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We introduced a new iterative scheme for finding a common element in the set of common fixed
points of a finite family of quasi-φ-nonexpansive mappings, the set of common solutions of a finite
family of equilibrium problems, and the set of common solutions of a finite family of variational
inequality problems in Banach spaces. The proof method for the main result is simplified under
some new assumptions on the bifunctions.

1. Introduction

Throughout this paper, let R denote the set of all real numbers. Let E be a smooth Banach
space and E∗ the dual space of E. The function φ : E × E → R is defined by

φ
(
x, y

)
= ‖x‖2 − 〈

y, Jx
〉
+
∥∥y

∥∥2
, ∀x, y ∈ E, (1.1)

where J is the normalized dual mapping from E to E∗ defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E. (1.2)
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Let C be a nonempty closed and convex subset of E. The generalized projectionΠ : E → C is
a mapping that assigns to an arbitrary point x ∈ E the minimum point of the function φ(x, y),
that is, ΠCx = x̂, where x̂ is the solution to the minimization problem

φ(x̂, x) = inf
z∈C

φ(z, x). (1.3)

In Hilbert spaces, φ(x, y) = ‖x − y‖2 and ΠC = PC, where PC is the metric projection. It is
obvious from the definition of function φ that

(∥∥y
∥
∥ − ‖x‖)2 ≤ φ

(
y, x

) ≤ (∥∥y
∥
∥ + ‖x‖)2, ∀x, y ∈ E. (1.4)

We remark that if E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E,
φ(x,y) = 0 if and only if x = y. For more details on φ andΠ, the readers are referred to [1–4].

Let T be a mapping from C into itself. We denote the set of fixed points of T by F(T). T
is called to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C and quasi-nonexpansive
if F(T)/= ∅ and ‖x − Ty‖ ≤ ‖x − y‖ for all x ∈ F(T) and y ∈ C. A point p ∈ C is called to be
an asymptotic fixed point of T [5] if C contains a sequence {xn}which converges weakly to p

such that limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed points of T is denoted by F̂(T).
The mapping T is said to be relatively nonexpansive [6–8] if F̂(T) = F(T) and φ(p, Tx) ≤
φ(p, x) for all x ∈ C and p ∈ F(T). The mapping T is said to be φ-nonexpansive if φ(Tx, Ty) ≤
φ(x, y) for all x, y ∈ C. T is called to be quasi-φ-nonexpansive [9] if F(T)/= ∅ and φ(p, Tx) ≤
φ(p, x) for all x ∈ C and p ∈ F(T).

In 2005, Matsushita and Takahashi [10] introduced the following algorithm:

x0 = x ∈ C,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = PCn∩Qnx, ∀n ≥ 0,

(1.5)

where J is the duality mapping on E, T is a relatively nonexpansive mapping from C into
itself, and {αn} is a sequence of real numbers such that 0 ≤ αn < 1 and lim supn→∞αn < 1 and
proved that the sequence {xn} generated by (1.5) converges strongly to PF(T)x, where PF(T) is
the generalized projection from C onto F(T).

Let f be a bifunction from C × C to R. The equilibrium problem for f is to find p ∈ C
such that

f
(
p, y

) ≥ 0, ∀y ∈ C. (1.6)

We use EP(f) to denote the solution set of the equilibrium problem (1.6). That is,

EP
(
f
)
=
{
p ∈ C : f

(
p, y

) ≥ 0, ∀y ∈ C
}
. (1.7)
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For studying the equilibrium problem, f is usually assumed to satisfy the following condi-
tions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, lim supt→ 0f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, y → f(x, y) is convex and lower semicontinuous.

Recently, many authors investigated the equilibrium problems in Hilbert spaces or Banach
spaces; see, for example, [11–25]. In [20], Qin et al. considered the following iterative scheme
by a hybrid method in a Banach space:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1
(

αn,0Jxn +
N∑

i=1

αn,iJTixn

)

,

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x0,

(1.8)

where Ti : C → C is a closed quasi-φ-nonexpansive mapping for each i ∈ {1, 2, . . . ,N},
αn,0, {αn,1}, . . . , {αn,N} are real sequences in (0, 1) satisfying

∑N
j=0 αn,j = 1 for each n ≥ 1 and

lim infn→∞αn,0αn,i > 0 for each i ∈ {1, 2, . . . ,N} and {rn} is a real sequence in [a,∞)with a > 0.
Then the authors proved that {xn} converges strongly toΠFx0, where F =

⋂N
i=1 F(Ti)∩EP(f).

Very recently, Zegeye and Shahzad [25] introduced a new scheme for finding an
element in the common fixed point set of finite family of closed relatively quasi-nonexpansive
mappings, common solutions set of finite family of equilibrium problems, and common
solutions set of finite family of variational inequality problems for monotone mappings in a
Banach space.More precisely, let fi : C×C → R, i = 1, 2, . . . , L, be a finite family of bifunctions,
Sj : C → C, j = 1, . . . , D, a finite family of relatively quasi-nonexpansive mappings, and
Ai : C → E∗, i = 1, 2, . . . ,N, a finite family of continuous monotone mappings. For x ∈ E,
define the mappings Frn , Trn : E → C by

Frnx =
{
z ∈ C :

〈
y − z,Anz

〉
+

1
rn

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
,

Trnx =
{
z ∈ C : fn

(
z, y

)
+

1
rn

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
,

(1.9)
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where An = An(modN), fn = fn(modL) and rn ⊂ [c1,∞) for some c1 > 0. Zegeye and Shahzad
[25] introduced the following scheme:

x0 ∈ C0 = C chosen arbitrarily,

zn = Frnxn,

un = Trnxn,

yn = J−1(α0Jxn + α1Jzn + α2JSnun),

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

) ≤ φ(z, xn)
}
,

xn+1 = ΠCn+1x0,

(1.10)

where Sn = Sn(modD), α0, α1, α2 ∈ (0, 1) such that α0 + α1 + α2 = 1. Further, they proved
that {xn} converges strongly to an element of F, where F = [

⋂D
j=1 F(Sj)] ∩ [

⋂N
i=1 VI(C,Ai)] ∩

[
⋂L

l=1 EP(fl)].
In this paper, motivated and inspired by the iterations (1.8) and (1.10), we consider

a new iterative process with a finite family of quasi-φ-nonexpansive mappings for a finite
family of equilibrium problems and a finite family of variational inequality problems in a
Banach space. More precisely, let {Si}N1

i=1 : C → C be a family of quasi-φ-nonexpansive
mappings, {fi}N2

i=1 : C × C → R a finite family of bifunctions, and {Ai}N3
i=1 : C → E∗ a

finite family of continuous monotone mappings such that F = [
⋂N1

i=1 F(Si)] ∩ [
⋂N2

i=1 EP(fi)] ∩
[
⋂N3

i=1 VI(C,Ai)]/= ∅. Let {r1,i}N2
i=1 ⊂ (0,∞) and {r2,i}N3

i=1 ⊂ (0,∞). Define the mappings Tr1,i ,
Fr2,i : E → C by

Tr1,ix =
{
z ∈ C : fi

(
z, y

)
+

1
r1,i

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, i = 1, . . . ,N2, (1.11)

Fr2,ix =
{
z ∈ C :

〈
y − z,Aiz

〉
+

1
r2,i

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, i = 1, . . . ,N3. (1.12)

Consider the iteration

x1 ∈ C chosen arbitrarily,

yn = J−1
(

α0Jxn + α1

N1∑

i=1

λ1,iJSixn + α2

N2∑

i=1

λ2,iJTr1,ixn + α3

N3∑

i=1

λ3,iJFr2,ixn

)

,

Cn =
{
v ∈ C : φ

(
v, yn

) ≤ φ(v, xn)
}
,

Dn =
n⋂

i=1

Ci,

xn+1 = ΠDnx1, n ≥ 1,

(1.13)

where α0, α1, α2, α3 are the real numbers in (0, 1) satisfying α0 + α1 + α2 + α3 = 1 and for each
j = 1, 2, 3, λj,1, . . . , λj,Nj are the real numbers in (0, 1) satisfying

∑Nj

i=1 λj,i = 1. We will prove that
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the sequence {xn} generated by (1.13) converges strongly to an element in F. In this paper,
in order to simplify the proof, we will replace the condition (A3) with (A3’): for each fixed
y ∈ C, f(·, y) is continuous.

Obviously, the condition (A3’) implies (A3). Under the condition (A3’), we will show
that each Tr1,i (as well as Fr2,j , i = 1, . . . ,N2, j = 1, . . . ,N3) is closed which is such that the proof
for the main result of this paper is simplified.

2. Preliminaries

The modulus of smoothness of a Banach space E is the function ρE : [0,∞) → [0,∞) defined
by

ρE(τ) = sup

{∥
∥x + y

∥
∥ +

∥
∥x − y

∥
∥

2
− 1 : ‖x‖ = 1;

∥∥y
∥∥ = τ

}

. (2.1)

The space E is said to be smooth if ρE(τ) > 0, for all τ > 0, and E is called uniformly smooth
if and only if limτ → 0+ρE(τ)/τ = 0.

A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x /=y. It is said to be uniformly convex if limn→∞‖xn − yn‖ = 0 for any
two sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞‖(xn + yn)/2‖ = 1.
It is known that if a Banach space E is uniformly smooth, then its dual space E∗ is uniformly
convex.

A Banach space E is called to have the Kadec-Klee property if for any sequence {xn} ⊂
E and x ∈ E with xn ⇀ x, where ⇀ denotes the weak convergence, and ‖xn‖ → ‖x‖, then
xn − x → 0 as n → ∞, where → denotes the strong convergence. It is well known that
every uniformly convex Banach space has the Kadec-Klee property. For more details on the
Kadec-Klee property, the reader is referred to [3, 4].

Let C be a nonempty closed and convex subset of a Banach space E. A mapping S :
C → C is said to be closed if for any sequence {xn} ⊂ C such that limn→∞xn = x0 and
limn→∞Sxn = y0, Sx0 = y0.

LetA : D(A) ⊂ E → E∗ be amapping.A is said to bemonotone if for each x, y ∈ D(A),
the following inequality holds:

〈
x − y,Ax −Ay

〉 ≥ 0. (2.2)

Let A be a monotone mapping from C into E∗. The variational inequality problem on A is
formulated as follows:

find a point u ∈ C such that 〈v − u,Au〉 ≥ 0, ∀v ∈ C. (2.3)

The solution set of the above variational inequality problem is denoted by VI(C,A).
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Next we state some lemmas which will be used later.

Lemma 2.1 (see [1]). Let C be a nonempty closed and convex subset of a smooth Banach space E and
x ∈ E. Then, x0 = ΠCx if and only if

〈
x0 − y, Jx − Jx0

〉 ≥ 0 ∀y ∈ C. (2.4)

Lemma 2.2 (see [1]). Let E be a reflexive, strictly convex and smooth Banach space, C a nonempty
closed and convex subset of E, and x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

)
, ∀y ∈ C. (2.5)

Lemma 2.3 (see [20]). Let E be a strictly convex and smooth Banach space, C a nonempty closed
and convex subset of E, and T : C → C a quasi-φ-nonexpansive mapping. Then F(T) is a closed and
convex subset of C.

Since the condition (A3’) implies (A3), the following lemma is a natural result of [22,
Lemmas 2.8 and 2.9].

Lemma 2.4. Let C be a closed and convex subset of a smooth, strictly convex and reflexive Banach
space E. Let f be a bifunction from C × C → R satisfying (A1), (A2), (A3’), and (A4). Let r > 0 and
x ∈ E. Then

(a) there exists z ∈ C such that

f
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C; (2.6)

(b) define a mapping Tr : E → C by

Trx =
{
z ∈ C : f

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
. (2.7)

Then the following conclusions hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for all x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
; (2.8)

(3) F(Tr) = EP(f);

(4) Tr is quasi-φ-nonexpansive;

(5) EP(f) is closed and convex;

(6) φ(p, Trx) + φ(Trx, x) ≤ φ(p, x), for all p ∈ F(Tr).



Fixed Point Theory and Applications 7

Remark 2.5. Let A : C → E∗ be a continuous monotone mapping and define f(x, y) = 〈y −
x,Ax〉 for all x, y ∈ C. It is easy to see that f satisfies the conditions (A1), (A2), (A3’), and
(A4) and EP(f) = VI(C,A). Hence, for every real number r > 0, if defining a mapping Fr :
E → C by

Frx =
{
z ∈ C :

〈
y − z,Az

〉
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, (2.9)

then Fr satisfies all the conclusions in Lemma 2.4. See [25, Lemma 2.4].

Lemma 2.6 (see [26]). Let p > 1 and s > 0 be two fixed real numbers. Then a Banach space E is
uniformly convex if and only if there exists a continuous strictly increasing convex function g : [0,∞)
with g(0) = 0 such that

∥∥λx + (1 − λ)y
∥∥p ≤ λ‖x‖p + (1 − λ)

∥∥y
∥∥2 −wp(λ)g

(∥∥x − y
∥∥) (2.10)

for all x, y ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s} and λ ∈ [0, 1], where wp(λ) = λp(1 − λ) + λ(1 − λ)p.

The following lemma can be obtained from Lemma 2.6 immediately; also see [20,
Lemma 1.9].

Lemma 2.7 (see [20]). Let E be a uniformly convex Banach space, s > 0 a positive number, and Bs(0)
a closed ball of E. There exists a continuous, strictly increasing and convex function g : [0,∞) with
g(0) = 0 such that

∥∥∥∥∥

N∑

i=1

αixi

∥∥∥∥∥

2

≤
N∑

i=1

αi‖xi‖2 − αjαkg
(∥∥xj − xk

∥∥), j, k ∈ {1, 2, . . . ,N} with j /= k (2.11)

for all x1, x2, . . . , xN ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s} and α1, α2, . . . , αN ∈ [0, 1] such that
∑N

i=1 αi = 1.

Lemma 2.8. Let C be a closed and convex subset of a uniformly smooth and strictly convex Banach
space E. Let f : C × C → R be a bifunction satisfying (A1), (A2), (A3’), and (A4). Let r > 0 and
Tr : E → C be a mapping defined by (2.7). Then Tr is closed.

Proof. Let {xn} ⊂ E converge to x′ and {Trxn} converge to x̂. To end the conclusion, we need
to prove that Trx′ = x̂. Indeed, for each xn, Lemma 2.4 shows that there exists a unique zn ∈ C
such that zn = Trxn, that is,

f
(
zn, y

)
+
1
r

〈
y − zn, Jzn − Jxn

〉 ≥ 0, ∀y ∈ C. (2.12)
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Since E is uniformly smooth, J is continuous on bounded set (note that {xn} and {zn} are
both bounded). Taking the limit as n → ∞ in (2.12), by using (A3’), we get

f
(
x̂, y

)
+
1
r

〈
y − x̂, Jx̂ − Jx′〉 ≥ 0, ∀y ∈ C, (2.13)

which implies that Trx′ = x̂. This completes the proof.

3. Main Results

Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E which has the Kadec-Klee property. Let {Si}N1

i=1 : C → C be a family of closed
quasi-φ-nonexpansive mappings, {fi}N2

i=1 : C × C → R a finite family of bifunctions satisfying the
conditions (A1), (A2), (A3’), and (A4), and {Ai}N3

i=1 : C → E∗ a finite family of continuous monotone
mappings such that F = [

⋂N1
i=1 F(Si)] ∩ [

⋂N2
i=1 EP(fi)] ∩ [

⋂N3
i=1 VI(C,Ai)]/= ∅. Let {r1,i}N2

i=1, {r2,i}N3
i=1 ⊂

(0,∞). Let {xn} be a sequence generated by the following manner:

x1 ∈ C chosen arbitrarily,

zn =
N1∑

i=1

λ1,iJSixn,

un =
N2∑

i=1

λ2,iJTr1,ixn,

wn =
N3∑

i=1

λ3,iJFr2,ixn,

yn = J−1(α0Jxn + α1zn + α2un + α3wn),

Cn =
{
z ∈ C : φ

(
v, yn

) ≤ φ(v, xn)
}
,

Dn =
n⋂

i=1

Ci,

xn+1 = ΠDnx1, n ≥ 1,

(3.1)

where Tr1,i(i = 1, 2, . . . ,N2) and Fr2,j (j = 1, 2, . . . ,N3) are defined by (1.11) and (1.12), α0, α1, α2, α3

are the real numbers in (0, 1) satisfying α0 + α1 + α2 + α3 = 1 and for each j = 1, 2, 3, λj,1, . . . , λj,Nj

are the real numbers in (0, 1) satisfying
∑Nj

i=1 λj,i = 1. Then the sequence {xn} converges strongly to
ΠFx1, whereΠF is the generalized projection from E onto F.

Proof. First we prove that Dn is closed and convex for each n ≥ 1. From the definition of Cn,
it is obvious that Cn is closed. Moreover, since φ(v, yn) ≤ φ(v, xn) is equivalent to 2〈v, Jxn −
Jyn〉 − ‖xn‖2 + ‖yn‖2 ≥ 0, it follows that Cn is convex for each n ≥ 1. By the definition of Dn,
we can conclude that Dn is closed and convex for each n ≥ 1.
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Next, we prove that F ⊂ Dn for each n ≥ 1. From Lemma 2.4 and Remark 2.5, we see
that each Tr1,i (i = 1, 2, . . . ,N2) and Fr2,j (j = 1, 2, . . . ,N3) are quasi-φ-nonexpansive. Hence, for
any p ∈ F, we have

φ
(
p, yn

)
= φ

(
p, J−1(α0Jxn + α1zn + α2un + α3wn)

)

=
∥
∥p

∥
∥2 − 2

〈
p, α0Jxn + α1zn + α2un + α3wn

〉
+ ‖α0Jxn + α1zn + α2un + α3wn‖2

≤ ∥
∥p

∥
∥2 − 2α0

〈
p, Jxn

〉 − 2α1
〈
p, zn

〉 − 2α2
〈
p, un

〉

− 2α3
〈
p,wn

〉
+ α0‖xn‖2 + α1‖zn‖2 + α2‖un‖2 + α3‖wn‖2

≤ ∥
∥p

∥
∥2 − 2α0

〈
p, Jxn

〉 − 2α1

N1∑

i=1

λ1,i
〈
p, JSixn

〉 − 2α2

N2∑

i=1

λ2,i
〈
p, JTr1,ixn

〉

− 2α3

N3∑

i=1

λ3,i
〈
p, JFr2,ixn

〉
+ α0‖xn‖2 + α1

N1∑

i=1

λ1,i‖JSixn‖2

+ α2

N2∑

i=1

λ2,i
∥∥JTr1,ixn

∥∥2 + α3

N3∑

i=1

λ3,i
∥∥JFr2,ixn

∥∥2

= α0φ
(
p, xn

)
+ α1

N1∑

i=1

λ1,iφ
(
p, Sixn

)
+ α2

N2∑

i=1

λ2,iφ
(
p, Tr1,ixn

)

+ α3

N3∑

i=1

λ3,iφ
(
p, Fr2,ixn

)

≤ α0φ
(
p, xn

)
+ α1

N1∑

i=1

λ1,iφ
(
p, xn

)
+ α2

N2∑

i=1

λ2,iφ
(
p, xn

)

+ α3

N3∑

i=1

λ3,iφ
(
p, xn

)

= φ
(
p, xn

)
,

(3.2)

which implies that F ⊂ Cn for each n ≥ 1. So, it follows from the definition of Dn that F ⊂ Dn

for each n ≥ 1. Therefore, the sequence {xn} is well defined. Also, from Lemma 2.2 we see
that

φ(xn+1, x1) = φ(ΠDnx1, x1) ≤ φ
(
p, x1

) − φ
(
p, xn+1

) ≤ φ
(
p, x1

)
, (3.3)

for each p ∈ F. This shows that the sequence {φ(xn, x1)} is bounded. It follows from (1.4) that
the sequence {xn} is also bounded.
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Since E is reflexive, we may, without loss of generality, assume that xn ⇀ x∗. Since Dn

is closed and convex for each n ≥ 1, we can conclude that x∗ ∈ Dn for each n ≥ 1. By the
definition of {xn}, we see that

φ(xn, x1) ≤ φ(x∗, x1). (3.4)

It follows that

φ(x∗, x1) ≤ lim inf
n→∞

φ(xn, x1) ≤ lim sup
n→∞

φ(xn, x1) ≤ φ(x∗, x1). (3.5)

This implies that

lim
n→∞

φ(xn, x1) = φ(x∗, x1). (3.6)

Hence, we have ‖xn‖ → ‖x∗‖ as n → ∞. In view of the Kadec-Klee property of E, we get
that

lim
n→∞

xn = x∗. (3.7)

By the construction of Dn, we have that Dn+1 ⊂ Dn and xn+2 = ΠDn+1x1 ⊂ Dn. It follows
from Lemma 2.2 that

φ(xn+2, xn+1) = φ(xn+2,ΠDnx1)

≤ φ(xn+2, x1) − φ(ΠDnx1, x1)

= φ(xn+2, x1) − φ(xn+1, x1).

(3.8)

Letting n → ∞, we obtain that φ(xn+2, xn+1) → 0. In view of xn+1 ∈ Dn =
⋂n

i=1 Cn, we have
xn+1 ∈ Cn and hence

φ
(
xn+1, yn

) ≤ φ(xn+1, xn). (3.9)

It follows that

lim
n→∞

φ
(
xn+1, yn

)
= 0. (3.10)

From (1.4), we see that

∥∥yn

∥∥ −→ ‖x∗‖ as n → ∞. (3.11)
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Hence,

∥
∥Jyn

∥
∥ −→ ‖Jx∗‖ as n → ∞. (3.12)

This implies that the sequence {Jyn} is bounded. Note that reflexivity of E implies reflexivity
of E∗. Thus, we may assume that Jyn ⇀ y ∈ E∗. Furthermore, reflexivity of E implies that
there exists x ∈ E such that y = Jx. Then, it follows that

φ
(
xn+1, yn

)
= ‖xn+1‖2 − 2

〈
xn+1, Jyn

〉
+
∥
∥yn

∥
∥2

= ‖xn+1‖2 − 2
〈
xn+1, Jyn

〉
+
∥
∥Jyn

∥
∥2
.

(3.13)

Take lim inf on both sides of (3.13) over n and use weak lower semicontinuity of norm to get
that

0 ≥ ‖x∗‖2 − 2
〈
x∗, y

〉
+
∥∥y

∥∥2

= ‖x∗‖2 − 2〈x∗, Jx〉 + ‖Jx‖2

= ‖x∗‖2 − 2〈x∗, Jx〉 + ‖x‖2

= φ(x∗, x),

(3.14)

which implies that x∗ = x. Hence, y = Jx∗. It follows that Jyn ⇀ Jx∗. Now, from (3.12) and
Kadec-Klee property of E∗, we obtain that Jyn → Jx∗ as n → ∞. Then the demicontinuity of
J−1 implies that yn ⇀ x∗. Now, from (3.11) and the fact that E has the Kadec-Klee property,
we obtain that limn→∞yn = x∗. Note that

∥∥xn − yn

∥∥ ≤ ‖xn − x∗‖ + ∥∥x∗ − yn

∥∥. (3.15)

It follows that

lim
n→∞

∥∥xn − yn

∥∥ = 0. (3.16)

Since J is uniformly norm-to-norm continuous on any bounded sets, we have

lim
n→∞

∥∥Jxn − Jyn

∥∥ = 0. (3.17)
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Since E is uniformly smooth, we know that E∗ is uniformly convex. In view of
Lemma 2.7, we see that, for any p ∈ F,

φ
(
p, yn

)
= φ

(
p, J−1(α0Jxn + α1zn + α2un + α3wn)

)

=
∥
∥p

∥
∥2−2〈p, α0Jxn +α1zn +α2un + α3wn

〉
+ ‖α0Jxn + α1zn + α2un + α3wn‖2

≤ ∥
∥p

∥
∥2 − 2

〈
p, α0Jxn + α1zn + α2un + α3wn

〉
+ α0‖xn‖2 + α1

N1∑

i=1

λ1,i‖Sixn‖2

+ α2

N2∑

i=1

λ2,i
∥
∥Tr1,ixn

∥
∥2 + α3

N3∑

i=1

λ3,i
∥
∥Fr2,ixn

∥
∥2 − α0α1λ1,1g(‖Jxn − JS1xn‖)

= α0φ
(
p, xn

)
+ α1

N1∑

i=1

λ1,iφ
(
p, Sixn

)
+ α2

N2∑

i=1

λ2,iφ
(
p, Tr1,ixn

)

+ α3

N3∑

i=1

λ3,iφ
(
p, Fr2,ixn

) − α0α1λ1,1g(‖Jxn − JS1xn‖)

≤ α0φ
(
p, xn

)
+ α1

N1∑

i=1

λ1,iφ
(
p, xn

)
+ α2

N2∑

i=1

λ2,iφ
(
p, xn

)
+ α3

N3∑

i=1

λ3,iφ
(
p, xn

)

− α0α1λ1,1g(‖Jxn − JS1xn‖)
= φ

(
p, xn

) − α0α1λ1,1g(‖Jxn − JS1xn‖).

(3.18)

It follows that

α0α1λ1,1g(‖Jxn − JS1xn‖) ≤ φ
(
p, xn

) − φ
(
p, yn

)
. (3.19)

Note that

φ
(
p, xn

) − φ
(
p, yn

)
= ‖xn‖2 −

∥∥yn

∥∥2 − 2
〈
p, Jxn − Jyn

〉

≤ ∥∥xn − yn

∥∥(‖xn‖ +
∥∥yn

∥∥) + 2
∥∥p

∥∥∥∥Jxn − Jyn

∥∥.
(3.20)

It follows from (3.16) and (3.17) that

φ
(
p, xn

) − φ
(
p, yn

) −→ 0 as n −→ ∞. (3.21)

By (3.19), (3.21), and α0α1λ1,1 > 0, we have

g(‖Jxn − JS1xn‖) −→ 0 as n −→ ∞. (3.22)
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It follows from the property of g that

‖Jxn − JS1xn‖ −→ 0 as n −→ ∞. (3.23)

Since xn → x∗ as n → ∞ and J : E → E∗ is demicontinuous, we obtain that Jxn ⇀ Jx∗ ∈ E∗.
Note that

|‖Jxn‖ − ‖Jx∗‖| = |‖xn‖ − ‖x∗‖| ≤ ‖xn − x∗‖. (3.24)

This implies that

lim
n→∞

‖Jxn‖ = ‖Jx∗‖. (3.25)

Since E∗ enjoys the Kadec-Klee property, we see that

lim
n→∞

‖Jxn − Jx∗‖ = 0. (3.26)

Note that

‖JS1xn − Jx∗‖ ≤ ‖JS1xn − Jxn‖ + ‖Jxn − Jx∗‖. (3.27)

From (3.23) and (3.26), we arrive at

lim
n→∞

‖JS1xn − Jx∗‖ = 0. (3.28)

Note that J−1 : E∗ → E is demicontinuous. It follows that S1xn ⇀ x∗. On the other hand,
since

|‖S1xn‖ − ‖x∗‖| = |‖JS1xn‖ − ‖Jx∗‖| ≤ ‖JS1xn − Jx∗‖, (3.29)

by (3.28) we conclude that ‖S1xn‖ → ‖x∗‖ as n → ∞. Since E enjoys the Kadec-Klee prop-
erty, we obtain that

lim
n→∞

‖S1xn − x∗‖ = 0. (3.30)

By repeating (3.18)–(3.30), we also can get

lim
n→∞

‖Sixn − x∗‖ = 0, i = 2, . . . ,N1, (3.31)

lim
n→∞

∥∥Tr1,ixn − x∗∥∥ = 0, i = 1, . . . ,N2, (3.32)

lim
n→∞

∥∥Fr2,ixn − x∗∥∥ = 0, i = 1, . . . ,N3. (3.33)
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Since each Si is closed, by (3.30) and (3.31) we conclude that Six
∗ = x∗, that is,

x∗ ∈ F(Si), i = 1, 2, . . . ,N1. On the other hand, Lemma 2.4, Remark 2.5, and Lemma 2.8
show that Tr1,i(i = 1, 2, . . . ,N2) and Fr2,i(i = 1, 2, . . . ,N3) are closed. So, by (3.32) and (3.33)
we have Tr1,ix

∗ = x∗(i = 1, 2, . . . ,N2) and Fr2,ix
∗ = x∗(i = 1, 2, . . . ,N3). Now, it follows from

Lemma 2.4 and Remark 2.5 that F(Tr1,i) = EP(fi) (i = 1, 2, . . . ,N2) and F(Fr2,i) = VI(C,Ai)
(i = 1, 2, . . . ,N3). Hence, x∗ ∈ EP(fi) (i = 1, 2, . . . ,N2) and x∗ ∈ VI(C,Ai) (i = 1, 2, . . . ,N3).
Therefore, x∗ ∈ F.

Finally, we prove that x∗ = ΠFx1. From xn+1 = ΠDnx1, by Lemma 2.1, we see that

〈
xn+1 − p, Jx1 − Jxn+1

〉 ≥ 0, ∀p ∈ Dn. (3.34)

Since F ⊂ Dn for each n ≥ 1, we have

〈
xn+1 − p, Jx1 − Jxn+1

〉 ≥ 0, ∀p ∈ F. (3.35)

Letting n → ∞ in (3.35), we see that

〈
x∗ − p, Jx1 − Jp

〉 ≥ 0, ∀p ∈ F. (3.36)

In view of Lemma 2.1, we can obtain that x∗ = ΠFx1. This completes the proof.

Remark 3.2. Obviously, the proof process of x∗ ∈ [
⋂N2

i=1 EP(fi)]∩[
⋂N3

i=1 VI(C,Ai)] is simple since
we replace the condition (A3) with (A3’) which is such that Tr1,i and Fr2,j (i = 1, 2, . . . ,N2, j =
1, 2, . . . ,N3) are closed. In fact, although the condition (A3’) is stronger than (A3), it is not
easier to verify the condition (A3) than verify the condition (A3’). Hence, from this point, the
condition (A3’) is acceptable. On the other hand, the definition of Dn is of some interest.

If Si = S for each i = 1, 2, . . . ,N1, fi = f for each i = 1, 2, . . . ,N2 and Ai = A for each
i = 1, 2, . . . ,N3, then Theorem 3.1 reduces to the following result.

Corollary 3.3. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E which has the Kadec-Klee property. Let S : C → C be a closed quasi-φ-
nonexpansive mapping, f : C × C → R a bifunction satisfying the conditions (A1), (A2), (A3’), and
(A4) and A : C → E∗ a continuous monotone mapping such that F = F(S) ∩ EP(f) ∩ VI(C,A)/= ∅.
Let r1, r2 ⊂ (0,∞). Let {xn} be a sequence defined by the following manner:

x1 ∈ C chosen arbitrarily,

yn = J−1(α0Jxn + α1JSxn + α2JTr1xn + α3JFr2xn),

Cn =
{
z ∈ C : φ

(
v, yn

) ≤ φ(v, xn)
}
,

Dn =
n⋂

i=1

Ci,

xn+1 = ΠDnx1, n ≥ 1,

(3.37)
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where Tr1 and Fr2 are defined by (1.11) and (1.12) with r1,i = r1(i = 1, 2, . . . ,N2) and r2,j = r2(j =
1, 2, . . . ,N3), α0, α1, α2, α3 are the real numbers in (0, 1) satisfying α0 + α1 + α2 + α3 = 1. Then the
sequence {xn} converges strongly to PFx1, where ΠF is the generalized projection from E onto F.

Corollary 3.4. Let C be a nonempty closed and convex subset of a Hilbert space H. Let {Si}N1
i=1 : C →

C be a family of closed quasi-nonexpansive mappings, {fi}N2
i=1 : C×C → R a finite family of bifunctions

satisfying the conditions (A1)–(A4), and {Ai}N3
i=1 : C → H a finite family of continuous monotone

mappings such that F = [
⋂N1

i=1 F(Si)] ∩ [
⋂N2

i=1 EP(fi)] ∩ [
⋂N3

i=1 VI(C,Ai)]/= ∅. Let {r1,i}N2
i=1, {r2,i}N3

i=1 ⊂
(0,∞). Define a sequence {xn} by the following manner:

x1 ∈ C chosen arbitrarily,

zn =
N1∑

i=1

λ1,iSixn,

un =
N2∑

i=1

λ2,iTr1,ixn,

wn =
N3∑

i=1

λ3,iFr2,ixn,

yn = (α0xn + α1zn + α2un + α3wn),

Cn =
{
z ∈ C :

∥∥v − yn

∥∥ ≤ ‖v − xn‖
}
,

Dn =
n⋂

i=1

Ci,

xn+1 = PDnx1, n ≥ 1,

(3.38)

where {Tr1,i}N2
i=1 and {Fr1,i}N3

i=1 are defined by (1.11) and (1.12) with J = I (I is the identity mapping),
α0, α1, α2, α3 are the real numbers in (0, 1) satisfying α0 + α1 + α2 + α3 = 1 and for each j = 1, 2, 3,
λj,1, . . . , λj,Nj are the real numbers in (0, 1) satisfying

∑Nj

i=1 λj,i = 1. Then the sequence {xn} converges
strongly to PFx1, where PF is the projection from H onto F.

Proof. By the proof of Theorem 3.1, we have xn → x∗ as n → ∞,

lim
n→∞

‖Sixn − xn‖ = 0, i = 1, 2, . . . ,N1,

lim
n→∞

∥∥Tr1,ixn − xn

∥∥ = 0, i = 1, 2, . . . ,N2,

lim
n→∞

∥∥Fr2,ixn − xn

∥∥ = 0, i = 1, 2, . . . ,N3.

(3.39)

Since each Si is closed, we can conclude that x∗ ∈ F(Si), i = 1, 2, . . . ,N1. Note that in a
Hilbert space, a firmly-nonexpansive mapping is also nonexpansive. Hence, Tr1,i and Fr2,j are
nonexpansive for each i = 1, 2, . . . ,N2 and j = 1, 2, . . . ,N3. By demiclosed principle, we can
conclude that x∗ ∈ F(Tr1,i) = EP(fi) and x∗ ∈ F(Fr2,i) = VI(C,Aj) for each i = 1, 2, . . . ,N2

and j = 1, 2, . . . ,N3. That is, x∗ ∈ F. Then by the final part of proof of Theorem 3.1, we have
xn → x∗ = PFx1. This completes the proof.
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LetH be a Hilbert space andC a nonempty closed and convex subset ofH. Amapping
T : C → H is called a pseudocontraction if for all x, y ∈ C,

∥
∥Tx − Ty

∥
∥2 ≤ ∥

∥x − y
∥
∥2 +

∥
∥(I − T)x − (I − T)y

∥
∥2

, (3.40)

or equivalently,

〈
(I − T)x − (I − T)y, x − y

〉 ≥ 0. (3.41)

Let A = I − T , where T : C → H is a pseudocontraction. Then A is a monotone
mapping and A−1(0) = F(T). Moreover, F(T) = VI(C,A). Indeed, it is easy to see that F(T) ⊂
VI(C,A). Let u ∈ VI(C,A). We have

〈v − u,Au〉 ≥ 0, i.e., 〈v − u, (I − T)u〉 ≥ 0, (3.42)

for all v ∈ C. Take v = Tu. Then we have 〈Tu − u, (I − T)u〉 ≥ 0. That is, −‖u − Tu‖2 ≥ 0. This
shows that u = Tu, which implies that VI(C,A) ⊂ F(T). So, F(T) = VI(C,A). Based this, we
have following result.

Corollary 3.5. Let C be a nonempty closed and convex subset of a Hilbert space H. Let {Si}N1
i=1 :

C → C be a family of closed quasi-nonexpansive mappings, {fi}N2
i=1 : C × C → R a finite

family of bifunctions satisfying the conditions (A1)–(A4), and {Ti}N3
i=1 : C → H a finite family of

continuous pseudocontractions such that F = [
⋂N1

i=1 F(Si)] ∩ [
⋂N2

i=1 EP(fi)] ∩ [
⋂N3

i=1 F(Ti)]/= ∅. Let
{r1,i}N2

i=1, {r2,i}N3
i=1 ⊂ (0,∞). Define a sequence {xn} by the following manner:

x1 ∈ C chosen arbitrarily,

zn =
N1∑

i=1

λ1,iSixn,

un =
N2∑

i=1

λ2,iTr1,ixn,

wn =
N3∑

i=1

λ3,iFr2,ixn,

yn = (α0xn + α1zn + α2un + α3wn),

Cn =
{
z ∈ C :

∥∥v − yn

∥∥ ≤ ‖v − xn‖
}
,

Dn =
n⋂

i=1

Ci,

xn+1 = PDnx1, n ≥ 1,

(3.43)
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where {Tr1,i}N2
i=1 are defined by (1.11) with J = I and Fr2,i is defined by

Fr2,i(x) =
{
z ∈ C :

〈
y − x, (I − Ti)x

〉
+

1
r2,i

〈
y − z, z − x

〉 ≥ 0 ∀y ∈ C

}
, i = 1, 2, . . . ,N3,

(3.44)

α0, α1, α2, α3 are the real numbers in (0, 1) satisfying α0 + α1 + α2 + α3 = 1 and for each j = 1, 2, 3,
λj,1, . . . , λj,Nj are the real numbers in (0, 1) satisfying

∑Nj

i=1 λj,i = 1. Then the sequence {xn} converges
strongly to PFx1, where PF is the projection from H onto F.

If Si = S, fj = f , and Tk = T for each i = 1, 2, . . . ,N1, j = 1, 2, . . . ,N2, and
k = 1, 2, . . . ,N3, then Corollary 3.5 reduced the following result.

Corollary 3.6. Let C be a nonempty closed and convex subset of a Hilbert space H. Let S : C → C
be a closed quasi-nonexpansive mapping, f : C × C → R a bifunction satisfying the conditions (A1)–
(A4), and T : C → H a continuous pseudocontraction such that F = F(S) ∩ EP(f)] ∩ F(T)/= ∅. Let
r1, r2 ⊂ (0,∞). Define a sequence {xn} by the following manner:

x1 ∈ C chosen arbitrarily,

yn = J−1(α0xn + α1Sxn + α2Tr1xn + α3Fr2xn),

Cn =
{
z ∈ C :

∥∥v − yn

∥∥ ≤ ‖v − xn‖
}
,

Dn =
n⋂

i=1

Ci,

xn+1 = PDnx1, n ≥ 1,

(3.45)

where Tr1 is defined by (1.11) with J = I and r1,i = r1 (i = 1, 2, . . . ,N2), Fr2 is defined by (3.44) r2,j =
r2 (j = 1, 2, . . . ,N3), and α0, α1, α2, α3 are the real numbers in (0, 1) satisfying α0 + α1 + α2 + α3 = 1.
Then the sequence {xn} converges strongly to PFx1, where PF is the projection from H onto F.
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