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We obtain some new existence and uniqueness theorems of positive fixed point of mixedmonotone
operators in Banach spaces partially ordered by a cone. Some results are new even for increasing
or decreasing operators.

1. Introduction

Mixed monotone operators were introduced by Guo and Lakshmikantham in [1] in 1987.
Thereafter many authors have investigated these kinds of operators in Banach spaces
and obtained a lot of interesting and important results. They are used extensively in
nonlinear differential and integral equations. In this paper, we obtain some new existence
and uniqueness theorems of positive fixed point of mixed monotone operators in Banach
spaces partially ordered by a cone. Some results are new even for increasing or decreasing
operators.

Let the real Banach space E be partially ordered by a cone P of E, that is, x ≤ y
if and only if y − x ∈ P . A : P × P → P is said to be a mixed monotone operator
if A(x, y) is increasing in x and decreasing in y, that is, ui, vi (i = 1, 2) ∈ P, u1 ≤
u2, v1 ≥ v2 implies A(u1, v1) ≤ A(u2, v2). Element x ∈ P is called a fixed point of A if
A(x, x) = x.

Recall that cone P is said to be solid if the interior
◦
P is nonempty, and we denote

x � 0 if x ∈
◦
P . P is normal if there exists a positive constant N such that 0 ≤ x ≤ y implies

‖x‖ ≤ N‖y‖, N is called the normal constant of P .
For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and μ > 0 such

that λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e.,h ≥ θ and h/= θ),
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we denote by Ph the set Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P is convex and

λPh = Ph for all λ > 0. If
◦
P /= ∅ and h ∈

◦
P , it is clear that Ph =

◦
P .

All the concepts discussed above can be found in [2, 3]. For more facts about mixed
monotone operators and other related concepts, the reader could refer to [4–9] and some of
the references therein.

2. Main Results

In this section, we present our main results. To begin with, we give the definition of τ-ϕ-
concave-convex operators.

Definition 2.1. Let E be a real Banach space and P a cone in E. We say an operatorA : P ×P →
P is τ-ϕ-concave-convex operator if there exist two positive-valued functions τ(t), ϕ(t) on
interval (a, b) such that

(H1) τ(t) : (a, b) → (0, 1) is a surjection,

(H2) ϕ(t) > τ(t), for all t ∈ (a, b),

(H3) A(τ(t)x, (1/τ(t))y) ≥ ϕ(t)A(x, y), for all t ∈ (a, b), x, y ∈ P .

Theorem 2.2. Let P be normal cone of E, and let A : P × P → P be a mixed monotone and τ-ϕ-
concave-convex operator. In addition, suppose that there exists h > θ such that A(h, h) ∈ Ph, then A
has exactly one fixed point x∗ in Ph. Moreover, constructing successively the sequence

xn = A
(
xn−1, yn−1

)
, yn = A

(
yn−1, xn−1

)
, n = 1, 2, . . . , (2.1)

for any initial x0, y0 ∈ Ph, one has

‖xn − x∗‖ −→ 0,
∥∥yn − x∗∥∥ −→ 0, n −→ ∞. (2.2)

Proof. We divide the proof into 3 steps.

Step 1. We prove that A has a fixed point in Ph.
Since A(h, h) ∈ Ph, we can choose a sufficiently small number e0 ∈ (0, 1) such that

e0h ≤ A(h, h) ≤ 1
e0

h. (2.3)

It follows from (H1) that there exists t0 ∈ (a, b) such that τ(t0) = e0, and hence

τ(t0)h ≤ A(h, h) ≤ 1
τ(t0)

h. (2.4)
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By (H2), we know that ϕ(t0)/τ(t0) > 1. So, we can take a positive integer k such that

(
ϕ(t0)
τ(t0)

)k

≥ 1
τ(t0)

. (2.5)

It is clear that

(
τ(t0)
ϕ(t0)

)k

≤ τ(t0). (2.6)

Let u0 = [τ(t0)]
kh, v0 = (1/[τ(t0)]

k)h. Evidently, u0, v0 ∈ Ph and u0 = [τ(t0)]
2kv0 < v0. By the

mixed monotonicity of A, we have A(u0, v0) ≤ A(v0, u0). Further, combining the condition
(H3)with (2.4) and (2.6), we have

A(u0, v0) = A

(

[τ(t0)]kh,
1

[τ(t0)]k
h

)

= A

(

τ(t0)[τ(t0)]k−1h,
1

τ(t0)
1

[τ(t0)]k−1
h

)

≥ ϕ(t0)A

(

[τ(t0)]k−1h,
1

[τ(t0)]k−1
h

)

≥ · · ·

≥ (
ϕ(t0)

)k
A(h, h) ≥ (

ϕ(t0)
)k
τ(t0)h

≥ [τ(t0)]kh = u0.

(2.7)

For t ∈ (a, b), from (H3), we get

A
(
x, y

)
= A

(
τ(t)

1
τ(t)

x,
1

τ(t)
τ(t)y

)
≥ ϕ(t)A

(
1

τ(t)
x, τ(t)y

)
, (2.8)

and hence

A

(
1

τ(t)
x, τ(t)y

)
≤ 1

ϕ(t)
A
(
x, y

)
, ∀t ∈ (a, b), x, y ∈ P. (2.9)
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Thus, we have

A(v0, u0) = A

(
1

[τ(t0)]k
h, [τ(t0)]kh

)

= A

(
1

τ(t0)
1

[τ(t0)]k−1
h, τ(t0)[τ(t0)]k−1h

)

≤ 1
ϕ(t0)

A

(
1

[τ(t0)]k−1
h, [τ(t0)]k−1h

)

≤ · · ·

≤ 1
(
ϕ(t0)

)k A(h, h) ≤ 1
(
ϕ(t0)

)k · 1
τ(t0)

h

≤ 1

[τ(t0)]k
h = v0.

(2.10)

Construct successively the sequences

un = A(un−1, vn−1), vn = A(vn−1, un−1), n = 1, 2, . . . . (2.11)

It follows from (2.7), (2.10), and the mixed monotonicity of A that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (2.12)

Note that u0 = [τ(t0)]
2kv0, so we can get un ≥ u0 ≥ [τ(t0)]

2kv0 ≥ [τ(t0)]
2kvn, n = 1, 2, . . .. Let

rn = sup{r > 0 | un ≥ rvn}, n = 1, 2, . . . . (2.13)

Thus, we have un ≥ rnvn, n = 1, 2, . . ., and then

un+1 ≥ un ≥ rnvn ≥ rnvn+1, n = 1, 2, . . . . (2.14)

Therefore, rn+1 ≥ rn, that is, {rn} is increasing with {rn} ⊂ (0, 1]. Suppose that rn → r∗ as
n → ∞, then r∗ = 1. Indeed, suppose to the contrary that 0 < r∗ < 1. By (H1), there exists
t1 ∈ (a, b) such that τ(t1) = r∗. We distinguish two cases.

Case 1. There exists an integer N such that RN = r∗. In this case, we know that rn = r∗ for all
n ≥ N. So, for n ≥ N, we have

un+1 = A(un, vn) ≥ A

(
rnvn,

1
rn
un

)
= A

(
τ(t1)vn,

1
τ(t1)

un

)
≥ ϕ(t1)vn+1. (2.15)

By the definition of rn, we get rn+1 = r∗ ≥ ϕ(t1) > τ(t1) = r∗, which is a contradiction.
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Case 2. If for all integer n, rn < r∗, then 0 < rn/r
∗ < 1. By (H1), there exists sn ∈ (a, b) such

that τ(sn) = rn/r
∗. So, we have

un+1 = A(un, vn) ≥ A

(
rnvn,

1
rn
un

)
= A

(
rn
r∗
r∗vn,

r∗

rn

1
r∗
un

)
= A

(
τ(sn)r∗vn,

1
τ(sn)

1
r∗
un

)

≥ ϕ(sn)A
(
r∗vn,

1
r∗
un

)
≥ ϕ(sn)ϕ(t1)vn+1.

(2.16)

By the definition of rn, we have

rn+1 ≥ ϕ(sn)ϕ(t1) ≥ τ(sn)ϕ(t1) =
rn
r∗
ϕ(t1). (2.17)

Let n → ∞, we get r∗ ≥ ϕ(t1) > τ(t1) = r∗, which is also a contradiction. Thus, limn→∞rn = 1.
For any natural number p, we have

θ ≤ un+p − un ≤ vn − un ≤ (1 − rn)v0,

θ ≤ vn+p − vn ≤ vn − un ≤ (1 − rn)v0.
(2.18)

Since P is normal, we have

∥∥un+p − un

∥∥ ≤ N(1 − rn)‖v0‖ (as n → ∞),

∥∥vn+p − vn

∥∥ ≤ N(1 − rn)‖v0‖ (as n → ∞).
(2.19)

Here, N is the normality constant.
So, {un} and {vn} are Cauchy sequences. Because E is complete, there exist u∗, v∗ such

that un → u∗, vn → v∗ (n → ∞). By (2.12), we know that un ≤ u∗ ≤ v∗ ≤ vn and

θ ≤ v∗ − u∗ ≤ (1 − rn)v0. (2.20)

Further,

‖v∗ − u∗‖ ≤ N(1 − rn)‖v0‖ (n → ∞), (2.21)

and thus u∗ = v∗. Let x∗ := u∗ = v∗, we obtain

un+1 = A(un, vn) ≤ A(x∗, x∗) ≤ A(vn, un) = vn+1. (2.22)

Let n → ∞, we get x∗ = A(x∗, x∗). That is, x∗ is a fixed point of A in Ph.
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Step 2. We prove that x∗ is the unique fixed point of A in Ph.
In fact, suppose that x is a fixed point of A in Ph. Since x∗, x ∈ Ph, there exist positive

numbers β > α > 0 such that αx ≤ x∗ ≤ βx. Let e1 = sup{e > 0 | (1/e)x ≥ x∗ ≥ ex}.
Evidently, e1 ∈ (0, 1]. We now prove that e1 = 1. If otherwise, 0 < e1 < 1. From (H1), there
exists t2 ∈ (a, b) such that τ(t2) = e1. Then,

x∗ = A(x∗, x∗) ≥ A

(
e1x,

1
e1

x

)
= A

(
τ(t2)x,

1
τ(t2)

x

)

≥ ϕ(t2)A(x, x) = ϕ(t2)x.

x∗ = A(x∗, x∗) ≤ A

(
1
e1

x, e1x

)
= A

(
1

τ(t2)
x, τ(t2)x

)

≤ 1
ϕ(t2)

A(x, x) =
1

ϕ(t2)
x.

(2.23)

Since ϕ(t2) > τ(t2) = e1, this contradicts the definition of e1. Hence, e1 = 1, thus, x∗ = x.
Therefore, A has a unique fixed point x∗ in Ph.

Step 3. We prove (2.2).
For any x0, y0 ∈ Ph, we can choose a small number e2 ∈ (0, 1) such that

e2h ≤ x0 ≤ 1
e2

h, e2h ≤ y0 ≤ 1
e2

h. (2.24)

Also from (H1), there is t3 ∈ (a, b) such that τ(t3) = e2, and hence

τ(t3)h ≤ x0 ≤ 1
τ(t3)

h, τ(t3)h ≤ y0 ≤ 1
τ(t3)

h. (2.25)

We can choose a sufficiently large integer m, such that

[
ϕ(t3)
τ(t3)

]m
≥ 1

τ(t3)
. (2.26)

Let u0 = [τ(t3)]
mh, v0 = (1/[τ(t3)]

m)h. It is easy to see that u0, v0 ∈ Ph and
u0 ≤ x0 ≤ v0, u0 ≤ y0 ≤ v0. Put un = A(un−1, vn−1), vn = A(vn−1, un−1), xn = A(xn−1, yn−1),
yn = A(yn−1, xn−1), n = 1, 2, . . .. Similarly to Step 1, it follows that there exists y∗ ∈ Ph such
that A(y∗, y∗) = y∗, limn→∞un = limn→∞vn = y∗. By the uniqueness of fixed points of
operator A in Ph, we get y∗ = x∗. And by induction, un ≤ xn ≤ vn, un ≤ yn ≤ vn, n = 1, 2 . . ..
Since P is normal, we have limn→∞xn = x∗, limn→∞yn = x∗.

3. Concerned Remarks and Corollaries

If we suppose that the operator A : Ph × Ph → Ph or A :
◦
P ×

◦
P →

◦
P with P is a solid cone,

then A(h, h) ∈ Ph is automatically satisfied. This proves the following corollaries.
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Corollary 3.1. Let P be a normal cone of E, and let A : Ph × Ph → Ph be a mixed monotone and
τ-ϕ-concave-convex operator, then A has exactly one fixed point x∗ in Ph. Moreover, constructing
successively the sequence

xn = A
(
xn−1, yn−1

)
, yn = A

(
yn−1, xn−1

)
, n = 1, 2, . . . , (3.1)

for any initial x0, y0 ∈ Ph, one has

‖xn − x∗‖ −→ 0,
∥∥yn − x∗∥∥ −→ 0, n −→ ∞. (3.2)

Corollary 3.2. Let P be a normal solid cone of E, and let A :
◦
P ×

◦
P →

◦
P be a mixed monotone

and τ-ϕ-concave-convex operator, then A has exactly one fixed point x∗ in
◦
P . Moreover, constructing

successively the sequence

xn = A
(
xn−1, yn−1

)
, yn = A

(
yn−1, xn−1

)
, n = 1, 2, . . . , (3.3)

for any initial x0, y0 ∈ P , one has

‖xn − x∗‖ −→ 0,
∥∥yn − x∗∥∥ −→ 0, n −→ ∞. (3.4)

When τ(t) = t, ϕ(t) = tα(t), 0 < α(t) < 1, 0 < t < 1, the conditions (H1) and (H2) are
automatically satisfied. So, one has

Corollary 3.3. Let P be a normal cone of a real Banach space E, h > θ.A : Ph × Ph → Ph is a mixed
monotone operator. In addition, suppose that for all 0 < t < 1, there exists 0 < α(t) < 1 such that

A

(
tx,

1
t
y

)
≥ tα(t)A

(
x, y

)
, ∀x, y ∈ Ph, 0 < t < 1, (3.5)

then A has exactly one fixed point x∗ in Ph. Moreover, constructing successively the sequence

xn = A
(
xn−1, yn−1

)
, yn = A

(
yn−1, xn−1

)
, n = 1, 2, . . . , (3.6)

for any initial x0, y0 ∈ Ph, one has

‖xn − x∗‖ −→ 0,
∥∥yn − x∗∥∥ −→ 0, n −→ ∞. (3.7)

Remark 3.4. Corollary 3.3 is the main result in [5]. So, our results generalized the result in [5].

When τ(t) = t, ϕ(t) = tβ, 0 < t < 1, the conditions (H1) and (H2) are automatically
satisfied. So, we have the following.
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Corollary 3.5. Let P be normal solid cone of E, and letA :
◦
P ×

◦
P →

◦
P be a mixed monotone operator.

In addition, suppose that there exists 0 < β < 1 such that

A

(
tx,

1
t
y

)
≥ tβA

(
x, y

)
, ∀x, y ∈ Ṗ , 0 < t < 1, (3.8)

then A has exactly one fixed point x∗ in
◦
P . Moreover, constructing successively the sequence

xn = A
(
xn−1, yn−1

)
, yn = A

(
yn−1, xn−1

)
, n = 1, 2, . . . , (3.9)

for any initial x0, y0 ∈
◦
P , one has

‖xn − x∗‖ −→ 0,
∥∥yn − x∗∥∥ −→ 0, n −→ ∞. (3.10)

Remark 3.6. Corollary 3.5 is the main result in [4]. So, our results generalized the result in [4].
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