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We introduce an iterative algorithm for finding a common element of the set of solutions of an
infinite family of equilibrium problems and the set of fixed points of a finite family of nonexpansive
mappings in a Hilbert space. We prove some strong convergence theorems for the proposed
iterative scheme to a fixed point of the family of nonexpansive mappings, which is the unique
solution of a variational inequality. As an application, we use the result of this paper to solve a
multiobjective optimization problem. Our result extends and improves the ones of Colao et al.
(2008) and some others.

1. Introduction
Let H be a real Hilbert space and T be a mapping of H into itself. T is said to be nonexpansive

if

|Tx-Ty| <|lx-y|, VYxyeH. (1.1)

If there exists a point u € H such that Tu = u, then the point u is called a fixed point of T. The
set of fixed points of T is denoted by F(T). It is well known that F(T) is closed convex and
also nonempty if T has a bounded trajectory (see [1]).
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Let f : H — H be a mapping. If there exists a constant 0 < x < 1 such that
£~ fyll <xllx-yll. vxyeH, (12)

then f is called a contraction with the constant «. Recall that an operator A : H — H is called
to be strongly positive with coefficient y > 0 if

(Ax,x) >7¥l|lx|>, VYxeH. (1.3)

Let u € H be a fixed point, A be a strongly positive linear bounded operator on
H and {T}", be a finite family of nonexpansive mappings of H into itself such that F =

Mty F(T) #0.
In 2003, Xu [2] introduced the following iterative scheme:

Xne1 = (I — €n1A)Ts1Xn + €pau, Vn2>1, (1.4)

where I is the identical mapping on H and T, = Tymod N, and proved some strong
convergence theorems for the iterative scheme to the solution of the quadratic minimization
problem

1
in— - 1.5
1}161?2(Ax,x) (x,u) (1.5)
under suitable hypotheses on €, and the additional hypothesis:
F=F(TT,---Tn) = F(INT,---Tn-1) = -+ = F(IoT3 - - - TNTh). (1.6)

Recently, Marino and Xu [3] introduced a new iterative scheme from an arbitrary point
xo € H by the viscosity approximation method as follows:

Xne1 = EnY f(xn) + (I — €, A)Tx,, Vn>1, (1.7)

and prove that the scheme strongly converges to the unique solution x* of the variational
inequality:

((A-yf)x*,x-x*) >0, VxeF(T), (1.8)
which is the optimality condition for the minimization problem:

meip%(Ax,x) - h(x), (1.9)

where h is a potential function for yf (i.e., I'(x) = yf(x) for all x € H).
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Let {T,,}"., be a finite family of nonexpansive mappings of H into itself. In 2007, Yao
[4] defined the mappings

un,l = )tn,lTl + (1 - )‘n,l)lr
Uyp = Ao Tolyg + (1= Ap2)l,

(1.10)
Unn-1 = AN TN-aUnn-2 + (1= Ay N-1) ],
Wi =UnN = Ay NTNUp,N-1 + (1= Ann) T
and, by extending (1.10), proposed the iterative scheme:
X1 = EnY f (Xn) + Py + (1= P)I — €,A)Wyx,, Yn>1. (1.11)

Then he proved that the iterative scheme (1.10) strongly converges to the unique solution x*
of the variational inequality:

((A-yf)x",x-x)20, VxeF (1.12)
where F = N, F(T,), which is the optimality condition for the minimization problem:

min%(Ax,x) - h(x), (1.13)

xeF

where h is a potential function for y f (However, Colao et al. pointed out in [5] that there is a
gap in Yao’s proof).

Let C be a nonempty closed convex subset of H and G : C x C — R be a bifunction.
The equilibrium problem for the function G is to determine the equilibrium points, that is,
the set

EP(G) = {x € C:G(x,y) >0, ¥y € C). (1.14)

Let A: C — H be a nonlinear mapping. Let EP(G, A) denote the set of all solutions to the
following equilibrium problem:

EP(cG,A) ={xeC:G(x,y) +(Az,y-z) >0, Yy e C}. (1.15)

In the case of A =0, EP(G, A) is deduced to EP. In the case of G =0, EP(G, A) is also denoted
by VI(C, A).
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In 2007, S. Takahashi and W. Takahashi [6] introduced a viscosity approximation
method for finding a common element of EP(G) and F(T) from an arbitrary initial element
x1 €H

G(un,y) + l(y —Up, Uy —Xn) 20, VyeC,
Tn (1.16)

Xn+1 = Enf(xn) + (1 —€,)Tu,, Vn>1,

and proved that, under certain appropriate conditions over €, and r,, the sequences {x,} and
{un} both converge strongly to z = Pr(rynepG) f (2)-

By combing the schemes (1.7) and (1.16), Plubtieg and Punpaeng [7] proposed the
following algorithm:

G(un, y) + l(y — U, Up—Xn) 20, VYyeC,
Tn (1.17)

Xn41 = €Y f(xn) + (I —€,A)Tu,, VYn>1,

and proved that the iterative schemes {x, } and {u,} converge strongly to the unique solution
z of the variational inequality:

((A-yf)z,x-z)>0, VxeF(T)NEP(G), (1.18)

which is the optimality condition for the minimization problem:

1
i —(A - .
xeP(I%}rlwgp(G) 2 (Ax,x) = h(x), (1.19)

where h is a potential function for yf.

Very recently, for finding a common element of the set of a finite family of
nonexpansive mappings and the set of solutions of an equilibrium problem, by combining
the schemes (1.11) and (1.17), Colao et al. [5] proposed the following explicit scheme:

G(un, y) + l<y — U, Up—Xn) 20, VYyeC,
n (1.20)

X1 = EnY f (xn) + Pxn + (1= P)I — €,A)Wyu,, Yn>1,

and proved under some certain hypotheses that both sequences {x,} and {u,} converge
strongly to a point x* € F which is an equilibrium point for G and is the unique solution
of the variational inequality:

((A-yf)x*,x—x*)>0, VYxeFnNEP(G), (1.21)

where F = ﬂnN:1 F(Ty,).
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The equilibrium problems have been considered by many authors; see, for example,
[6, 8-19] and the reference therein. But, in these references, the authors only considered at
most finite family of equilibrium problems and few of authors investigate the infinite family
of equilibrium problems in a Hilbert space or Banach space. In this paper, we consider a new
iterative scheme for obtaining a common element in the solution set of an infinite family
of generalized equilibrium problems and in the common fixed-point set of a finite family
of nonexpansive mappings in a Hilbert space. Let {T,,}>, (N > 1) be a finite family of
nonexpansive mappings of H into itself, be {G,} : C x C — R be an infinite family of
bifunctions, and be {A,} : C — H be an infinite family of k,-inverse-strongly monotone
mappings. Let {r,,} be a sequence such that r,, C (r,2k,) with r > 0 for each n > 1. Define the
mapping T,, : H — C by

T, (x) = {ze C:Gi(z,y) + %(y—z,z—x} >0, Vy € C}, xe€H, i>1. (1.22)

Assume that Q = NN, F(T;) N, EP(G;, A;) #0. For an arbitrary initial point x; € H, we
define the iterative scheme {x,} by

n
Zn = @pXn + Y (@1 = )T, (I = 140Xy,
i=1 (1.23)

Xn+1 = EnY f(Xn) + 6uBxy + (I — 64,B — €,A)Wyz,, VYn2>1,

where ay = 1, {a,,}, {€,} and {6,} are three sequences in (0,1), A and B are both strongly
positive linear bounded operators on H, W, is defined by (1.10), and prove that, under
some certain appropriate hypotheses on the control sequences, the sequence {x,} strongly
converges to a point x* € Q, which is the unique solution of the variational inequality:

((A-yf)x*,x—x*)>0, VYxeQ. (1.24)
If A; = Ay, G; =G and r; = r, then (1.23) is reduced to the iterative scheme:

Zy = Xy + (1= a,) T, (I =1 Ag) Xy,
(1.25)
Xn+1 = EnY f(xn) + 6uBxy + (I = 6,B — €,A)Wyz,, Yn2>1.

The proof method of the main result of this paper is different with ones of others in the
literatures and our result extends and improves the ones of Colao et al. [5] and some others.
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2. Preliminaries

Let C be a closed convex subset of a Hilbert space H. For any point x € H, there exists a
unique nearest point in C, denoted by Pcx, such that

llx = Pex|| < ||lx -y

, WyeC (2.1)

Then Pc is called the metric projection of H onto C. It is well known that Pc is a nonexpansive
mapping of H onto C and satisfies the following:

(x =y, Pcx - Pcy) > ||Pex - Pcy||2, Vx,y € H. (2.2)
Let A be a mapping from C into H, then A is called monotone if
(x-y, Ax—Ay) >0 (2.3)

for all x, y € C. However, A is called an a-inverse-strongly monotone mapping if there exists
a positive real number a such that

(x—y, Ax - Ay) 2 al| Ax - Ay|” (24)

for all x,y € C. Let I denote the identity mapping of H, then for all x,y € C and A > 0, one
has [20]

(T = 1A)x = (T-2A)y|* < [|lx - y||* + LA - 20) || Ax - Ay|”. (2.5)

Hence, if A € (0,2a], then I — LA is a nonexpansive mapping of C into H.
If there exists u € C such that

(v—u,Au) >0 (2.6)

for all v € C, then u is called the solution of this variational inequality. The set of all solutions
of the variational inequality is denoted by VI(C, A).
In this paper, we need the following lemmas.
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Lemma 2.1 (see [21]). Given x € H and y € C. Then Pcx = y if and only if there holds the
inequality

(x-y,y—-z)>0, VzeC (2.7)
Lemma 2.2 (see [22]). Let {s,} be a sequence of nonnegative real numbers satisfying
Sni1 S (1= 1) Sn + T + &, Y1 >0, (2.8)

where {1}, {T,}, and {&,} satisfy the conditions:

(1) {1} C [0,1], 3%, 11, = oo or, equivalently, T2, (1 - 11,) = 0;

(2) limsup, 7, <0;
(3) én 20 (n20), 3520 én < 0.

Then lim,, _, .8, = 0.

Let H be a Hilbert space. For all x,y € H, the following equality holds:
I+ 911 = llxl® + 20y, + ) = v (29)

Therefore, the following lemma naturally holds.

Lemma 2.3. Let H be a real Hilbert space. The following identity holds:
|lx+y|® < Ixl* +2(y,x +y), Vx,y € H. (2.10)

Lemma 2.4 (see [3]). Assume that A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient ¥ > 0 and 0 < p < ||A||™L. Then ||I - pA|| <1 - py.

Lemma 2.5 (see [2]). Assume that {a,} is a sequence of nonnegative numbers such that

a1 < (1—yn)an+06,, Yn>0, (2.11)

where {y,} is a sequence in (0, 1) and 6, is a sequence in R such that

(1) Zla ¥n = ;
(2) limsup,, _, . (6x/Yn) <007 3771 |64] < c0.

Then lim,, _, ,a,, = 0.
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Lemma 2.6 (see [23]). Let C be a nonempty closed convex subset of a Hilbert space H and let G :
C x C — R be a bifunction which satisfies the following:

(Al) G(x,x) =0forall x € C;
(A2) G is monotone, that is, G(x,y) + G(y,x) <0forall x,y € C;
(A3) Foreach x,y,z € C,

1%1(;(& +(1-txy) <G(x,y); (2.12)

(A4) Foreach x € C, y — G(x,y) is convex and lower semicontinuous.

For x € H and r > 0, define a mapping T, : H — C by
T, (x) = {z €eC:G(z,y)+ %(y—z,z—x) >0, Yy € C}. (2.13)

Then T, is well defined and the following hold:

(1) T is single-valued;
(2) T, is firmly nonexpansive, that is, for any x,y € H,

ITox - Ty < (Tx - Ty, x - y); (2.14)

(3) F(Ty) = EP(G);
(4) EP(G) is closed and convex.

It is easy to see that if there exists some point v € C such that v = T, (I - rA)v, where
A : C — H is an a-inverse strongly monotone mapping, then v € EP(G, A). In fact, since
v =T,(I-rA)v, one has

G(v,y) + %(y -v,v-(I-rA)v) >0, YyeC, (2.15)
that is,
G(v,y) +(y—v,Av) 20, VyeC. (2.16)

Hence, v € EP(G, A).
Let C be a nonempty convex subset of a Banach space. Let {T;} Y, be a finite family of
nonexpansive mappings of C into itself and Ay, A, ..., An be real numbers such that 0 < A; <1
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foreachi=1,2,...,N. Define a mapping W of C into itself as follows:
U, =0T+ (1-1)I,
Uy = L, LU + (1-Ap)I,
: (2.17)
Un-1 = AnaTnalUno + (1 - An-1)],
W =Uyn = ANTNUN-1 + (1 - AN)

Such a mapping W is called the W-mapping generated by T1,T»,...,Tn and Ay, Ay, ..., AN
(see [5, 24, 25]).

Lemma 2.7 (see [26]). Let C be a nonempty closed convex subset of a Banach space. Let
Ty, Ts,...,Tn be nonexpansive mappings of C into itself such that (N, F(T;)#® and let
M, Ay, ..., AN be real numbers such that 0 < A\; <1 foreachi=1,2,...,N-1and 0 < Ay < 1. Let
W be the W-mapping of C generated by Ty, To, ..., Tn and Ay, Xy, ..., ANn. Then F(W) = ﬂf\zjl F(T).

Lemma 2.8 (see [5]). Let C be a nonempty convex subset of a Banach space. Let {T;}Y, be a
finite family of nonexpansive mappings of C into itself and let {A,;}~, be sequences in [0,1] such
that X,; — A; for each i = 1,2,...,N. Moreover, for each n € N, let W and W,, be the W-
mappings generated by Ty, To,..., Ty and Ay, Ay, ..., Ay and Ty, Ty, ..., Tn and Ay1, Anp, ..., Ay,
respectively. Then, for all x € C, it follows that

Tim [|W,x = W] = 0. (2.18)

3. Main Results

Now, we give our main results in this paper.

Theorem 3.1. Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let f : H —
H be a contraction with coefficient 0 < x < 1, A, B: H — H be strongly positive linear bounded
self-adjoint operators with coefficients y > 0 and ﬁ > 2||B|| + ||BI?, respectively, {Tn}nN=1 cH —
H (N > 1) be a finite family of nonexpansive mappings, {G,} : Cx C — R be an infinite family
of bifunctions satisfying (Al)-(A4), and {A,}: C — H bean infinite family of inverse-strongly
monotone mappings with constants {k,} such that Q = (NN, F(T;)) N (NZ, EP(Gi, Ai)) #0. Let
{en} and {6, ) be two sequences in (0,1), {)Ln,i}f-\zll be asequence in [a,b] with0 <a < b <1, {r,}
be a sequence in (r,2k,) with r > 0 and {a,} be a strictly decreasing sequence [0,1). Set ap = 1.
Take a fixed number y > 0 with 0 <y — yx < 1. Assume that

(E1) lim, e, =0 and X7 €, = o0;
(E2) limy, -, oo|Aps1; — il =0 for each i=1,2,...,N;
(E3)0<6,+¢e,<1foralln>1;

(E4) {64} C [0, min{c,1/p, (2||B||+||B||2—ﬁ+\/(ﬁ— IBII* - 2IIBII)2 +8B||BIl) /4IIBI}) with
c<1;

(B5) X0l1 lens1 — €nl <00, 3771 ans1 — an| < 00, 3571|641 — 6n < 0.
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Then the sequence {x,} defined by (1.23) converges strongly to x* € Q, which is the unique solution
of the variational inequality: (1.24), that is,

x*=Po(I-(A-yf))x". (3.1)

Proof. Since e, — 0 as n — oo by the condition (E1), we may assume, without loss of
generality, that €, < (1 — 6,||B|))||Al|™* for all n > 1. Noting that A and B are both the linear
bounded self-adjoint operators, one has

Al = sup{[(Ax, x)| : x € H, ||x]| = 1},

(3.2)
1Bl = sup{[(Bx, x)| : x € H, [|x|| = 1}.
Observing that
((I-6yB-€,A)x,x)=1-06,(Bx,x) —e,(Ax, x)
> 1-6,|B - eallAll (3.3)
>0,
we obtain that I — 6,B — €, A is positive for all n > 1. It follows that
I = 6,B — €, Al =sup{((I-6,B-€,A)x,x):xe€ H,|x| =1}
=sup{l - ((6,B+e€,A)x,x) :x € H,|x|| =1} (3.4)
<1-6,6- €.
For each n > 1, define a quadratic function f(6,) in 6, as follows:
£(6n) = 2BIIBIS% + (B IBI - 21|BI )6, (35)
Note that
2|[B|| - B+ ||BIP
F) = f< L ~o, 66)
2p||B|l
2 = = 2 2
20BI + 1BI? - B+ \/ (B - 1BI7 ~21B1) " + &BIB]
=1. (3.7)

4p||B|

Hence, for each 6, satisfying the condition (E4), one has

0 < 2B|IBIIS; + (B~ IBI” ~211BI[ )6, < 1. (3.8)
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Moreover, it follows from (3.7), f(1/]|B||) > 1 and (E4) that

6,< —, Vn>1. (3.9)

Next, we proceed the proof with following steps.

Step 1. {x,} is bounded.

Let p € Q. Lemma 2.6 shows that every T, is firmly nonexpansive and hence
nonexpansive. Since r < r; < 2k;, I —r; A; is nonexpansive for each i > 1. Therefore, T,, (I —1; A;)
is nonexpansive for each i > 1. Noting that {a,} is strictly decreasing, ap = 1, we have

lzn = pll =

ay(x, —p) + Z(“H - ;) (T, (I - r1A)x = T, (I - 1:.A:)p) H
i1

n

< “n”xn - P“ + Z(ai—l - ai)”Tr,- (I —riAi)x, =T, (I - riAi)P”
i=1 (3.10)
n

< ayllxn = pll + X (i1 - ) [lcn = p|

i=1

= [|xn - p|
and hence

[Wazn =Pl = [Wazn - Wapl| < |20 = Pl < ||l - Pl (3.11)

Then, from (3.4) and (3.11), it follows that (noting that B is linear and ,B > 2||B|| + ||B|?> = B >
1Bl

[ln1 =l
= |lea(yf (xn) = Ap) + 6n(Bxn = Bp) + (I = 6,8 — €a.A) (Wazu —p) ||
< enl|yf (xn) = Ap|| + 6n||B(acn = p) || + 1T = 6uB = enAll[|[Wazn — p||
< enyk||xa = pll + €allyf (p) = Ap|| + allBll||xn = pl| + (1 = 648 - €T ) [Waza ~ p|
< enyx||xa = pll + eallyf (p) = Ap|| + SallBll[|xa = pl| + (1~ 6,8 - ea¥ ) |2~ P

< (I-en(y = yx))||xn —pl +exlly f(p) - Ap||-
(3.12)
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It follows from e, € (0,1) and 0 <y — yk < 1 that 0 < €, (y — yx) < 1. Therefore, by the simple
induction, we have

-A
||xn = p|| < max ||x1—p||,w , Yn>1, (3.13)
YK
which shows that {x,} is bounded, so is {z,}.
Step 2. ||xps1 — Xn|| = Oasn — oo.
First, we prove
i [Wis12n = Waza| = 0. (3.14)
Letie {0,1,...,N -2} and set
N
My = Sup{”an + [Thzal| + Z”Tiun,i—lznn} < co. (3.15)
n i=2

It follows from the definition of W,, that

U ns1,N-iZn = Un,N-iZull
= [ A1, Nmi TNl i, N=i-1Zn + (1= A, N=i) Zn — Ag Noi TN-il i N—im1Zn — (1 = Ay, N—i) Za|
< Mt N=il|l TN=iU 41, N=i=1Zn — TNl N=i-1Zn |
+ M1, N-i = A Nl TNl N-i1 Zall + [Ans,N—i = A, Nl |2l
< I Uns1,N-i-120 = U, N-ic1Znll + ([|Zall + TNl N-i-1Zn ) [ A1, N=i = An, Nl

S |Uns1,N-i-12n — U N-ic1Znl| + M1| A1, N-i = A, N=il
(3.16)

foreachi € {0,1,..., N —2}. Thus, using the above recursive inequalities repeatedly, we have
||Wn+lzn - ann” = ”un+1,NZn - un,NZn”

N
<M )tn+ i -/\ni + /\n+ - )Ln Zn|| + T Zp
< 1%2] 1i = il + A1 = A (|zall + (I T12nl)) (317)

N
< M1 Y i = Anil-

i=1
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Also, we have

n
20 = zn-1ll = [|@nxn + D (@i — ) T, (I = 1A Xy — A1 X1

i=1

n
_Z(ai—l =) T, (I —1iA)xpq + (ap1 — an) T, (I = 1. An) X0
i1

< “n”xn - xn—l” + |an - “n—1|||xn—1|| (318)

n
+ Z(“i—l = ai)|lxn = Xp-a |l + |an-1 — an|| Ty, (I = 10 An) X1 |
i=1

= ||xn - xnfln + |an - an71|”xn71” + |‘xn71 - ‘xn”lTrn (I - rnAn)xnfln

< ||xn - xn,1|| + |tX-,1 - an71|L/

where L = sup{||xp—1|| + |17, (I = 10 Az)Xn-1]l}.
Next, we prove lim, _, oo||Xn+1 — x| = 0. Observe (noting that B is linear) that

X1 — Xn = EnY (f (xXn) = f(xn-1)) + €Y f (Xn-1) + 64B(xy — Xp-1) + 6,Bxy1

+ (I -6,B-€,A)Y(Wynzyy —Wyzp1) + (I —6,B - €,A)Wpz,1
= €n1Yf(xXn-1) = 6p-1Bxp1 — (I = 64-1B — €41 A)Wy1 241

= eny (f (xn) = f(xn-1)) + 62B(xn = Xpo1) + (I = 6,8 — €, A) (Wy2y = Wi Zy1)
+ (€n— €n-1)Yf (xn-1) + (60 — On-1) Bxyo1 + Whzpo1 — Wii1241)
+ (6p-1BWy1zy1 — 6,BWyzy1) + (61-1AWh_120-1 — €AW, 2,1)

= eny (f (xn) = f(xn-1)) + 62B(xn = Xp-1) + (I = 6,8 — €, A) (Wyzy = Wi Zy1)
+ (€n— €n-1)Yf (xn-1) + (60 — On-1) Bxyo1 + Whzpo1 — Wio1241)
+ (0n-1 = 60) BWy-1zy-1 + 6,B(Wy-12n-1 = Wnzp)

+ (enfl - en)AWn—lzn—l + enA(anlznfl - annfl)-
(3.19)
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Hence, by (3.4) and (3.18), we get

w1 = xall < €nylln = Xn 1]l + Bull Bl = ucal + (1= 648 = €4 ) 120 = zaca

+len = €naly|| f (xu-1) || + 160 = Sn-alIBxna |l + [Wazn1 = Wao1Zn ||
+16n-1 = Oall|BWn-1zn-1 + 6nBl[[Wa-12n-1 = Wazu- ||
+|en-1 — €n|| AWn-1zna || + €nl| AllIWn-120-1 = Wizn ||

< enYK||lxn = xn-1|| + Oul|Bll[xn — X1l
+ (1= 648 — ¥ ) (% = x| + ln = @pa|L)
+en — ena|y|| f enm1) || + 160 — Ena||Bxpa || + Wizt = Wiz ||
+16n-1 = 6|l BWyo1Zu-1 || + 6ul| BIlIWi-12n-1 = Wnzp ||
+len-1 — €n|| AWn-1zn-1 || + €nl| AllIWn-120-1 = Wazn |

< [1 - <6n (B - ||B||) +en(F - m)] %0 = Xt || + Llan — @t + 2]€nt — €n| M2

+ 2|61 = 60| Mo + (1 + 84||B|| + enl| A [Woc1 Znot = Wanzna |,
(3.20)

where My = sup,, (Y1l f (Ga-1)|| + 1Bxuca |+ IBWoazaodll  [AWoazaall).
Set M3 = min{f - ||B||,y — yx}. It follows from 0 < y —yx < 1 and > ||B|| (due to
B >2|B|| + ||B||*) that 0 < M, < 1. Thus we have

1 = Xull < [1 = (64 + €x) M3]|lxn — Xpa|| + (6n + €1) M3

1 Bl enllAll >
* <(6n + €n)M3 * (671 + Gn)M3 + (671 + en)M3 (321)

X ||Wn_1zn_1 - WnZn_1|| + L|0(n - “n—ll + 2|€n—1 - €n|M2 + 2|6n—1 — 6n|M2.

Set

Hn = (6n + €4) M3,

1 B A
Tn:< L GullBl eallAl

(6n +e)Msz  (6n +€,) M3 (671 +€n) M3 > Wa-120-1 = Wazual, (3.22)

&n = Llay — apa| + 2|epn — €n| Mo + 2|61 — 64| M.
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Then it follows from (3.21) that

||xn+l - xn” < (1 - ﬂn)”xn - xn—l” + HnTn + én-

It follows from the assumption condition (E1), (E3), (E5), and (3.14) that

1. C [0,1], an = oo, nlgr;oTn =0, ;gn < oo.

By applying Lemma 2.2 to (3.23), we obtain ||x,41 — x4|| — Oasn — oo.

Step 3. x,—Wyz, — Oasn — oo.
For all n > 1, we have

”xn - ann“ < ||xn - xn+1|| + ||xn+1 - WnZn”

= [|xn — X1 || + || €ny f(xn) + 6uBxy + [I — 6,B — €,A]Wyzy — Wyz,||

< lxn = X || + €|y f(xn) = AW,z || + 64l|Bxy — BW,z,||

< ||xn - xn+1|| + €n||Yf(xn) - AWnZn” + 6n|IB||||xn - ann”

and hence (noting (3.9))

1 €n
lxn = Wazall £ 57— l1%n = Xpa |l + 1-5. [Y”f(xn)” + ”Aann”]'

~ 1-6,IB||

It follows from the assumption conditions (E1), (E2), and Step 2 that

Xp—Wyzp, — 0 (n— o0).

Step4. xp—z, — 0asn — oo.

15

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)



16 Fixed Point Theory and Applications

Notice that, for any x € Q,

2

i (2n = X) + D (i1 — ai) (T, (I = 11A7) %y = Ty, (I = 1;Ai)x)
i=1

1z = x||* =

n
< anllxn — x|P + D (@i — a) | (T = riAd)xn — (I - 1A x|
= (3.28)

n
<l = x| + X (@i = ) [l = 2P + i - 2K | A — A
i=1

n
= Jloew = x> + D (i1 - ai)ri(r; = 2ki) | Aix — Aix|*.
i=1

Lety, = yf(x,) —AW,z, and A = sup{|lyf (x,) —AW,z,|| : n > 1}. By using (3.8), (3.9), (3.28),
Lemmas 2.3, and 2.4, we have (noting that 6, < 1/f)

|2¢n+1 — x“2 = ”(I = 6uB)(Wyzn — x) + 6,(Bx, — Bx) + €, (Yf(xn) - AWnZn) ”2
<|I(I = 8,B) (Wyzy = x) + 8, (Bxy — Bx)||* + 2€5{Yn, Xns1 — X)
= ||(I = 6,B) (Wynzy = Wyx) + 6,B(xy — X)|I* + 2€n (Y, Xns1 — x)

< (1= 64B) llzu — xI* + 8ullBIPllxs — x| + 26, (1~ 6,8 ) 1Bl l1xs ~ xII* + 207,
< (1-6.p) [nxn P+ @i~ )i~ 2K) A ~ Aixnz]
i=1
+ Sal|BIP I, — %I + 26, (1 = 6, ) 1Blllx, — x|* + 202,
= [1- (6.8~ 6al1BI” = 26,(1 - 6.8 ) IBI) |1 — xII

+ <1 - 6nﬁ>2(ai—1 — a)ri(r; = 2ki) | Aixn — Aix|* +2A%€,,

i=1
. n
< fln = [P + (1= 8,8) Y (i1 = @)ri(ri = 2k) | Aixey = Aix|” +20%€,.

i=1
(3.29)

This shows that

(1 - 6nﬁ>i(ai_1 — a)ri(2k; — 17) | Aixy — Aix]|]?
i=1

(3.30)
< lxew = x|I” = [|2ce1 — x[1* +20%€,,

< (lxn = x| + || xn41 = XD X0 = Xnaa || + 2)L2€n
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and hence, for each i > 1,

i 2
<1 - 5nﬂ> (ai1 — a)1i(2k; — 17) || Aixy — Aix||
2 2
< lxn = [ = [l2ne1 — x| +20%€,,
< (lloen = x| + 1241 = x| 1260 = Xnea || + 20 %€,
Since 6, — 0, ||x, — xp11|| = 0and a;_1 — a; > 0, we have

lim ||Ajx, — Aix||=0, i>1.
n—oo

Now, for x € Q, we have, from Lemma 2.2,
T (I —riAi)xn - x”2
= T, (I = 1iA)xn = T, (I - 1 Ap) x|
(T, (I =1iAi)xn = Ty,(I -1 Ap)x, (I = 1 Ai)xn, — (I =11 Ai)x)
= (T (I -1iA)xy — X, x5 —x) + 1i{T, (I - 1: Ai)xy — X, Aix — Aixy)
= S{IT T = riA) 3, = xIP + llxn = 1P = 1t = T (T = 1iA) %}
+1i(Ty, (I — 11Ai)xn — x, Aix — Aixp)
and hence
”Tn (I -r1iAi)x, — X||2 <l = x||2 = |lxn = Tri(I - riAi)xn”2
+2ri (T, (I - 11 Ai)xn — X, Aix — AiXp).
Therefore,

n
llzn = xI* < aullxn — x| + D (i1 — a) | T, (I = 1;Ai) 20 — x|I°
i=1

n
< anllen = xIP + Y (i1 = ) [l = %I = ln = T, (1 = 1A )P
i=1

+2ri (T, (I — 11 Ai)x, — X, Aix — Aixy)

n
= [lxn = xI* = Y (@it = ) [1xn = T, (I = 1iAd)
i=1

n
+ 22 (tXi,l - ai)ri(Tri (I - r,-Ai)xn - X, Aix - Aixn).
i=1

17

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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By using (3.8), (3.9), (3.35), Lemmas 2.3 and 2.4, we have (noting that 6, <1/ B)
121 — x|
= ||(I = 6,B) Wz — X) + 6,(Bxy — Bx) + €4 (y f (xn) = AW,z ||°
< (I = 62B) (Wnzn — x) + 84(Bxy — Bx)|* + 2€4(Y, X1 — X)
= [[(I = 64B) (Wnzn = W) + 64B(xn = 2)1* + 2€n (Y, Xns1 — X)

< (1= 64B) 1z = xII” + 8ullBIP s = xI + 26, (1= 6,8 ) IBllllx, — x| +21%€,

<(1-6.p) [nxn =l = X (@i — )l = Ty (1 = 1A x|

i=1

n
+23" (@i — a)ri(Ty, (I = 1A xy — x, Aix - Aixn)]
i=1

+ BlBI oo — I + 26, (1~ 5,) 1Blll v ~ x| + 2%,
= [1= (648 - 6ulBI” ~26,(1~ 6.) IBI}) I — xIP

— (1= 6B) X (@t ) %o = Ty (1 = 1A,

i=1

(1 6nﬂ>2(a,1 ai)ti{T, (I - riAi)x, —x, Aix — Axn)+2)tzen
i=1

< flan = xl? = (1- nﬁ)z}(azl )|t = Ty, (I = 1A

(1 6nﬂ Z(cx, 1— o)y, (I — 1iAi)xn — x, Aix — Aixy) +2A%¢,
i=1

(3.36)
and hence
(1-5.5) Z"lwi_l — &) %0 = Ty (I = 1A x|
< lxn =21 = s =l +2(1 - 6,5)
x i(ai_l — o)1 (T (I = 11 A) Xy — X, Aix — Aix,)) + 20 %€, (3.37)

i=1

< (lloen = x| + [l2¢n41 = x| 1% = Xl

. n
+ 2<1 - 6,1[5)2(111-,1 —a)ri{T,, (I - 1:A;) xn — X, Aix — Aixy) + 20 %€,
i=1
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This shows that for, each i > 1,

<1 - 6nﬁ> (atic1 — ai)||xn = T (I - riAi)anz
< (oen = x|l + [2¢ne1 = x[D 1260 = xpa | (3.38)

n
+ 2(1 - 6nﬁ>Z(cxl~_1 —ai)ri{T,. (I —riAi)x, — x, Aix — Aixy) + 21%¢,,.
i=1

Since {a,} is strictly decreasing, 6, — 0, €, — 0, Aix, — Aix — 0and |[x, — x| — 0, we
have, for eachi > 1,

| = Tr, (I = 1iAi)Xu|| — 0, n—> oco. (3.39)

Now, from z,, — x, = >4 (@ic1 — ;) (Tr, X — Xp) We get

|z = x| < Z(ai—l - ‘xi)”Trixn = Xl (3.40)
i=1

Since ||x,, — Ty, x,|| — 0and 0 < a;_1 — a; for each i > 1, one has

lzn — xnl] — 0, as n— co. (3.41)

Step 5. limsup, ,_((yf - A)x*, x, —x*) <0.
To prove this, we pick a subsequence {x,, } of {x,} such that

lim sup( (1 f = A)x", 2, ') = lim ((f = A)x", 2, =", (3.42)

n—oo

Without loss of generality, we may further assume that x,;, — x. Obviously, to prove Step 5,
we only need to prove that X € Q.

Indeed, for each i > 1, since x, — T,,(I — r;A))x, — 0, X, — x and T, (I — r;A;) is
nonexpansive, by demiclosed principle of nonexpansive mapping we have

% € F(T,.(I - 1:A;)) = EP(G;, Ay), i>1. (3.43)

Assume that A, r — Ax € (0,1) for each k = 1,2,...,N. Let W be the W-mapping
generated by T, ..., Ty and Ay, ..., An. Then, by Lemma 2.8, we have

W,,x — Wx, VxeH. (3.44)
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Moreover, it follows from Lemma 2.7 that ﬂiz\il F(T;) = F(W). Assume that x ¢ F(W).

Then x # Wx. Since x € F(T,,(I —r;A;)) for each i > 1, by Step 3, (3.44) and Opial’s property
of the Hilbert space H, we have

lim inf||x,,, — X||
n—oo

< lim infl|x,, - Wx]||
1n— oo

< i inf(||xn,, = W, Zn, | + W, 20, = W, Zl| + [[W, % ~ WE]))

< lim inf(l2cn,, = W, Zn, || + [1Zn,, = %] + Wy, % - WE])
n— oo

< lim inf(|1xn, = Wi, Zn, || + 120,, = X, | + 1%, =T, (1 = 1A X, | (3.45)

1% =Ty, (I = 11402, | + Wi, % ~ W)
< 1iﬂg1f(llxnm -~ W, zn, |l + 120, = Xn, || + 1xn,, = Tr,(I = 1:Ai) X, ||

HIT (L = FA)Z = T (L = 11A) X [l + Wi, % ~ W)

< lim infljx,,, - X||,
n—oo

which is a contradiction. Therefore, X € F(W). Hence, X € Q = (ﬂf\:]l F(T))N(NZ EP(Gi, A))).

Step 6. The sequence {x,} strongly converges to some point x* € H.
By using Lemmas 2.3 and 2.4, we have

%1 = X*|* = ||(I = 628 — €4 A) (Wyzy — X*) + 6,(Bxy — Bx*) + €, (y f () — Ax) ||2
< (I = 64B — en A) (Wyzy — x*) + 6,(Bxy — Bx")|*
+ 26, (Y f (xn) = AX™, Xps1 — X*)
< [(1 = 64lIBll = €nY)llzn = X" || + 6l Bllllxn — x*||]2
+2e,(y f (xn) — AX*, X1 — X*)
< [(1 = 64lIBIl = €n¥) 1 = x*1l + EullBllll ¢ — x*]]?
(3.46)
+2e,(y f(2xn) — AX", Xpa1 — X*)
= [(1-eny)llxn— x"||]2 +2e,(y f(xn) = AX", Xpi1 — X¥)
<(1- €n7)2||xn — X" | + 2enyklxn — x*[[|20m1 — x|
+26,(yf(x") = AX", X1 — X¥)

—\ 2 2 2 2
< (1= &)l = I + enyre(Jlen = I+ lver = 1)

+2e,(yf (x*) — Ax*, xpi1 — x7),
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which implies that

e = 27|
(1- en?)2 + €YK 5 2e,
< n- * ) - A */ n+l — *
S e T = X I T (S () = AR )
(1 B 26”7 + e"lYK) *(12 6%72 *(12 26" * * *
= 1 enyx llxn — x7|| +m||xn—x|| +1_€nYK<Yf(x)—Ax1xn+1_x>
2e,(y —x .
< [1 - M] ot = 2|1
- €enyK
2e, (7 - 1 7
+ € (Y KY) — <Yf(x*) _ Ax*,xn+1 _ x*> + fnY MI ,
1-eyx |y -xy 2(y - xy)
(3.47)
where M’ is an appropriate constant such that M’ = sup,., {||x, — x*[|}. Put
_ 2en(Y — %)
T 1 —euxy
5 (3.48)
t ! (yf(x*) - Ax*,x x*) + enY !
n= = - sAn+l = o= N .
Y - kY : 2(y - &)
Then we have
21 = x> < (1= s)l|200 = X°[| + St (3.49)
It follows from the assumption condition (E1) and (3.42) that
lims, =0, an = o0, limsupt, <0. (3.50)
n— oo p— n—oo

Thus, applying Lemma 2.5 to (3.49), it follows that x, — x* asn — oco. This completes the
proof. O

By Theorem 3.1, we have the following direct corollaries.

Corollary 3.2. Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let f :
H — H be a contraction with coefficient 0 < k < 1, A : H — H be strongly positive linear
bounded self-adjoint operator with coefficient ¥ > 0, (T}, : H — H (N > 1) be a finite family of
nonexpansive mappings, G : C x C — R be a bifunction satisfying (A1)—-(A4), and Ay : C — H
be an a-inverse strongly monotone mapping such that Q = (Y, F(T;) N EP(G, A) #0. Let {&,} and
{6, ) be two sequences in (0,1), {)Ln,i}fil be a sequence in [a,b] with0 < a < b < 1, r be a number in
(0,2a), and {a, } be a sequence [0, 1). Take a fixed number y > 0 with 0 <y — yx < 1. Assume that
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(E1) limy—, o€y = 0and 377 &4 = o0,
(E2) limy, -, oo Ans1,i — Al =0 foreachi=1,2,...,N;

(E3) 0<6,+€, <1foralln>1;

(E4) (6,) € [0, min(c, 1/B, (2IIBIl+|BI2~F+1\/(B - IBI> - 21IBI)? + 8BIIBI) /4BI|BIl)) with
c<1;

(E5) Z:Lozl |€ns1 — €n] < o0, Z:zozl |1 — | < o0, Z:Lozl [6n41 = On| < o0.

Then the sequence {x,} defined by (1.25) converges strongly to x* € Q, which is the unique solution
of the variational inequality:

x*=Po(I-(A-yf))x" (3.51)

Remark 3.3. In the proof process of Theorem 3.1, we do not use Suzuki’s Lemma (see [27]),
which was used by many others for obtaining ||x,.+1 —x,|| — 0Oasn — oo (see [4, 5,28]). The
proof method of x € N2, EP(G;, A;) is simple and different with ones of others.

4. Applications for Multiobjective Optimization Problem

In this section, we study a kind of multiobjective optimization problem by using the result
of this paper. That is, we will give an iterative algorithm of solution for the following
multiobjective optimization problem with the nonempty set of solutions:

min hy(x),
xe€C, (4.1)
min hy(x),

where hy(x) and hy(x) are both the convex and lower semicontinuous functions defined on a
closed convex subset of C of a Hilbert space H.

We denote by A the set of solutions of the problem (4.1) and assume that A #@. Also,
we denote the sets of solutions of the following two optimization problems by A; and A,,
respectively,

min hi(x), x€C, (4.2)

and

min hy(x), xe€C. (4.3)

Note that, if we find a solution x € A; N Ay, then one must have x € A obviously.
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Now, let G; and G; be two bifunctions from C x C to R defined by
Gi(xy)=m(y)-m(x), Gi(x,y)=h(y)-h(x), V(x,y)eCxC, (4.4)

respectively. It is easy to see that EP(G;) = A; and EP(G;) = A, where EP(G;) denotes the
set of solutions of the equilibrium problem:

Gi(x,y) >0, VyeC, i=12, (4.5)

respectively. In addition, it is easy to see that G; and G, satisfy the conditions (A1)-(A4). Let
{an} be a sequence in (0,1) and ry, 7, € (0,1). Define a sequence {x,} by

x1 € H,
Zn = oy Xy + (1 — a,) Ty, Xy, (4.6)

Xn+1 = €Y f(xn) + (1 —€n)zn, Vn2>1.

By Theorem 3.1 with A = I, N =1, T; = I and 6, = O for all n > 1, the sequence {x,}
converges strongly to a solution x* = Pg,na,y f(x*), which is a solution of the multiobjective
optimization problem (4.1).
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