38)
From (C2), (C6), and (3.26), we also have
Him [|x, — 0| = 0. (3.39)
From (3.37) and (3.39), we have
Hm [l =] = 0. (3.40)
For p € ©, we compute
”Zn - P”z = ”PE(un = nCuy) — PE(p — 4nCp) ”2
< ” (un — .“ncun) - (P - ynCp) ”2
= ” (un - P) - ,un(cun - CP) ”2
(3.41)

< |t = pII* = 24t — p, Ctt — Cp) + i2||Cutn, - Cp||*
< lxn = pII* + ptn (= 28) || Cutn ~ Cp||*

< ot = pII* = (28 = ) | Ct — ||,
Similarly, we have

lyn =PI < llw = pI* = 40 (26 = 1) || Bow = Bp|". (342)
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Substituting (3.41) and (3.42) into (3.33), we also have

[l = pII* < aullSexn = pII + bullyn = pII* + cullza - pI

< s = pII + bu{ 0 = pII* = 102~ 1) [ Bos - Bp*}
(3.43)

+ cuf 12w = pII* = (28 = pn) || it - Cp |}

= [|xtn = pII* = badn (28 = A) | Bow = Bp||” = cuptn (28 = pta) || Cat - Cp||”.
On the other hand, we note that

201 = pII°
< enllyfxn) = Ap||* + ullxn = pII* + (1= Bu = ea?) I ~ pI°
<enllyfxn) = Apl|* + Bullxn - pI°
+ (1= Bu =~ en?){ 1 = II” = bua (2B ~ L) [|Bow — Bp||> = capen (26 — pa) | Cut - Cp |}
= enllyf () = Ap|I” + (1= €T [ = pII* = (1 = Bu — €xF)budn (26 — An) | Bon — Bp||”
— (1= Pu = €aT)Cuptn (22 = ptn) || 1t - Cp|[*
< enllyf(xn) = Ap||* + [l0 = pl|* = (1= Bu — €2¥)bakn (28— 1) || Bow — Bp|®

— (1= Bu — €nT) cuptn (22 = ) || C1tw — Cp||*.

(3.44)
It follows that
(1= B = enT)enpn (26 = pn) || Cut = Cp|®
< enllyf (xn) = Ap||” + [|xa = p[I* = |01 =PI’ (345)
< €n”Yf(xn) - APHZ +[[xn41 = xn”(”xn _P” + ||xn+1 —P")
From (C2), (C5), (C6), and (3.26), we have
lim || Cu, - Cpl| = 0. (3.46)
Thanks to (3.44), we also have
(1= P = €aT)bukn (28 = 1) || Bos - Bp*
(3.47)

< enllyf () = Ap|l” + lbewa = 2all (12w = pll + [l2wss = pI).-



Fixed Point Theory and Applications 19

From (C2), (C5), (C6), and (3.26), we obtain
Jlim ||Bo, - Bp|| = 0. (3.48)
Observe that

2
lva —pll
= ||Pe(0n = 14Bvy) - Pe(p - L,Bp) ||’
< <(I - \B)v, - (I - )‘nB)p/ Yn — P>

= {1 =By, = 1= MBI + v =PI = 1T = LB = (= B)p = (- )P

1 2 2 2
< S{llon =plI* + 1y = pI* = | (o = ) = 4u(Bow - Bp) |’}
1
< S{llxn =PI+ 1y = PI* = o = vall* = X | Bow = Bp|[* + 24 (0w =y, Bon - Bp) |,
(3.49)
and hence
2 2 2
lvn = pII” < lxn = PII” = llon = yull” + 22 ||lon = yu | [| Bow - Bp|]. (3.50)
Similarly, we can obtain that
”Zn - pllz < ”xn - P”z - ”un - Zn”z + Z#nnun - Zn” ”Cun - Cp” (3'51)
Substituting (3.50) and (3.51) into (3.33), we also have
lka = pI* < aullSixen = pII* + bullya = p1I* + cullzu - pII*
2 2 2
< anllxn=pl* + ba{ %0 = pII* = [0 = yal* + 22a ][00 = vl | Bo — Bp||}
+ Cn{ ”xn - P”2 = |lun - Zn||2 + 2pn||un — Zn||||cun - CP”} (3.52)

2 2
= [0 =PIl = ballon =yull” + 2budal|on = yu | Bon — Bp|

— Cullun — zall* + 2pp||un — zn|| ”C“n - CP”‘
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On the other hand, we have
201 = pII* < enlly f Gen) = API* + Bulln = pII* + (1 = Bu = €T en = |’

< enl|yf (xn) = Ap||* + Bl 2 - P
+ (1= Bn—e€aY) { |0 = PII* = Ballvn = yaul|* + 26wk ||on = yu || || Bow - Bp||

~Cullitn = 2> + 2pnllitn = 2| Cutn - Cp| }
= eallvf (o) = Ap|I* + (1= &) xn = II* = (1= Bu = €a?)bullon — v
+2bu (1~ P~ €T Anl|on = yull[|Bow = Bpl| = (1 = u — enT) cnllttn = zal?
+2¢n (1 = Bn = €nY) pnllttn = zull || Cun = Cp||
< enllyf @) = Ap||” + |2 = p[I” = (1= Bu — &) bullon = vl
+2by (1= P~ €¥)Anl|on = yull | Bow = Bpl| = (1 = Bu — €nY) culltn — zall®
+20,(1 = B = € pallttn = 2all[| Cu - Cp|

(3.53)

and hence

(1= Bu = eaV)bul|on = yull” < enlly f () = Apl|* + [lxu = pl|”* = |01 = pI°
+2b, (1 = B — €x¥) An||0n — Y| | Bon - Bp||
+2¢, (1 = Pn = €aY) |t = za||Cuine = Cpl|
< enllyf (en) = Al + 11 = xull ([0 = p|| + || 2001 - ||
+2by (1= P = €a¥) Ao = vl | Bow - Bp||

+ 2cn(1 —Pn— En?)ﬂn””n = Zy|| “Cu" - Cp”.
(3.54)

From (C2), (C6), (3.26), (3.46), and (3.48), we also have

lim [|o, - ya| = 0. (3.55)
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Similarly, using (3.53) again, we can prove

Tim Ju, = z,]| = 0. (356)

From (3.39) and (3.55), we also have

Jijr;o||xn -va|l =0. (3.57)
From (3.37) and (3.56), we have
Jim [|x, =z, = 0. (3.58)

Step 6. We claim that limsup, ,_((A-yf)q,9—-x,) <0, where g = Po(I - A+7yf)(q) is the
unique solution of the variational inequality ((A-yf)g,x —¢q) >0, forall x € ©.
To show this inequality, we choose a subsequence {x,,} of {x,} such that

limsup((A -yf)q,q - xa) = im ((A -yf)q,q - xu,)- (3.59)

n—oo

Since {x,, } is bounded, there exists a subsequence {xnij } of {x,,} which converges weakly to
z € E. Without loss of generality, we can assume that x,, — z. We claim that z € ©.

(al) First, we prove that z € F(S) N VI(E,C) n VI(E, B).

Assume also that A, — A€ [d,2f] and p, — p € [e, 2¢].

Define a mapping Q : E — E by

Qx = aSkx +bPg(1 - uC)x +cPg(1-AB)x, Vx€E, (3.60)

where lim,,_, ,a, = a, lim,_ b, = b, and lim,,_, ¢, = ¢, for some a,b,c € (0,1). From
Lemma 2.5, we have that Q is nonexpansive with

F(Q) = F(Sk) N F(Pe(1 - uC)) N F(Pe(1 - AB)) = F(S) NVI(E,C) NVI(E,B).  (3.61)
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Notice that

(1€, — x|

< 1L = ke[ + [l kn — x|

< ||[aSkxn + bPe(1 = AB)xy, + cPe(1 = uC)xp] = [anSkcXn + buyn + cnza || + llkn — x4l

<la = anl||Skxnll + [|bPe(I = AB) Xy — by Pe(I = 1 B) x|
+ |buPe(I = AuB)xy = by Pp(I = AuB) vyl + ||cPe(I = pC)xn — cnPe(1 = pnC) x4 ||
+ ||enPe(I = pnB)xy — cuPe(I = pnC) ity || + [lkn — x|

< la = an|l|Skxall + [b = byl [|xnll + [Budn — BA[|Bx|| + |c = call|xull + |cnptn — cp| |Cxall
+ byl xn = Ol + cnllxn — Unl| + [|kn — x4l

< Ki(Ja—an| + b= by| + |c = cal + [DA = by | + |cpt = Capin])

+ bpllxn = vall + cullxn — uall + [lkn — x4l

(3.62)
where K; is an appropriate constant such that
Ky = max{sup||xn||, sup||Bxy, ||, sup||Cx,||, sup||Skxxl| } (3.63)
n>1 n>1 n>1 n>1
From (C6), (3.37), (3.39), and (3.29), we obtain
Tim flx, = Quxy|| = 0. (3.64)
By Lemma 2.4, we have z € F(Q), thatis, z € F(S) N VI(E,C) N VI(E, B).
(a2) Now, we prove that z € F(S) " MEP(¢1, ) N MEP(¢2, ).
Define a mapping Q : E — E by
Ox =aSgx + bT,@l"P)x + cTs(d’z’(‘o)x, Vx € E, (3.65)

where lim,, . a, = a, lim,_ b, = b, and lim,,_, ¢, = ¢, for some a,b,c € (0,1). From
Lemma 2.5, we have that Q is nonexpansive with

F(Q) = F(SK) N F(Tf‘i’l'“’)) N F(Ts(‘i’“")) = F(S) NMEP(¢1,¢) 0 (¢2, ). (3.66)
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On the other hand, we have

1Qxy — xull < 1|Qxn — knll + |lkn — x4l|

< [|[aSwxn + BT, + TP, ]  [nSictn + b+ cuzal | + s — 0
< la = aull1Sxxall + [bl| T x| + [el|[ T,
+ by = B[ Pe(I = \uB)vul| + len = ||| Pe (I = ptnC )t |
+|bl[|PE(I = Ay B)vnl| + ||| Pe(I = punC)utn| + [1kn = x|
< Ka(|a—an| + b =by| + |c = ca| + 21| + 2|c|) + ||kn — xall,
(3.67)

where Kj is an appropriate constant such that

K> = max{ sup Tr@l"”)xn ,sup Ts((i)z"p)xn ,sup||Skxall,
n>1 n>1 n>1
sup{ || 7", | + 1Pe (1 = LuB)oull}, sup{ | 7277 x, | + ||PE(I—‘unC)un||}}.
n>1 n>1
(3.68)
From (C6) and (3.29), we obtain
lim ||x;, — Qx,|| = 0. (3.69)
n— oo

Since Po(I — A+ yf)(g) is a contraction with the coefficient & € (0, 1), there exists a unique
fixed point. We use g to denote the unique fixed point to the mapping Po(I — A +7yf)(q), that
is, g = Po(I - A+ yf)(q). Since {x,,} is bounded, There exists a subsequence {x,,} of {x,}
which converges weakly to z. Without loss of generality, we may assume that {x,, } — z. It
follows from (3.69), that

Jim [|acs, = Qoxy || = 0. (3.70)

It follows from Lemma 2.4, we obtain that z € F(Q). Hence z € ©, where © := F(S) N
VI(E,C) N VI(E, B) N MEP(¢1, ) " MEP(¢y, ¢). From (3.59) and (2.4), we arrive at

limsup((A -yf)q,q - xn) = limsup((A-yf)q,q - xu)
nmee nmee (3.71)

=((A-yf)q,9-z)<0.
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On the other hand, we have

((A=yf)q,q-xn1) = ((A=7f)q %0 = Xn1) + (A= vf)q, 9~ xa)

(3.72)
<[[(A=yF)alllen = xnaall + (A =vf)4,q = xn)-
From (3.26) and (3.71), we obtain that
limsup((A-yf)q,9 - xn1) <0. (3.73)

n—oo

Step 7. We claim that lim,, _, || x, — g| = 0.
Indeed, by (3.2) and using Lemmas 2.2 and 2.11, we observe that

et = 2P = [|ent £ () + Buitn + (1= B)] — enAVkn — ]|

((A-Pu)I - ent)
(1=Pn)

+2e,(yf (xn) — Aq, Xni1 — q)

((1=pu)I-enA)
e

+2eny{f(xn) = £(q), Xne1 = q) + 262y f(q) — AG, X1 — q)

(A= pu)I - enA)
1-p6,

+2eqyalxn = q||[[xn1 - q|| + 2ea(yf(q) - Aq, X041 - q)

2
< ||(1_ﬁ")1_€"A|| ”kn
S 1 _ﬂn

+ enya( [l = qll* + |21 - ll*) +264(yf (9) = Aq X1 = )

(1= BT - enA|)? 2 )
< e [0 = q|” + Bu||xn — 4|

2
<

(1= pn)

(kn = ) + Bu(xn = q)

2

< (1-B) ~q)|| +Bullxn -4l

2
+Pullxn ~ gl

S (1 - ﬁn) (kn—q)

2 2
=4|I” + Pullxn 4

+ enya([lxn = qll* + [l %1 = qlI*) +2a(rf (a) - Aq, X1 — q)
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— -Yén 2
S<<(1 f"-)pnY ) +pn+enya>||xn—51“2

+ enya||xnet - q||* +2ea(yf (q) - Aq, X1 - q)

v 2
< (1-@r-mers % -l

+ enyal|xan - ql|” + 2ex(yf (4) = Aq, x0:1 - q)

(3.74)
which implies that
2(y —ay)e,
b= < (1- X200 Y g
(3.75)
i T g ey ) - 4
T aye, | 1= p, 1%~ all" +2en(rf (@) = Aq X0 =) -
Taking
- LT 26,07 (a) - Ag e a)
On = 1-aye, | 1-pn =4 enrf (4 e A (376)
_2(F-ape,
" l-aye,
Then we can rewrite (3.75) as
1241 — Z”2 < (1 - Qn)“xn - Z||2 + On. (3.77)

We have limsup, ., (0,/¢,) < 0. Applying Lemma 2.10 to (3.77), we conclude that {x,}
converges strongly to g in norm. This completes the proof. O

If the mapping S is nonexpansive, then Sy = Sp = S. We can obtain the following result
from Theorem 3.1 immediately.

Corollary 3.2. Let E be a nonempty closed convex subset of a real Hilbert space H. Let ¢1 and ¢, be
two bifunction from E x E to R satisfying (A1)—(A4) and let ¢ : E — R U {+o0} be a proper lower
semicontinuous and convex function. Let C : E — H be an ¢é-inverse strongly monotone mapping
and B : E — H be an p-inverse strongly monotone mapping. Let f : E — E be a contraction
mapping with coefficient & (0 < a < 1) and let A be a strongly positive linear bounded operator on H
with coefficient y > 0and 0 <y <y/a. Let S : E — E a nonexpansive mapping with a fixed point.
Assume that

© := F(S) N VI(E, C) N VI(E, B) " MEP(¢1, ) N MEP(¢ha, ) # 0. (3.78)
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Assume that either (B1) or (B2). Let {x,,} be a sequence generated by the following iterative algorithm:

x1€E, u,€E, v,€E,
Uy = T, x,,
on =T x,,
Zn = Pe(ty — puCuiy), (3.79)
Yn = Pe(vy — ABoy,),
kn = anSxy, + byyy + cnzy,
Xne1 = €nY f(xn) + Prxn + (1= )] - €2A)kn, Vn>1,

where {€,}, {Pn}, {an}, {bn}, and {c,} are sequences in (0,1) and {1}, { i} are positive sequences.
Assume that the control sequences satisfy the following restrictions:

(Cl)a,+b,+c,=1,

(C2) limy,—, o€ = 0and 3771 €y = 00,

(C3) 0 < liminf, ., f, <limsup, ,_p. <1,

(C4) Timy oot = Aol = iy olptnet = il =0,

(C5) d <Ay 2B, e < py < 2¢, where d, e are two positive constants,

(C6) limy, _, pa, = a, lim, _, ,b, = b and lim, _, ,c, = ¢, for some a,b,c € (0,1).

Then, {x,} converges strongly to a point q € © which is the unique solution of the variational
inequality

((A-yf)gx—q)>0, Vxe€© (3.80)

or equivalent q = Po(I — A +yf)(q), where P is a metric projection mapping form H onto ©.

Finally, we consider the following convex feasibility problem (CFP):

N
finding an x € ﬂCi, (3.81)

i=1

where N > 1 is an integer and each C; is assumed to be the of solutions of equilibrium
problem with the bifunction ¢;, i = 1,2,3,...,N and the solution set of the variational
inequality problem. There is a considerable investigation on CEP in the setting of Hilbert
spaces which captures applications in various disciplines such as image restoration [42, 43],
computer tomography [44], and radiation therapy treatment planning [45].

The following result can be concluded from Theorem 3.1 easily.

Theorem 3.3. Let E be a nonempty closed convex subset of a real Hilbert space H. Let be a ¢;
bifunction from E x E to R satisfying (A1)—(A4) and let ¢ : E — R U {+oo} be a proper lower
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semicontinuous and convex function. Let C; : E — H be an &;-inverse strongly monotone mapping
foreachi€ {1,2,3,...,N}. Let f : E — E be a contraction mapping with coefficient a (0 < a < 1)
and let A be a strongly positive linear bounded operator on H with coefficient y > 0and 0 <y <y/a.
Let S: E — E be a k-strict pseudo-contraction with a fixed point. Define a mapping Sk : E — E by
Skx = kx + (1 -k)Sx, for all x € E. Assume that

N N
F:=F(S)n <ﬂ VI(E, cl-)) N <ﬂ MEP(¢;, (p)> #0. (3.82)
i=1

i=1
Assume that either (B1) or (B2). Let {x,,} be a sequence generated by the following iterative algorithm:

X1 € E, Uyi € E,

1 .
i (Ui, ui) + (1) — (un,;) + ;(ui — Ui, Uni—Xn) >0, Yu; €E, Vie(1,2,3,...,N},

1

N
k, = an,OSkxn + Zan,iPE (un,i - ,un,iciun,i)/
i=1

X1 = EnY f (Xn) + Puxn + (1= Bu)I — €,A)ky, Vm>1,
(3.83)

where a0, Xn1, Xn2, Ans, ..., &y N € (0,1) such that Zf\:fo ani =1, {p,;} are positive sequences and
{en}, {Pn} are sequences in (0,1). Assume that the control sequences satisfy the following restrictions:

(C1) limy,—, o€ = 0and 3771 €y = 00,

(C2) 0 < liminf, o f, <limsup, ,_ pn <1,

)

)
(C3) limy - oo|ns1i — pnil = 0, foreach 1 <i < N,
(C4) e; < pn,; < 2¢;, where e; is some positive constant for each 1 <i < N,
)

(C5) limy, —, oty = a; € (0,1), foreach 1 <i < N.

Then, {x,} converges strongly to a point q € S which is the unique solution of the variational
inequality

((A-yf)gx-q)>0, Vxe¥ (3.84)

or equivalent q = Pg(I — A +y f)(q), where P is a metric projection mapping form H onto .
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