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By using the Krasnoselskii’s fixed point theorem and operator spectral theorem, the existence of
positive solutions for the nonlocal fourth-order boundary value problem with variable parameter

u@(t) + Bhu'(t) = Af(tult),u"(t), 0 <t <1, u0) = u(l) = J’é p(s)u(s)ds, u"(0) = u"(1) =
f; q(s)u"(s)ds is considered, where p,q € L'[0,1], A > 0 is a parameter, and B € C[0,1], f €

C([0,1] % [0, 00) x (=00,0], [0, 0)).

1. Introduction

The existence of positive solutions for nonlinear fourth-order multipoint boundary value
problems has been studied by many authors using nonlinear alternatives of Leray-Schauder,
the fixed point theory, and the method of upper and lower solutions (see, e.g., [1-15] and
references therein). The multipoint boundary value problem is in fact a special case of the

boundary value problem with integral boundary conditions.

Recently, Bai [16] studied the existence of positive solutions of nonlocal fourth-order

boundary value problem
u® (t) + pu(t) = Af (t,u(t),u'(t)), 0<t<l,

1
u(0) =u(l) = J; p(s)u(s)ds,

1
u'(0)=u"(1) = fo q(s)u"(s)ds.
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under the assumption:

(A1) A >0and 0 < g < 7?,

(A2) f € C([0,1]x[0, 0) x(-00,0], [0,0)),p,q € L}[0,1], p(s) > 0,4(s) >0, fép(s)ds <1,
fol q(s) sin/psds + fol g(s) sin/B(1 — s)ds < sin/p.

In this paper, we study the above generalizing form with variable parameters BVP
u®(t) + B(hu'(t) = Af (tu(t), v’ (1)), 0<t<l,

1
u(0) =u(l) = fo p(s)u(s)ds, (1.2)

1
W(0) = u'(1) = fo g(s)d'(s)ds,

where B € C[0,1], A > 0 is a parameter.

Obviously, BVP(1.1) can be regarded as the special case of BVP(1.2) with B(t) = p.
Since the parameters B(t) is variable, we cannot expect to transform directly BVP(1.2) into
an integral equation as in [16]. We will apply the cone fixed point theory, combining with
the operator spectra theorem to establish the existence of positive solutions of BVP(1.2). Our
results generalize the main result in [16].

Let f = infic[o,11B(t), and we assume that the following conditions hold throughout the

paper:
(H1) Be C[0,1] and 0 < < 2,

(H2) f € C([0,1] x [0,00) x (-00,0],[0,0)), p,g € L'[0,1], p(s) > 0, q(s) > 0 and
fol p(s)ds <1, fol q(s) sin~/Psds + fol q(s) sin/B(1 — s)ds < sin/p.

2. The Preliminary Lemmas

SetA; =0, -7 <Ay =-pf<0and

61=1- JS p(s)ds, 6, = sin \/E - f: g(s) sin \/Esds - J.: q(s) sin \/E(l -s)ds. (2.1)

By (H1), (H2), we get 6; 20, i = 1,2. Denote by K (¢, s) the Green’s function of the problem

-u"(t) + Mu(t) =0, 0<t<l,

1 (2.2)
u(0) =u(l) = fo p(s)u(s)ds



Fixed Point Theory and Applications 3

and K>(t, s) the Green’s function of the problem

-u"(t) + \u(t) =0, 0<t<l,

1 (2.3)
u(0) = u(1) =I q(s)u(s)ds.
0
Then, carefully calculation yield
1
Ki(t,s) =Gi(t,s) + p1 J. Gi(s, x)p(x)dx,
0
1
K;(t,s) = Ga(t, s) + pa(t) J. Ga(s, x)g(x)dx,
0
t(l-s), 0<t<s<l1,
G1(t, S) =
s(1-t), 0<s<t<],
(2.4)

sin+/ptsin/B(1 - s) <
\VPsin/p Lo T

Gz(t,S) =
sin/Bs sin/B(1 —t), O<s<t<i
VPsin/p
p=g  palt)= Sin\/ﬁ”sgn V-t
! 2

Lemma 2.1 (see [16]). Suppose that (A1), (A2) hold. Then, for any h € C[0, 1], u solves the problem
u® () + pu’(t) = h(t), 0<t<]1,

1
u(0) =u(l) = fo p(s)u(s)ds, (2.5)

1
W'(0) = u'(1) = fo g(s)d'(s)ds,

if and only if u(t) = fé f; Ki(t,s)Ka(s, T)h(T)dTds.

LetY =C[0,1], Y. ={ueY :u(t) >0,t € [0,1]}, and |Ju|lp = maxo<s<1|u(t)|, foru e Y.
X = {u € C?[0,1] : u(0) = u(1) = [ p(s)u(s)ds, u'(0) = u'(1) = [; g(s)u" (s)ds}, llulli = llu"llo,
llall2 = lfuello + [lull1, for u € X.

It is easy to show that ||u||1, ||u]]2 are norms on X.
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Lemma 2.2 (see [16]). [|-|li < |- |2 < A+ 61)|| - |1 and (X, || - ||2) is a Banach space.
Lemma 2.3 (see [5]). Assume that (A1), (A2) hold. Then,
(i) Ki(t,s) >0, fort,s € [0,1],i=1,2; Ki(t,s) >0, fort,s € (0,1),i=1,2,
(ii) Gi(t, s) > biGi(t,1)Gi(s, s), Gi(t, s) < CiGi(s,s) fort,s € [0,1],i=1,2,
where C1 =1,b; =1, C; = 1/sin/B, by = \/Bsin~/p.

Denote

di = 1/£2t15r§/4bici(t/ t)y (i=12),

_ ming /4<<3/4p2(t)
maxi /a<t<3/ap2(t)’ (26)

1
D; = maxf Ki(t,s)ds (i=1,2).
te[0,1] 0

Computations yield the following results.
Lemma 2.4 (see [3]). D] = maxe(o,1 fol Gi(t,s)ds >0 (i=1,2)
(i) when \; >0, D} = (1/4;)(1 -1/ cos(w;/2)),
(i) when A; =0, D} =1/8,
(iii) when —w? < 1; <0, D} = (1/4;)(1 - 1/ cos(w;/2)).
Lemma 2.5 (see [16]). Suppose that (A1), (A2) hold and p,(t), di, & are given as above. Then,
(i) maxep11p2(t) = p2(1/2),

(ii)0<di<1,0<¢<1.

By Lemmas 2.4 and 2.5, D> = max[o,1] fol K,(1/2,s)ds.

Take 6 = min{d;, d>¢/C,}, by Lemma 2.5,0 < 6 < 1.
Define

1 01
(Th)(t) = J. J. Ki(t,s)Ky(s, T)h(T)dTds, te]0,1],
00 1 2.7)
(Ah)(t) = (Th)"(t) = —f Ky (t, t)h(t)dr, te]0,1].
0

Lemma2.6. T:Y — (X, |- |2) is completely continuous, and ||T|| < D,.

Proof. 1t is similar to Lemma 6 of [3], so we omit it. O
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Lemma 2.7 (see [17]). Let E be a Banach space, P C E a cone, and Q, Qo be two bounded open sets
of Ewith0 € Q1 C Q1 C Q. Suppose that A : PN (Q \ Q1) — P is a completely continuous
operator such that either

(i) |Ax] < ||x|l, x € PN oQq and ||Ax]|| > ||x||, x € PN 0Ly, or

(ii) |Ax]| > ||x]l, x € PN 0Qq and ||Ax|| < ||x]|, x € PN 0L,

holds. Then, A has a fixed point in PN (Qa \ Q1).

3. The Main Results

Suppose that K1, Ky, G2, p2, C2, 8, and D», are defined as in Section 2, we introduce some
notations as follows:

A= J.: J.: Ki(s,5)Kz(s, T)dT ds, B = fl [Gz(s,s) + p2<%> fl Ga (s, x)q(x)dx] ds,

0 0
1-L 1
K = sup [B(t) -], L = D,K, o= ——, m = ,
te[0,1] A+CB 0 ff//: Ky(1/2,7)dr
— t, y . . t/ 7
fo = limsup max M, = lim inf min M,
lul+[o] — 0 t€[01] |1 + (0] 20 Jul+lol—0te[1/4,3/4] |u| + |0
— t,u,v L t,u,v
f., = limsup max M, = lim inf M
d telo1] |u| + |v| Zoo [ul+|o] - +oo te[1/4,3/4] |u| + |7

|u|+|v| = +o0

(3.1)

Theorem 3.1. Assume that (H1), (H2) hold and L = D,K < 1. Then BVP(1.2) has at least one
positive solution if one of the following cases holds:

(@) fo < /N0, f_ > (1/ V),

(i) £, > (1/0m, ., < (1/ D)o

Proof. For any h € Y, consider the following BVP:

u® ) +BOU' () =h(t), 0<t<l,
1
u(0) = (1) = | ployuCs)ds, 62

1
u'(0)=u"(1) = fo q(s)u"(s)ds.
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It is easy to see that the above question is equivalent to the following question:
u® () + pu’(t) = —(B(t) - p)u’"(t) + h(t), 0<t<1,

1
u(0) = u(t) = | poyuCs)ds, 63
1
u'(0)=u"(1) = fo q(s)u"(s)ds.

For any v € X, let Gv = —(B(t) — )v". Obviously, the operator G : X — Y is linear.
By Lemma 22, forallv € X, t € [0,1], |(Gov)(t)| < (B(t) - B)llv|li < Kllv|l1 £ K||v|2. Hence
IGollo < K||v|l2, and so ||G|| < K. On the other hand, u € C?[0,1] N C*(0,1) is a solution of
(3.3) if and only if u € X satisfies u = T(Gu + h), that is,

ueX, (I-TGu=Th. (3.4)

OwingtoG: X — Yand T : Y — X, the operator I - TG maps X into X. From ||T|| < D, (by
Lemma 2.6) together with [|G|| < K and condition L < 1, applying operator spectral theorem,
we have that the (I-TG) ™ exists and is bounded. Let H = (I-TG) T, then (3.4) is equivalent
to u = Hh. By the Neumann expansion formula, H can be expressed by

H=(I+TG+---+(TG)"+--)T=T+(TGT+---+(TG)"T +---. (3.5)

The complete continuity of T with the continuity of (I — TG)™" yields that the operator H :
Y — X is completely continuous. For all h € Y., let u = Th, thenu € X NY,, and u" < 0.
So, we have (Gu)(t) = —(B(t) — p)u’(t) >0, t € [0,1]. Hence,

YheY,, (GTh)(t)>0, te]0,1], (3.6)

and so (TG)(Th)(t) = T(GTh)(t) >0,t € [0,1].

Assume that for all h € Y., (TG)*(Th)(t) > 0, t € [0,1], let hy = GTh, by (3.6) we have
h € Y,, and so (TG)*"(Th)(t) = (TG)*(TGTh)(t) = (TG)*(Thy)(t) > 0, t € [0,1]. Thus by
induction, it follows that (TG)"(Th)(t) > 0, foralln > 1, h € Y, t € [0,1]. By (3.5), for all
h eY,, we have

(Hh)(t) = (Th)(t) + (TG)(Th)(t) + - - - + (TG)"(Th)(t) +--- 2 (Th)(t), t€[0,1],
(HR)'(t) = (AR)(t) + (AG)(Th) () + - - - + (AG(TG)" ) (Th) () + - - (3.7)

< (Ah)(t) = (Th)"(t) <0, te][0,1],

andsoH:Y, — Y.nX.
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On the other hand, for all h € Y., we have

(Hh)(t) < (Th)(t) + [TGI(Th)(t) +- - - + [TG["(Th)(t) + - - -
<(A+L+---+L,+--)(Th)(t) (3.8)
1
=T te]01],

|(HR)'(5)] < [(AR) B+ [(AG)Th) ()] + - - + | (AGTG)"™ ) (Th) (1) +

< (AR) )|+ LI(AR) ()] + - - - + L*|(AR) ()] + - --

(3.9)
=(1+L+---+Ly+-)|(AR)(D)
@' 0] tefo1],
IHhllg > IThllg,  [[Hhlly < 1 T Thllo,
(3.10)

1
[ hlly 2 (T, IRy < 7= IThll-

For any u € Y., define Fu = Af(t,u,u"). By (H1) and (H2), we have that F : Y, — Y., is
continuous. It is easy to see that u € C?[0,1] N C*(0, 1) being a positive solution of BVP(1.2)
is equivalent to u € Y, being a nonzero solution equation as follows:

u = HFu. (3.11)

Let Q = HF. Obviously, Q : Y. — Y, is completely continuous. We next show that the
operator Q has a nonzero fixed point in Y;. Let

" n dzé "
P= X :u> < m t)>(1-L m t)<—-(1-L .
{u € u>0,u"<0, 1/4<t11;/ u(t) > ( Y l|ull, iy ax J ) < —( ) || ||0}
(3.12)

It is easy to know that P is a cone in X, P C Y. Now, we show QP C P.

For h € Y,, by (2.7), thereis Th > 0, (Th)" < 0. Hence, by (3.7), Qu >0, (Qu)" <0, u €
P. By proof of Lemma 2.5 in [16],

n é "
1/4{£1t1<r?1)/4(Th) (t) > d1||Thl|,, max (Th)"(t) < - 2 =T, (3.13)
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By (3.7) and (3.10),

min (Qu)(H) > min (TFu)(t) 2 di|[TFullo > (1 - L)dy[|Qull,,

1/4<1<3/4
e (3.14)
n 2 n Vi
< < - <
Jmax (Qu)'() < max (TFu)'() < -2 [(TFu)'l, < - - DEE Qull,
Thus QP c P.
(i) Since 70 < (1/X)mo, by the definition of 70, there exists r; > 0 such that
" g
< —7no.
ot X, f(tu),u'"(t)) < 10 (3.15)
Let Q, ={u e P:|ul] <r}, one has
F(tult), ' () < %;10, ueodQ,, telo1]. (3.16)

So, by (3.10), we get
1
1Qully = |[HFul|, < ﬁllTFullo

) f (t,u(t),u"(r))dr ds

0

Anory

< Ao f f Ki(s,s)Ka(s, T)dr ds < T

“1-L

1
1Qully = IHFull; < -—=IITFull;
1-L

1 1
< )LCzl } I fo I:GZ(T, T) +p2<%) fo Go(T, x)q(x)dx:lf(r,u(q-),u"(T))dT

< CzBT]oTl '
- 1-L
(3.17)

Hence, for u € 09Q,,,

1 A+ BC r
IQull, = |HFul, < ——|[TFul, < CEECMN (3.18)
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On the other hand, since f > (1/1)71, there exists r, > r1 > 0 such that

min —1. 3.19
1/4<t<3/460ud)+ e )zry [w()] + [’ (H)] =AY (3.19)

Choose 1, > (1/0)ry, let Q,, = {u € P : |lull < r2}. For u € 0Q,,, t € [1/4,3/4], there is
1y <0y < [u(t)| + |u" (t)| < r2. Thus,

n 97'2 13
f(t/u(t)/u (t)) > Trlll ue aQrZ/ te I:Z, Z] .

|(TFu)"<%) ‘ = /\Jj Kz<%,T>f(T,u(T),u”(T)>dT

3/4 1 3/4 1
>\ K2<—,T>f(T,u(T),u"(T))dT > qlerzf K2<—,T>d7‘ =1.
/4 \2 e \2
(3.20)
Hence, foru € Q,,,
n ]‘
IQull > ITFul > |(TFuy' (3 )| 2 2 = uls. (3.21)

By the use of the Krasnoselskii’s fixed point theorem, we know there exists 1 € Q, \ ©Q; such
that Qug = up, namely, u is a solution of (1.2) and satisfied 1o > 0, u; < 0, r1 < ||uoll2 < 2.
(ii) The proof is similar to (i), so we omit it. O

Corollary 3.2. Assume that (H1), (H2) hold, and L < 1. Then that (1.2) has at least two positive
solution, if f satisfy

(@) fo < @/Nmo, fo, < (1/V)m0,
(ii) There exists Rg > 0 such that f(t,u,v) > (ORo/A)m1, for t € [1/4,3/4], |lu| + |v| > OR.

Proof. By the proof of Theorem 3.1, we know that (1) from the condition 70 < (1/X)no, there
exists Q = {u € P : ||u|]z < r1}, such that |Qu|l2 < |lull2, u € 02,,, (2) from the condition
foo < (1/X)no, there exists Q,, = {u € P : ||ull2 < 2}, r2 > 11, such that ||Qul|> < ||ull2, u € 0Q,,,
(3) from the condition (ii), there exists Q,, = {u € P : |ul]2 < r3}, r» > r3 > rqy, such that
1Qull2 > ||lull2, u € 0Q;,. By the use of Krasnoselskii’s fixed point theorem, it is easy to know
that (1.2) has at least two positive solutions. O

Corollary 3.3. Assume (H1), (H2) hold, and L < 1. Then problem (1.2) has at least two positive
solution, if f satisfy

(1) )_’0 > (1/XM)m, Lw > (1/ M),
(ii) There exists Ry > 0 such that f(t,u,v) < (ORo/A)no, for t € [0,1], [u| + |v| < Ry.

Proof. The proof is similar to Corollary 3.2, so we omit it. O
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Example 3.4. Consider the following boundary value problem

u® () + <JFT2 + t>u"(t) = w2 [18(u(t) - u'(t)) - 179sin(u(t) -u'(t))], 0<t<1,

1
u(0) =u(l) = f su(s)ds, (3.22)

0

u'(0) =u"(1) =0.

In this problem, we know that B(t) = x2/4 + t, p(t) = t,q(t) = 0, A = &%, then we can get
Ci=1,C=1p=1p= V2, p= x2/4, K=1,D, = 4(\/§ - 1)/n‘2. Further more, we obtain
A= (48-13x2) /7%, B=2/x%, thenn = (1 - L)’/ (48 — 1), 11 = 4or*//2cos(or/8) - 1, s0

1 1
fo=01< —mp=019, [ =18>—n =133, (3.23)

Thus, B(t), p(t), q(t), and f satisfy the conditions of Theorem 3.1, and there exists at least a
positive solution of the above problem.
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