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We introduced a new iterative scheme for finding a common element in the set of common fixed
points of a finite family of quasi-¢-nonexpansive mappings, the set of common solutions of a finite
family of equilibrium problems, and the set of common solutions of a finite family of variational

inequality problems in Banach spaces. The proof method for the main result is simplified under
some new assumptions on the bifunctions.

1. Introduction

Throughout this paper, let R denote the set of all real numbers. Let E be a smooth Banach
space and E* the dual space of E. The function ¢ : E x E — R is defined by

> Vx,y€E, 1.1)

$(x,y) = lxll” =y, Jx) + |ly
where ] is the normalized dual mapping from E to E* defined by

J(x) = {x* eE : (x,x*) = ||x|? = ||x*||2}, Vx € E. (1.2)



2 Fixed Point Theory and Applications

Let C be a nonempty closed and convex subset of E. The generalized projectionIT: E — Cis
a mapping that assigns to an arbitrary point x € E the minimum point of the function ¢(x, ),
that is, Ilcx = X, where X is the solution to the minimization problem

¢(x, x) = inf ¢ (z, x). (1.3)

In Hilbert spaces, ¢(x,y) = ||x - y||2 and I1c = Pc, where Pc is the metric projection. It is
obvious from the definition of function ¢ that

Iyl = l1x)* < ¢y x) < (lyll + lIxl1)?, Vx,y € E. (1.4)

We remark that if E is a reflexive, strictly convex and smooth Banach space, then for x,y € E,
¢(x,y) = 0if and only if x = y. For more details on ¢ and I, the readers are referred to [1-4].

Let T be a mapping from C into itself. We denote the set of fixed points of T by F(T). T
is called to be nonexpansive if |Tx — Ty|| < ||x — y| for all x,y € C and quasi-nonexpansive
if FT)#0 and ||x - Ty| < |[x - y| forall x € F(T) and y € C. A point p € C is called to be
an asymptotic fixed point of T [5] if C contains a sequence {x,} which converges weakly to p
such that lim,, _, -||x, — Tx,|| = 0. The set of asymptotic fixed points of T is denoted by F(T).
The mapping T is said to be relatively nonexpansive [6-8] if F(T) = F(T) and ¢(p, Tx) <
¢(p,x) forall x € Cand p € F(T). The mapping T is said to be ¢-nonexpansive if ¢p(Tx, Ty) <
¢(x,y) for all x,y € C. T is called to be quasi-¢-nonexpansive [9] if F(T) #@ and ¢(p, Tx) <
¢(p,x) forall x e Cand p € F(T).

In 2005, Matsushita and Takahashi [10] introduced the following algorithm:

xo=x€C,
Yn = ]71 (“n]xn + (1 - “n)]Txn)/
Co={z€C:¢(z,yn) <P(z,x,)}, (1.5)
Qn = {Z eC: <xn _ZI]x_]xn> 2 0}/
Xn+1 = PCnﬂan/ Vn > 01

where ] is the duality mapping on E, T is a relatively nonexpansive mapping from C into
itself, and {a,} is a sequence of real numbers such that 0 < a,, <1 and limsup, , a, <1and
proved that the sequence {x,} generated by (1.5) converges strongly to Prr)x, where Pr(ry is
the generalized projection from C onto F(T).

Let f be a bifunction from C x C to R. The equilibrium problem for f is to find p € C
such that

flp,y) =20, VyeC (1.6)
We use EP(f) to denote the solution set of the equilibrium problem (1.6). That is,

EP(f)={peC:f(p,y) >0, Vy e C}. (1.7)
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For studying the equilibrium problem, f is usually assumed to satisfy the following condi-
tions:

(Al) f(x,x) =0forall x € C;
(A2) f is monotone, thatis, f(x,y) + f(y,x) <Oforallx,y € C;
(A3) foreach x,y,z € C, limsup,_,f(tz+ (1-t)x,y) < f(x,y);
(A4) foreachx € C, y — f(x,y) is convex and lower semicontinuous.
Recently, many authors investigated the equilibrium problems in Hilbert spaces or Banach

spaces; see, for example, [11-25]. In [20], Qin et al. considered the following iterative scheme
by a hybrid method in a Banach space:

xo € E chosen arbitrarily,
Cl = C/

x1 = I, xo,

N
Yu=J" (an,o]xn + > aniJT, ixn>, (1.8)

i=1
u, € C such that f(u,,y) + %(y —Up, Jun— Jyn) 20, VyeC,

Cus1 = {Z €Cy:d(z,un) < (,b(zrxn)}/

Xn41 = Ic,,, X0,

n+l

where T; : C — C is a closed quasi-¢-nonexpansive mapping for each i € {1,2,...,N},
ano,{an1}, ..., {anN} are real sequences in (0, 1) satisfying Z]']\:Io ay; = 1for eachn > 1 and
liminf, ., ,a,0a,; > 0foreachi e {1,2,..., N} and {r,} is a real sequence in [a, o) with a > 0.
Then the authors proved that {x, } converges strongly to ITgxo, where F = (N, F(T;) NEP(f).

Very recently, Zegeye and Shahzad [25] introduced a new scheme for finding an
element in the common fixed point set of finite family of closed relatively quasi-nonexpansive
mappings, common solutions set of finite family of equilibrium problems, and common
solutions set of finite family of variational inequality problems for monotone mappings in a
Banach space. More precisely, let f; : CxC — R,i=1,2,..., L, bea finite family of bifunctions,
S;:C — C,j=1,...,D, a finite family of relatively quasi-nonexpansive mappings, and
A;j:C — E*,i=1,2,...,N, a finite family of continuous monotone mappings. For x € E,
define the mappings F,,, T;, : E — Cby

F, x = {zeC: <y—z,Anz>+rl<y—z,]z—]x> >0, VyeC},
(1.9)
T, x = {zeC:fn(z,y) + %(y—z,]z—]x) >0, VyeC},
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where A, = ApmodN), fn = famodr) and r,, C [c1, 00) for some ¢; > 0. Zegeye and Shahzad
[25] introduced the following scheme:

x9 € Co = C chosen arbitrarily,
Zp = F TaXns

Uy = Trnxn/
(1.10)
Yn = ]_1 (a()]xn +ar)zy + aZ]Snun)/

Cu1 = {z2€Cn: (z,yn) < Pz, x0)},

Xn+l = HC X0,

where S, = Spymodp), @0, a1,a2 € (0,1) such that ap + a; + ap = 1. Further, they proved
that {x,} converges strongly to an element of ¥, where F = [ﬂﬁl F(S)]n [nfﬁl VI(C, A)]n
[N EP(f)]-

In this paper, motivated and inspired by the iterations (1.8) and (1.10), we consider
a new iterative process with a finite family of quasi-¢-nonexpansive mappings for a finite
family of equilibrium problems and a finite family of variational inequality problems in a
Banach space. More precisely, let {Si}gi : C — C be a family of quasi-¢-nonexpansive
mappings, { fi}f.\zji : CxC — R a finite family of bifunctions, and {Ai}l].\ﬁ :C — E*a
finite family of continuous monotone mappings such that ¢ = [ﬂz 1F(SHINn [ﬂf\ﬁ EP(fi))] N
[ﬂf\:]i VI(C, A;)] #0. Let {rl,i}gi C (0,00) and {Tz,i}gi C (0,00). Define the mappings T;,,
F, :E — Cby

T,,x = {ZEC:f,-(z,y) + %(y—z,]z—]x) >0, ‘v’yEC}, i=1,...,Ny, (1.11)
1i
F,x= {ze C:(y-z Az) +ri<y—z,]z—]x> >0, VyeC}, i=1,...,N; (1.12)
2,

Consider the iteration

x1 € C  chosen arbitrarily,

N1 Nz N3
Yn=J" <ao] X+ 01 D M i Sixn + a3 D Mo i J Ty, X + a3 > N3] Frz,ixn>,

i1 i=1 i=1
Ch={veC:¢(v,yn) <P(v,xn)}, (1.13)
D, = ﬁ Ci,

Xpa1 =1Ip,x1, n2>1,

where ay, a1, ap, as are the real numbers in (0, 1) satisfying ap + a1 + ap + a3 = 1 and for each
j=1231,..., )L]-,N]. are the real numbers in (0, 1) satisfying Zf\:]’l Aji = 1. We will prove that
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the sequence {x,} generated by (1.13) converges strongly to an element in ¥. In this paper,
in order to simplify the proof, we will replace the condition (A3) with (A3’): for each fixed
y € C, f(-,y) is continuous.

Obviously, the condition (A3") implies (A3). Under the condition (A3’), we will show
thateach T;,, (as well as Fpr,,i=1,...,Ny,j=1,..., N3) is closed which is such that the proof
for the main result of this paper is simplified.

2. Preliminaries

The modulus of smoothness of a Banach space E is the function pg : [0, 00) — [0, o0) defined

by

x+ vy +||x -
pE(T)Zsup{” y”2” y”—l:HxH:l,'”y”:T}. (21)

The space E is said to be smooth if pg(7) > 0, for all 7 > 0, and E is called uniformly smooth
if and only if lim; ¢+ pp(7) /T = 0.

A Banach space E is said to be strictly convex if ||(x + y)/2|| < 1 for all x,y € E with
llxll = lyll =1 and x#y. It is said to be uniformly convex if lim,_, »-||x, — yu|| = 0 for any
two sequences {x,} and {y,} in E such that ||x,|| = [|y.]| = 1 and lim, || (X, + y») /2] = 1.
It is known that if a Banach space E is uniformly smooth, then its dual space E* is uniformly
convex.

A Banach space E is called to have the Kadec-Klee property if for any sequence {x,} C
E and x € E with x, — x, where — denotes the weak convergence, and ||x,|| — |[x||, then
X, —x — 0asn — oo, where — denotes the strong convergence. It is well known that
every uniformly convex Banach space has the Kadec-Klee property. For more details on the
Kadec-Klee property, the reader is referred to [3, 4].

Let C be a nonempty closed and convex subset of a Banach space E. A mapping S :
C — C is said to be closed if for any sequence {x,} C C such that lim,_ ,x, = xp and
limy, -, &, Sx, = Yo, Sxo = Yo.

Let A: D(A) C E — E*beamapping. Aissaid to be monotone if for each x, y € D(A),
the following inequality holds:

(x -y, Ax— Ay) > 0. (2.2)

Let A be a monotone mapping from C into E*. The variational inequality problem on A is
formulated as follows:

find a point u € C such that (v -u, Au) >0, VveC. (2.3)

The solution set of the above variational inequality problem is denoted by VI(C, A).
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Next we state some lemmas which will be used later.

Lemma 2.1 (see [1]). Let C be a nonempty closed and convex subset of a smooth Banach space E and
x € E. Then, xo = Ilcx if and only if

(xo-y, Jx—Jx0) >0 VyeC. (2.4)

Lemma 2.2 (see [1]). Let E be a reflexive, strictly convex and smooth Banach space, C a nonempty
closed and convex subset of E, and x € E. Then

¢(y, Iex) + p(Ilecx, x) < p(y,x), VyeC. (2.5)

Lemma 2.3 (see [20]). Let E be a strictly convex and smooth Banach space, C a nonempty closed
and convex subset of E, and T : C — C a quasi-¢-nonexpansive mapping. Then F(T) is a closed and
convex subset of C.

Since the condition (A3’) implies (A3), the following lemma is a natural result of [22,
Lemmas 2.8 and 2.9].

Lemma 2.4. Let C be a closed and convex subset of a smooth, strictly convex and reflexive Banach
space E. Let f be a bifunction from C x C — R satisfying (A1), (A2), (A3’), and (A4). Let v > 0 and
x € E. Then

(a) there exists z € C such that

f(Z,y)+%(y—z,]z—]x>20, Yy e C; (2.6)

(b) define a mapping T, : E — C by

T,x={zeC:f(z,y)+%<y—z,]z—]x>20, VyeC}. (2.7)

Then the following conclusions hold:

(1) T, is single-valued;
(2) T, is firmly nonexpansive, that is, for all x,y € E,

(Trx =Ty, JT,x - JT,y) < (Trx - Ty, Jx - Jy); (2.8)

(38) F(T;) = EP(f);

(4) T, is quasi-¢-nonexpansive;
(5) EP(f) is closed and convex;
)

(6) ¢(p, T, x) + §(Trx,x) < (p, x), forall p € F(T;).
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Remark 2.5. Let A : C — E* be a continuous monotone mapping and define f(x,y) = (y -
x,Ax) for all x,y € C. It is easy to see that f satisfies the conditions (A1), (A2), (A3’), and
(A4) and EP(f) = VI(C, A). Hence, for every real number r > 0, if defining a mapping F, :
E — Cby

F,x = {zeC (y -z Az) + %(y—z,]z—]x} >0, VyeC}, (2.9)

then F, satisfies all the conclusions in Lemma 2.4. See [25, Lemma 2.4].

Lemma 2.6 (see [26]). Let p > 1 and s > 0 be two fixed real numbers. Then a Banach space E is
uniformly convex if and only if there exists a continuous strictly increasing convex function g : [0, oo)
with g(0) = 0 such that

A+ (= [l < AelP + @ = DIy -, W (flx - 1) (.10)

forall x,y € B;(0) = {x € E: ||x|| < s} and A € [0,1], where w, (1) = AP(1 - 1) + A(1 - 1)

The following lemma can be obtained from Lemma 2.6 immediately; also see [20,
Lemma 1.9].

Lemma 2.7 (see [20]). Let E be a uniformly convex Banach space, s > 0 a positive number, and B;(0)
a closed ball of E. There exists a continuous, strictly increasing and convex function g : [0, oo) with
g(0) = 0 such that

N
i

2N
< Saillxll’ - ajarg(||x - xll), . k€{1,2,...,N} with j#k (2.11)
i=1 i=1

forall x1,%2,...,xn € Bs(0) = {x € E: ||x|| < s} and a1, a2, ..., an € [0,1] such that Zf\:jl a;=1.

Lemma 2.8. Let C be a closed and convex subset of a uniformly smooth and strictly convex Banach
space E. Let f : C x C — R be a bifunction satisfying (A1), (A2), (A3’), and (A4). Let r > 0 and
T, : E — C be a mapping defined by (2.7). Then T is closed.

Proof. Let {x,} C E converge to x’ and {T,x,} converge to X. To end the conclusion, we need

to prove that T,x" = X. Indeed, for each x,,, Lemma 2.4 shows that there exists a unique z, € C
such that z,, = T,x,,, that is,

f(Zn,y)+%<]/—zn,]zn—]xn>20, Yy eC. (2.12)
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Since E is uniformly smooth, | is continuous on bounded set (note that {x,} and {z,} are
both bounded). Taking the limit as n — oo in (2.12), by using (A3’), we get

1
fEy)+(y-%Jx-Jx)20, VyeC, (2.13)
which implies that T,x' = X. This completes the proof. O

3. Main Results

Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E which has the Kadec-Klee property. Let {S,-}f:] |+ C — Cbea family of closed

quasi-¢-nonexpansive mappings, { fl}ﬁz1 : Cx C — Ra finite family of bifunctions satisfying the
conditions (A1), (A2), (A3’), and (A4), and {A,}ffl : C — E* a finite family of continuous monotone
mappings such that F = [N, F(S)1 0 [NX2 EP(F)] N [N VI(C, A)] #0. Let {r1;)1%, (roi) 1 €
(0,00). Let {x,} be a sequence generated by the following manner:

x1 € C chosen arbitrarily,

Ny
Zn = D M1,i) Sixn,
i1

Na
Up = Z-)Lz,i]Truxnr
i=1

N3
Wn = Z)L?),i]Frz,ixm (31)
i=1

Yn = ]_1(a0]xn + 12, + AUy + azWy,),

Ch={z€C:¢(v,yn) <P(v,xn)},

n
Dn = ﬂci/
i=1

Xps1 =1p,x1, n>1,

where T, (i=1,2,...,N>) and F,;(j=12,...,N3) are defined by (1.11) and (1.12), a, a1, a2, a3
are the real numbers in (0,1) satisfying ag + ar + ax + az = 1 and for each j = 1,2,3, A;1,..., AinN;

are the real numbers in (0,1) satisfying Zf\:j’l Aji = 1. Then the sequence {x,} converges strongly to
Igx1, where Ilg is the generalized projection from E onto .

Proof. First we prove that D, is closed and convex for each n > 1. From the definition of C,,
it is obvious that C,, is closed. Moreover, since ¢(v, y,) < ¢(v, x,,) is equivalent to 2(v, Jx, —
Jyn) — ll2ca|* + ||yn||2 > 0, it follows that C,, is convex for each n > 1. By the definition of D,,,
we can conclude that D,, is closed and convex for each nn > 1.



Fixed Point Theory and Applications 9
Next, we prove that ¢ C D,, for each n > 1. From Lemma 2.4 and Remark 2.5, we see

that each Ty, (i=1,2,...,N;)and F,ZJ. (j =1,2,...,N3) are quasi-¢-nonexpansive. Hence, for
any p € ¥, we have

¢(p,yn) = ¢<p, J N (@0 ] X + @120 + Bolhy + A3T0R) )
2
= lpll” = 2{p, a0 J xn + 120 + A2ty + A3T00 ) + |0 J Xy + A1 25 + A2ty + A3

<|lpll* = 2a0(p, Jxu) = 2a1(p, zu) — 202 (p, 1)

= 2a3(p, wn) + aollxall* + a1 [1zal* + 2lfanl|* + a3 eon

N] NZ
< ||]0||2 = 2a0(p, Jxu) =201 > \,i(p, JSixu) — 200 > N (p, J T, X))
i=1 i=1
N3 Ny
—2a3 Y Xai{p, JFp, ) + aol|x* + a1 > A il TSiea?
i=1 i=1
N , N; ,
+ azzlz,i T, xa]|” + 33213,1' | TE, xu]| (3.2)
i=1 i=1

N1 NZ
= aop(p, xn) + @1 D M (p, Sixxn) + @2 D N2 i (p, Ty, %)
i1 i1
N3
+ a3z)t3,i¢(Pr F, . xn)
i=1
N] NZ
< aod(p, xn) + a1 D Mip(p, xn) + 2 > Ao ip (p, xn)
P i1

+ zx3z;/\3,,-¢(p, Xn)
= ¢(p, xn),

which implies that F C C, for each n > 1. So, it follows from the definition of D,, that F C D,,
for each n > 1. Therefore, the sequence {x,} is well defined. Also, from Lemma 2.2 we see
that

P(xne1,x1) = p(Lp,x1,x1) < P(p,x1) = P(p, xn1) < P(p, x1), (3.3)

for each p € ¥. This shows that the sequence {¢(x,, x1)} is bounded. It follows from (1.4) that
the sequence {x,} is also bounded.
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Since E is reflexive, we may, without loss of generality, assume that x,, — x*. Since D,,
is closed and convex for each n > 1, we can conclude that x* € D,, for each n > 1. By the
definition of {x,}, we see that

d)(xnrxl) S (i)(x*/xl)' (34)
It follows that
¢(x*, x1) < liminf ¢p(x,, x1) < limsup ¢(x,, x1) < P(x*, x1). (3.5)
This implies that
nli_l’)rolo(i)(xn,X1) = ()b(x*/xl)' (36)

Hence, we have ||x,|| — [x*|| asn — oo. In view of the Kadec-Klee property of E, we get
that

lim x,, = x*. (3.7)

n— oo

By the construction of D,,, we have that D,,; C D,, and x,,., = I1p,,,x1 C D,. It follows
from Lemma 2.2 that

P(Xns2, Xni1) = P(xns2,Ip,x1)
< P(xni2, x1) — P(Ip,x1, x1) (3.8)
= P(xpa2, x1) = P(Xn41, X1)-

Letting n — oo, we obtain that ¢(x,+2, X441) — 0. In view of x,.1 € D, = L, C,,, we have
Xn+1 € C,, and hence

¢(xn+1r yn) < ¢(xn+1r xn)- (3-9)
It follows that
nliirc}o(l)(x”*'l’ ]/n) =0. (3.10)

From (1.4), we see that

lynll — lIx*]l as n — oo. (3.11)
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Hence,

1Jyall — x| asn — oo (3.12)

This implies that the sequence {Jy,} is bounded. Note that reflexivity of E implies reflexivity
of E*. Thus, we may assume that Jy, — y € E*. Furthermore, reflexivity of E implies that
there exists x € E such that y = Jx. Then, it follows that

¢(xn+1ryn) = ||xn+1”2 - 2<xn+1/ ]yn> + ”yn”2
(3.13)

= ||xn+1”2 - 2<xn+1/ ]]/n> + ”]ynllz

Take lim inf on both sides of (3.13) over n and use weak lower semicontinuity of norm to get
that

0> [l*[* = 2(x", y) + |||’

= [l |* = 2", Jx) + || x|
(3.14)
= [lx*|® = 2(x, Jx) + ||x]

= ¢(x", x),

which implies that x* = x. Hence, y = Jx*. It follows that Jy, — Jx*. Now, from (3.12) and
Kadec-Klee property of E*, we obtain that Jy, — Jx*asn — co. Then the demicontinuity of
J7! implies that v, — x*. Now, from (3.11) and the fact that E has the Kadec-Klee property,
we obtain that lim, . ., ¥, = x*. Note that

260 = Y| < llxn = "1+ ]| x* = |- (3.15)
It follows that
Jim [|xy = yul| = 0. (3.16)

Since ] is uniformly norm-to-norm continuous on any bounded sets, we have

Tim || Jacy = Jyn|| = 0. (3.17)
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Since E is uniformly smooth, we know that E* is uniformly convex. In view of
Lemma 2.7, we see that, for any p € ¥,

gb(p, yn) = ¢<P, ]‘1(a0]xn + a1z, + AUy + azWy,) >
2
= |lp||"-2(p, a0 J xn + @120 + @21y + AzWy ) + || 0] Xy + A1 Zy + AUy + azwy||?

Ny
2
<|lpll” = 2(p, a0 J xn + 120 + @214y, + A3T0,) + ao||xn|* + a1 E ALillSixall?
i-1

Nz N3
+ “2Ziz,i||Tr1,ixn||2 + “3le,i||Frz,,~xn||2 —apar Mg g([Jxn — JS1u|l)
i1 -1
N N 18
= a0 (p, xn) + a1 D Mid(p, Sixn) + 22 ) A2, (p, T, ) (3.18)
i1 i1

N3
+ a3 > X3 (p, Fry,xn) — aoa M1 g (] xn = JS14]l)
i=1

N, N> N3
< aod(p,xn) + a1 D M1,ip(p, xn) + a2 > Aoip(p, xn) + a3 > A3, (p, xn)
i=1 i=1 i=1

—agarA1,18 ([ Jxn — JS1x4l)
=¢(p, xn) — aoard11g(|Jxn = JS1x4]]).

It follows that
apar A1 (1 xn = JS12ull) < ¢(p, x0) = ¢(P, Yin)- (3.19)
Note that

$(p,xn) = (P, yn) = 1xall” = yull” = 2P, J2tn = Tyu)

(3.20)
< loew =yl (leall + [y ll) + 20l | 120 = Tyl
It follows from (3.16) and (3.17) that
d(p,xn) —p(p,yn) — 0 asn— co. (3.21)

By (3.19), (3.21), and apa1 A1 > 0, we have

glJxn = JS1xn]) — 0 as n— oo. (3.22)
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It follows from the property of g that

|[Jxn — JS1%4]| — 0 as n — co. (3.23)

Since x, — x*asn — ooand J : E — E* is demicontinuous, we obtain that Jx, — Jx* € E*.
Note that

T xull = TN = Hxall =l < floen = 27]]- (3.24)
This implies that
Tim ] = 1. (3.25)
Since E* enjoys the Kadec-Klee property, we see that
Tim [|]x, = Jx*| = 0. (3.26)
Note that
1T S12n = JX*|| < (1T S12n = Jtull + [ 2w = Jx7|. (3.27)
From (3.23) and (3.26), we arrive at

Jim [[]S1x, = Jx"|| = 0. (3.28)

Note that J™! : E* — E is demicontinuous. It follows that Six, — x*. On the other hand,
since

WS12ull = 1M1 = [T S1xnll = 1Tx* M| < 1T S22 = Jx7, (3.29)

by (3.28) we conclude that ||S1x,|| — ||x*|| as n — oo. Since E enjoys the Kadec-Klee prop-
erty, we obtain that

i [|S16, = x7[| = 0. (3.30)

By repeating (3.18)—(3.30), we also can get

lim [[Six, = x| =0, i=2,...,Ny, (3.31)
lim || T, %, —x*|| =0, i=1,...,No, (3.32)
n—oo
lim ||F,,,x, —x*|| =0, i=1,...,Ns. (3.33)

n—oo
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Since each S; is closed, by (3.30) and (3.31) we conclude that S;x* = x*, that is,
x* € F(S;),1 = 1,2,...,Nj. On the other hand, Lemma 2.4, Remark 2.5, and Lemma 2.8
show that T,,,(i = 1,2,...,N>) and F,,,(i = 1,2,...,N3) are closed. So, by (3.32) and (3.33)
we have T, x* = x*(i = 1,2,...,Ny) and F,, x* = x*(i = 1,2,..., N3). Now, it follows from
Lemma 2.4 and Remark 2.5 that F(T;,,) = EP(f;) (i = 1,2,...,N) and F(F,,,) = VI(C, A;)
(i=1,2,...,N3). Hence, x* € EP(fi) (i = 1,2,...,N,) and x* € VI(C, A;) (i = 1,2,...,N3).
Therefore, x* € .

Finally, we prove that x* = I1gx;. From x,.1 = Ilp,x1, by Lemma 2.1, we see that

(X1 = p, Jx1 = Jxpi1) 20, Vp € D,. (3.34)

Since ¥ ¢ D,, for each n > 1, we have
(Xp1 —p, Jx1 = Jxn) 20, VpeF. (3.35)

Letting n — oo in (3.35), we see that
(x*-p,Jx1-Jp)y>0, Vpe¥. (3.36)

In view of Lemma 2.1, we can obtain that x* = Ilgx;. This completes the proof. O

Remark 3.2. Obviously, the proof process of x* € | f\:jﬁ EP(f;)]N [ﬂf\g VI(C, A;)] is simple since
we replace the condition (A3) with (A3’) which is such that T,,, and Fy,, (i=12,...,Nyj=
1,2,...,Nj3) are closed. In fact, although the condition (A3’) is stronger than (A3), it is not
easier to verify the condition (A3) than verify the condition (A3"). Hence, from this point, the
condition (A3’) is acceptable. On the other hand, the definition of D,, is of some interest.

If S; = Sforeachi=1,2,...,Ny, fi = f foreachi =1,2,..., N> and A; = A for each
i=1,2,..., N3, then Theorem 3.1 reduces to the following result.

Corollary 3.3. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E which has the Kadec-Klee property. Let S : C — C be a closed quasi-¢-
nonexpansive mapping, f : C x C — R a bifunction satisfying the conditions (A1), (A2), (A3’), and
(A4) and A : C — E* a continuous monotone mapping such that § = F(S) NEP(f) N VI(C, A) #0.
Let 1,72 C (0, 00). Let {x,} be a sequence defined by the following manner:

x1 € C chosen arbitrarily,
Yn = ]_1 (‘XOJXn +a1]Sx, + a2]Tr1xn + ‘X?JFrzxn)/

Ch={z€C:¢(v,yn) <Pp(v,x)}, (3.37)

DTl = ﬂci/

n
=1

Xpe1 =1Ip,x1, n2>1,
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where Ty, and F,, are defined by (1.11) and (1.12) withr; = r1(i = 1,2,...,No) and ry; = r2(j =
1,2,...,N3), ap, a1, ap, a3 are the real numbers in (0,1) satisfying ag + a1 + ar + a3 = 1. Then the
sequence {x,} converges strongly to Pgx1, where Ilg is the generalized projection from E onto .

Corollary 3.4. Let C be a nonempty closed and convex subset of a Hilbert space H. Let {S; }le :C —
C be a family of closed quasi-nonexpansive mappings, {f; }Z21 : CxC — Rafinite family of bifunctions
satisfying the conditions (A1)—(A4), and {Al-}l].\f1 : C — H a finite family of continuous monotone
mappings such that F = [N, F(S)1 0 [NY EP(F)] N [N VI(C, A)] #0. Let {r1;)N2, (rai) s €
(0, 00). Define a sequence {x,} by the following manner:

x1 € C chosen arbitrarily,

Ny
Zn = D M1,iSixn,

i=1

N>
Up = Z-)‘Z,iTrll,- Xn,
i=1

N3
Wy = Z/\B,iFrzrixn/ (338)
i=1
Yn = (AXy + 012y + AUy, + A3W,),

Co={zeC:|v-yu|| <llo—2xal},

n
DTl = m Ci/
i=1

Xne1 = Pp,x1, n2>1,

where (T, }f\:’i and {Fy,, }f:] are defined by (1.11) and (1.12) with | = I (I is the identity mapping),
@, a1, &, a3 are the real numbers in (0,1) satisfying ag + a1 + ap + a3 = 1 and for each j = 1,2,3,
Xj1, ..., AjN; are the real numbers in (0, 1) satisfying ZZ’l Aji = 1. Then the sequence {x,} converges
strongly to Pgxy, where Pg is the projection from H onto .

Proof. By the proof of Theorem 3.1, we have x, — x*asn — oo,
lim ||S;x, —x,4]|=0, i=1,2,...,Nq,
n—oo

Hm || Ty, %0 — %] =0, i=1,2,...,Ny, (3.39)

n—oo

lim ||Fy,,xy — xu|| =0, i=1,2,...,Na.
n—oo

Since each S; is closed, we can conclude that x* € F(S;), i = 1,2,...,Ni. Note that in a
Hilbert space, a firmly-nonexpansive mapping is also nonexpansive. Hence, T, ; and F;,; are
nonexpansive for eachi =1,2,...,Np and j = 1,2,..., N3. By demiclosed principle, we can
conclude that x* € F(T;1;) = EP(f;) and x* € F(Fy2;) = VI(C, A)) foreachi = 1,2,..., N>
and j =1,2,...,Ns. That is, x* € ¥. Then by the final part of proof of Theorem 3.1, we have
Xn — X* = Pgx;. This completes the proof. O
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Let H be a Hilbert space and C a nonempty closed and convex subset of H. A mapping
T :C — H is called a pseudocontraction if for all x,y € C,

ITx=Ty* < [l =yl + [T - T)x - (1 = Thy][", (3.40)
or equivalently,
(I-T)yx-(I-T)y,x-y) >0. (3.41)

Let A=1-T,whereT : C — H is a pseudocontraction. Then A is a monotone
mapping and A~1(0) = F(T). Moreover, F(T) = VI(C, A). Indeed, it is easy to see that F(T) C
VI(C, A). Let u € VI(C, A). We have

(v-u,Au) >0, ie., (v-—u, (I-T)u)>0, (3.42)

for all v € C. Take v = Tu. Then we have (Tu —u, (I - T)u) > 0. That is, —||u — Tu|* > 0. This
shows that u = Tu, which implies that VI(C, A) C F(T). So, F(T) = VI(C, A). Based this, we
have following result.

e
C — C be a family of closed quasi-nonexpansive mappings, {f}f\fl : CxC — Ra finite

family of bifunctions satisfying the conditions (A1)-(A4), and {Ti}?fl : C — H a finite family of
continuous pseudocontractions such that F = [ﬁfil1 F(S)H] n [nffl EP(f)] n [ﬂf\fl F(T;)] #0. Let

{r1 }f\fl, {1’2,1‘}5\51 C (0, ). Define a sequence {x,} by the following manner:

Corollary 3.5. Let C be a nonempty closed and convex subset of a Hilbert space H. Let {S;

x1 € C chosen arbitrarily,

N
zZn = D M1,iSixn,
i=1

N>
Uy = Z-’LZ,iTrlli Xn,
i=1

N3
wn = Z-’li’),iFrz,,-xn/ (343)
i=1
Yn = (M0Xy + X112 + AUy + A3WY,),
Co={zeC:|v-yu|| <llo—xal},
Dn = ﬂ Ci/

n
=1

Xn+l = Panll n> 1/
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where {T,, }ﬁi are defined by (1.11) with | = I and F,,, is defined by

Fp,.(x) = {ze C:(y—x,(I-T)x)+ %(y—z,z—x) ZOVyGC}, i=12,...,N;,
2i
(3.44)

ao, a1, a, a3 are the real numbers in (0,1) satisfying ag + a1 + a + a3 = 1 and for each j = 1,2,3,
X1, AjN; are the real numbers in (0, 1) satisfying Zf\jl Aj;i = 1. Then the sequence {x,} converges
strongly to Pgxy, where Pg is the projection from H onto .

If S; =S, ff = f,and Tx = T foreachi = 1,2,...,Ny,j = 1,2,...,N,, and
k=1,2,..., N3, then Corollary 3.5 reduced the following result.

Corollary 3.6. Let C be a nonempty closed and convex subset of a Hilbert space H. Let S : C — C
be a closed quasi-nonexpansive mapping, f : C x C — Ra bifunction satisfying the conditions (A1)-
(A4),and T : C — H a continuous pseudocontraction such that § = F(S) NEP(f)] N F(T) #@. Let
71,12 C (0, 00). Define a sequence {x,} by the following manner:

x1 € C chosen arbitrarily,
-1
Yn =] (a0xn + 15x, + Ty X + a3Fp, xp),

Co={zeC:|lv-yu| < llv-2xall}, (3.45)

n
Dn = ﬂ Cir
i=1

Xn+l = Panll n> 1/

where T,, is defined by (1.11) with | = Tandr1; = (i=1,2,...,N2), F;, is defined by (3.44) r,; =
r (j=1,2,...,N3), and ag, a1, ap, az are the real numbers in (0,1) satisfying ag + ay +ap + a3 = 1.
Then the sequence {x,} converges strongly to Pgx1, where Pg is the projection from H onto ¥F.
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