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This paper presents a framework of iterative methods for finding specific common fixed points of a
nonexpansive self-mappings semigroup in a Banach space. We prove, with appropriate conditions,
the strong convergence to the solution of some variational inequalities.

1. Introduction

Let C be a nonempty closed convex subset of a Hilbert space H, and let F : C → H be a
nonlinearmap. The classical variational inequality which is denoted by VI(F,C) is formulated
as finding x∗ ∈ C such that

〈Fx∗, x − x∗〉 ≥ 0, (1.1)

for all x ∈ C. We recall that F is called η-strongly monotone, if for each x, y ∈ C, we have

〈
Fx − Fy, x − y〉 ≥ η∥∥x − y∥∥2

, (1.2)

for a constant η > 0, and also κ-Lipschitzian if for each x, y ∈ C, we have

∥∥Fx − Fy∥∥ ≤ κ∥∥x − y∥∥, (1.3)
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for a constant κ > 0. Existence and uniqueness of solutions are important problems of the
VI(F,C). It is known that if F is a strongly monotone and Lipschitzian mapping on C, then
VI(F,C) has a unique solution. An important problem is how to find a solution of VI(F,C). It
is known that

x∗ ∈ VI(F,C) ⇐⇒ x∗ = PC(x∗ − λFx∗), (1.4)

where λ > 0 is an arbitrarily fixed constant and PC is the projection of H onto C. This
alternative equivalence has been used to study the existence theory of the solution and to
develop several iterative type algorithms for solving variational inequalities. But the fixed
point formulation in (1.4) involves the projection PC, which may not be easy to compute, due
to the complexity of the convex set C. So, projection methods and their variant forms can be
implemented for solving variational inequalities.

In order to reduce the complexity probably caused by the projection PC, Yamada [1]
(see also [2]) introduced a hybrid steepest-descent method for solving VI(F,C). His idea is
stated now. Assume that C is the fixed point set of a nonexpansive mapping T : H → H.
Recall that T is nonexpansive if

∥∥Tx − Ty∥∥ ≤ ∥∥x − y∥∥, ∀x, y ∈ H. (1.5)

Assume that F is η-strongly monotone and κ-Lipschitzian on C. Take a fixed number μ ∈
(0, 2η/κ2) and a sequence {λn} in (0, 1) satisfying the following conditions:

(C1) limn→∞λn = 0,

(C2)
∑∞

n=1 λn = ∞,

(C3) limn→∞(λn − λn+1)/λ2n+1 = 0.

Starting with an arbitrary initial guess x0 ∈ H, generate a sequence {xn} by the
following algorithm:

xn+1 := Txn − λn+1μF(Txn), n ≥ 0. (1.6)

Yamada [1] proved that the sequence {xn} converges strongly to a unique solution of VI(F,C).
Xu and Kim [3] further considered and studied the hybrid steepest-descent algorithm (1.6).
Their major contribution is that the strong convergence of (1.6) holds with condition (C3)
being replaced by the following condition:

(C3)′ limn→∞(λn − λn+1)/λn+1 = 0.

It is clear that condition (C3)′ is strictly weaker than condition (C3), coupled with
conditions (C1) and (C2). Moreover, (C3)′ includes the important and natural choice {1/n}
for {λn}whereas (C3) does not. For more related results, see [4, 5].

Let X be a Banach space we recall that a nonexpansive semigroup is a family {T(t) :
t > 0} of self-mappings of X satisfies the following conditions:

(i) T(0)x = x for x ∈ X,

(ii) T(t + s)x = T(t)T(s)x for t, s > 0 and x ∈ X,
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(iii) limt→ 0T(t)x = x for x ∈ X,

(iv) for each t > 0, T(t) is nonexpansive. that is,

∥
∥T(t)x − T(t)y∥∥ ≤ ∥

∥x − y∥∥, ∀x, y ∈ X. (1.7)

The problem is to find some fixed point in C =
⋂
t>0 Fix(T(t)). For this, so many algorithms

have been developed and under some restrictions partial answers have been obtained [6–11].
Assume that F : X → X is a strongly monotone and Lipschitzian mapping and {T(t) :

t > 0} is a nonexpansive semigroup of self-mappings on X. For an appropriate μ and starting
from an arbitrary initial point x0 ∈ X, we devise the following implicit, explicit, and modified
iterations:

xn := λnxn + (1 − λn)T(tn)xn − λnμFxn, (1.8)

xn+1 := λnxn + (1 − λn)T(tn)xn − λnμFxn, (1.9)

xn+1 := λnyn + (1 − λn)T(tn)xn,
yn :=

(
1 − μn

)
xn + μn(T(tn) − F)xn,

(1.10)

for n ≥ 1. With some appropriate assumptions, we prove the strong convergence of (1.8),
(1.9), and (1.10) to the unique solution of the variational inequality 〈Fx∗, J(x − x∗)〉 ≥ 0 in C,
where J is the single-valued normalized duality mapping from X into 2X

∗
.

Our main purpose is to improve some of the conditions and results in the mentioned
papers, especially those of Song and Xu [11].

2. Preliminaries

Let S := {x ∈ X : ‖x‖ = 1} be the unit sphere of the Banach space X. The space X is said to
have Gateaux differentiable norm (or X is said to be smooth), if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

, (2.1)

exists for each x, y ∈ S, andX is said to have a uniformly Gateaux differentiable norm if for each
y ∈ S, the limit (2.1) converges uniformly for x ∈ S. Further, X is said to be uniformly smooth
if the limit (2.1) exists uniformly for (x, y) ∈ S × S.

We denote J the normalized duality mapping from X to 2X
∗
defined by

J(x) =
{
f∗ :

〈
x, f∗〉 = ‖x‖2 = ∥∥f

∥∥∗2}
, ∀x ∈ X. (2.2)

where 〈·, ·〉 denotes the generalized duality pairing. It is well known if X is smooth then any
duality mapping onX is single valued, and ifX has a uniformly Gateaux differentiable norm,
then the duality mapping is norm to weak∗ uniformly continuous on bounded sets.
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Recall that a Banach space X is said to be strictly convex if ‖x‖ = ‖y‖ = 1 and x /=y
implies ‖x +y‖/2 < 1. In a strictly convex Banach space X, we have that if ‖λx + (1− λ)y‖ = 1
for λ ∈ (0, 1) and x, y ∈ X, then x = y.

Now, we recall the concept of uniformly asymptotically regular semigroup. A
continuous operator semigroup {T(t) : t > 0} on X is said to be uniformly asymptotically
regular on X if for all h > 0 and any bounded subset D of X, we have

lim
t→∞

sup
x∈D

‖T(h)(T(t)x) − T(t)x‖ = 0. (2.3)

The nonexpansive semigroup {σt(x) = (1/t)
∫ t
0 T(s)xds : t > 0} is an example of uniformly

asymptotically regular operator semigroup [11].
Let μ be a continuous linear functional on l∞ satisfying ‖μ‖ = 1 = μ(1). Then, we know

that μ is a mean on N if and only if

inf{an : n ∈ N} ≤ μ(a) ≤ sup{an : n ∈ N}, (2.4)

for every a = (a1, a2, . . .) ∈ l∞. Sometimes, we use μn(an) instead of μ(a). A mean μ on N is
called a Banach limit if μn(an) = μn(an+1). We know that if μ is a Banach limit, then

lim inf
n→∞

an ≤ μ(a) ≤ lim sup
n→∞

an, (2.5)

for every a = (a1, a2, . . .) ∈ l∞. Thus, if an → c as n → ∞, then we have

μn(an) = μ(a) = c. (2.6)

A discussion on these and related concepts can be found in [12].
We make use of the following well-known results throughout the paper.

Lemma 2.1 (see [12, Lemma 4.5.4]). Let D be a nonempty closed convex subset of a Banach space
X with a uniformly Gateaux differentiable norm, and let {yn} be a bounded sequence in X. If z0 ∈ D,
then

μn
∥∥yn − z0

∥∥2 = min
y∈D

μn
∥∥yn − y

∥∥2
, (2.7)

if and only if

μn
〈
y − z0, J

(
yn − z0

)〉 ≤ 0, (2.8)

for all y ∈ D.

Lemma 2.2 (see [13]). Let {sn}, {cn} ⊂ R
+, {an} ⊂ (0, 1), and let {bn} ⊂ R be sequences such that

sn+1 ≤ (1 − an)sn + bn + cn, (2.9)



Fixed Point Theory and Applications 5

for all n ≥ 0. Assume also that
∑

n≥0 |cn| <∞. Then, the following results hold:

(i) if bn ≤ βan (where β ≥ 0), then {sn} is bounded,
(ii) if we have

∑

n≥0
an = ∞, lim sup

n→∞

bn
an

≤ 0, (2.10)

then limn→∞sn = 0.

Lemma 2.3. Let X be a real normed linear space, and let J be the normalized duality mapping on X.
Then, for any x, y ∈ X, and j ∈ J , the following inequality holds:

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
. (2.11)

In order to reduce any possible complexity in writing, we set C =
⋂
t>0 Fix(T(t)) for a

nonexpansive semigroup {T(t) : t > 0} and

D(xn) =
{
x ∈ X : g(x) = inf

y∈X
g
(
y
)
}
, (2.12)

where g(x) = μn‖xn − x‖2, for all x ∈ X, and {xn} is a bounded sequence in X.

3. Implicit Iterative Method

Recall that if J is the single-valued normalized duality mapping from a Banach space X into
2X

∗
, a nonlinear operator F : X → X is called η-strongly monotone if for every x, y ∈ X, the

following inequality holds:

〈
Fx − Fy, J(x − y)〉 ≥ η∥∥x − y∥∥2

, (3.1)

for a constant η > 0.
The following lemma will be be used to show the convergence of (1.8) and (1.9).

Lemma 3.1. LetX be a Banach space, and let J be the single-valued normalized duality mapping from
X into 2X

∗
. Assume also that F : X → X is η-strongly monotone and κ-Lipschitzian on X. Then,

ψ(x) = I(x) − μF(x) (3.2)

is a contraction on X for every μ ∈ (0, η/κ2).
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Proof. By using Lemma 2.3, we have

∥
∥ψx − ψy∥∥2 ≤ ∥

∥(I − μF)x − (
I − μF)y∥∥2

=
∥
∥(x − y) + μ(Fy − Fx)∥∥2

≤ ∥
∥x − y∥∥2 + 2

〈
μ
(
Fy − Fx), J((x − y) + μ(Fy − Fx))〉

≤ ∥
∥x − y∥∥2 + 2μ

〈
Fy − Fx, J(x − y)〉 + 2μ2〈Fy − Fx, J(Fy − Fx)〉

≤ ∥∥x − y∥∥2 − 2μ
〈
Fx − Fy, J(x − y)〉 + 2μ2∥∥Fy − Fx∥∥∥∥J(Fy − Fx)∥∥

≤ ∥
∥x − y∥∥2 − 2μη

∥
∥x − y∥∥2 + 2μ2∥∥Fy − Fx∥∥2

≤ ∥∥x − y∥∥2 − 2μη
∥∥x − y∥∥2 + 2μ2κ2

∥∥x − y∥∥2

≤
(
1 − 2μη + 2μ2κ2

)∥∥x − y∥∥2
,

(3.3)

Thus, we obtain

∥∥ψx − ψy∥∥ ≤
√
1 − 2μ

(
η − μκ2)∥∥x − y∥∥, (3.4)

and for μ ∈ (0, η/κ2), we have
√
1 − 2μ(η − μκ2) ∈ (0, 1). That is, ψ is a contraction, and the

proof is complete.

In the following theorem, which is the main result in this section, we establish the
strong convergence of the sequence defined by (1.8).

Theorem 3.2. Let X be a real Banach space with a uniformly Gateaux differentiable norm, and let
{T(t) : t > 0} be a nonexpansive semigroup from X into itself. Let also {xn} defined by (1.8) satisfies
the following condition:

C ∩D(xn)/= ∅. (3.5)

Assume that F : X → X is η-strongly monotone and κ-Lipschitzian. Assume also that {tn} is a
sequence of positive numbers that limn→∞tn = ∞ and {λn} ⊂ (0, 1). If μ ∈ (0, η/κ2), then {xn}
converges strongly to some fixed point x∗ ∈ C, which is the unique solution in C to the variational
inequality VI∗(F,C), that is

〈Fx∗, J(x − x∗)〉 ≥ 0, ∀x ∈ C. (3.6)
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Proof. We divide the proof into several steps.

Step 1. We first prove the uniqueness of the solution to VI∗(F,C); for this, we suppose x∗, y∗ ∈
C are two solutions of VI∗(F,C). Thus, we have

〈
Fx∗, J

(
x∗ − y∗)〉 ≤ 0,

〈
Fy∗, J

(
y∗ − x∗)〉 ≤ 0.

(3.7)

By adding up the last two inequalities, we obtain

η
∥
∥x∗ − y∗∥∥2 ≤ 〈

Fx∗ − Fy∗, J
(
x∗ − y∗)〉 ≤ 0, (3.8)

and so, x∗ = y∗.

Step 2. We claim that {xn} is bounded. In fact, taking a fixed x∗ ∈ C, we have

‖xn − x∗‖ =
∥∥λnxn + (1 − λn)T(tn)xn − λnμFxn − x∗∥∥

≤ λn
∥∥xn − μFxn − x∗∥∥ + (1 − λn)‖T(tn)xn − x∗‖

≤ λn
∥∥(I − μF)xn −

(
I − μF)x∗∥∥ + λn

∥∥(I − μF)x∗ − x∗∥∥ + (1 − λn)‖xn − x∗‖

≤ λn
√
1 − 2μ

(
η − μκ2)‖xn − x∗‖ + (1 − λn)‖xn − x∗‖ + λnμ‖Fx∗‖

≤
(
1 − λn

(
1 −

√
1 − 2μ

(
η − μκ2)

))
‖xn − x∗‖ + λnμ‖Fx∗‖.

(3.9)

Taking γ = 1 −
√
1 − 2μ(η − μκ2) and by using induction, we obtain

‖xn − x∗‖ ≤ max
{
‖x0 − x∗‖, μ

γ
‖Fx∗‖

}
, (3.10)

therefore, {xn − x∗} is bounded and so is {xn}.

Step 3. The sequence {xn} is sequentially compact. To prove this, we assume that the set
D(xn) contains some x∗ such that T(t)x∗ = x∗ for an arbitrary t > 0. So, by using Lemma 2.1,
we can obtain

μn〈x − x∗, J(xn − x∗)〉 ≤ 0, ∀x ∈ X. (3.11)

On the other hand, for any q ∈ C, we have

∥∥xn − q
∥∥2 =

〈
λn

(
xn − q

)
+ (1 − λn)

(
T(tn)xn − q

) − μλnFxn, J
(
xn − q

)〉

≤ λn
∥∥(I − μF)xn −

(
I − μF)q∥∥∥∥xn − q

∥∥ + λn
〈−μF(q), J(xn − q

)〉

+ (1 − λn)
〈
T(tn)xn − T(tn)q, J

(
xn − q

)〉

≤ (
1 − λnγ

)∥∥xn − q
∥∥2 + λn

〈−μF(q), J(xn − q
)〉
.

(3.12)
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Thus,

∥
∥xn − q

∥
∥2 ≤ 1

γ

〈(
I − μF)(q) − q, J(xn − q

)〉
. (3.13)

Also, we have
∥
∥xn − q

∥
∥2 ≤ λn

〈(
I − μF)xn − q, J

(
xn − q

)〉
+ (1 − λn)

〈
T(tn)xn − q, J

(
xn − q

)〉

≤ λn
〈(
I − μF)xn − q, J

(
xn − q

)〉
+ (1 − λn)

∥
∥xn − q

∥
∥2
.

(3.14)

It follows that
∥
∥xn − q

∥
∥2 ≤ 〈(

I − μF)xn − q, J
(
xn − q

)〉
. (3.15)

Combining (3.11) and (3.13) together, we get

μn‖xn − x∗‖2 ≤ μn
γ

〈(
I − μF)(x∗) − x∗, J(xn − x∗)

〉 ≤ 0. (3.16)

This yields μn‖xn − x∗‖ = 0. Hence, there exists a subsequence of {xn} such as {xnk} that
converges strongly to x∗; that is, {xn} is sequentially compact.

Step 4. We claim that x∗ is the solution of VI∗(F,C). Since {xn} is bounded, for any fixed point
x ∈ C, there exist a constant L > 0 such that ‖xn − x‖ ≤ L. Therefore, we obtain

‖xn − x‖2 = λn
〈(
I − μF)xn −

(
I − μF)x∗, J(xn − x)

〉
+ λn

〈−μFx∗, J(xn − x)
〉

+ (1 − λn)〈T(tn)xn − T(tn)x, J(xn − x)〉 + λn〈x∗ − x, J(xn − x)〉

≤ (
2 − γ)λnL‖xn − x∗‖ + λn

〈−μFx∗, J(xn − x)
〉
+ ‖xn − x‖2.

(3.17)

Hence,

〈Fx∗, J(xn − x)〉 ≤ L
(
2 − γ)

μ
‖xn − x∗‖. (3.18)

Note that the duality mapping J is single valued (X is smooth), and norm topology to
weak∗ uniformly continuous on bounded sets of Banach space X with uniformly Gateaux
differentiable norm. Therefore,

〈Fx∗, J(xnk − x)〉 −→ 〈Fx∗, J(x∗ − x)〉, (3.19)

and by taking limit as nk → ∞ in two sides of (3.18), we obtain

〈Fx∗, J(x∗ − x)〉 ≤ 0, ∀x ∈ C. (3.20)

Cosequently, x∗ ∈ C is the unique solution of VI∗(F,C).
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Step 5. xn → x∗ in norm. Indeed, we show that each cluster point of the sequence {xn} is
equal to x∗. Assume that y∗ is another strong limit point of {xn} in C. Thanks to (3.15), we
have the following two inequalities:

∥
∥x∗ − y∗∥∥2 ≤ 〈(

I − μF)(x∗) − y∗, J
(
x∗ − y∗)〉,

∥
∥y∗ − x∗∥∥2 ≤ 〈(

I − μF)(y∗) − x∗, J
(
y∗ − x∗)〉.

(3.21)

Therefore,

2
∥
∥x∗ − y∗∥∥2 ≤ 〈(

I − μF)(x∗) − (
I − μF)y∗ + x∗ − y∗, J

(
x∗ − y∗)〉 ≤ (

2 − γ)∥∥x∗ − y∗∥∥2
.
(3.22)

It yields that ‖x∗ − y∗‖2 = 0, which proves the uniqness of x∗. Thus, {xn} itself
converges strongly to x∗. This completes the proof.

4. Explicit Iterative Method

In this section, we will present our result of the strong convergence of (1.9), but first, we need
to prove, with different approach, the following lemma.

Lemma 4.1. Let X, {T(t) : t > 0}, F, {λn}, {tn}, μ, and {xn} be as those in Theorem 3.2. If x∗ =
limn→∞xn, and there exists a bounded sequence {yn} such that

lim
n→∞

∥∥T(t)yn − yn
∥∥ = 0, ∀t > 0. (4.1)

Then,

lim sup
n→∞

〈
Fx∗, J

(
x∗ − yn

)〉 ≤ 0. (4.2)

Proof. By the uniqueness of x∗ and with no loss of generality, we can choose λn such that

λn −→ 0,

∥∥T(t)yn − yn
∥∥

λn
−→ 0, (4.3)

as n → ∞. Let x∗
λn

be the fixed point of the contraction

ϕ∗
λn
(x) = λnx + (1 − λn)T(tn)x − λnμFx, x ∈ X. (4.4)
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Then,

x∗
λn

− yn = λn
((
I − μF)x∗

λn
− yn

)
+ (1 − λn)

(
T(tn)x∗

λn
− yn

)
. (4.5)

Now, by using Lemma 2.3, we have

∥
∥
∥x∗

λn
− yn

∥
∥
∥
2
= (1 − λn)2

∥
∥
∥T(tn)x∗

λn
− yn

∥
∥
∥
2
+ 2λn

〈(
I − μF)x∗

λn
− yn, J

(
x∗
λn

− yn
)〉

≤ (1 − λn)2
(∥∥
∥T(tn)x∗

λn
− T(tn)yn

∥
∥
∥ +

∥
∥T(tn)yn − yn

∥
∥
)2

+ 2λn
∥
∥
∥x∗

λn
− yn

∥
∥
∥
2

+ 2λn
〈
−μFx∗

λn
, J
(
x∗
λn

− yn
)〉

≤
(
1 + λn

2
)∥∥
∥x∗

λn
− yn

∥
∥
∥
2
+
∥
∥T(tn)yn − yn

∥
∥
(
2
∥
∥
∥x∗

λn
− yn

∥
∥
∥ +

∥
∥T(tn)yn − yn

∥
∥
)

+ 2λn
〈
−μFx∗

λn
, J
(
x∗
λn

− yn
)〉
.

(4.6)

Therefore,

〈
μFx∗

λn
, J
(
x∗
λn

− yn
)〉

≤ λn
2

∥∥∥x∗
λn

− yn
∥∥∥
2
+

∥∥T(tn)yn − yn
∥∥

2λn

(
2
∥∥∥x∗

λn
− yn

∥∥∥ +
∥∥T(tn)yn − yn

∥∥
)
.

(4.7)

Because {yn}, {T(tn)yn} and {x∗
λn
} are bounded, from (4.3) and (4.7), we conclude that

lim sup
n→∞

〈
μFx∗

λn
, J
(
x∗
λn

− yn
)〉

≤ 0. (4.8)

Moreover, we have

〈
μFx∗

λn
, J
(
x∗
λn

− yn
)〉

=
〈
x∗ − (

I − μF)x∗
λn
, J
(
x∗ − yn

)〉
+
〈
x∗ − (

I − μF)x∗
λn
, J
(
x∗
λn

− yn
)

−J(x∗ − yn
)〉

+
〈
x∗
λn

− x∗, J
(
x∗
λn

− yn
)〉
.

(4.9)

By Theorem 3.2, x∗
λn

→ x∗, as n → ∞. So, using the boundedness of {yn}, we get

〈
x∗
λn

− x∗, J
(
x∗
λn

− yn
)〉

−→ 0, n −→ ∞. (4.10)

On the other hand, noticing that the sequence {x∗
λn

− yn} is bounded and the duality
mapping J is single-valued and norm to weak∗ uniformly continuous on bounded subsets of
X, we conclude that

〈
x∗ − (

I − μF)x∗
λn
, J
(
x∗
λn

− yn
)
− J(x∗ − yn

)〉 −→ 0, n −→ ∞. (4.11)
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Therefore, from (4.8) and (4.9), we obtain

lim sup
n→∞

〈
Fx∗, J

(
x∗ − yn

)〉 ≤ 0. (4.12)

This completes the proof.

Next, we prove the strong convergence of explicit iteration scheme (1.9).

Theorem 4.2. Let X be a real Banach space with a uniformly Gateaux differentiable norm, and let
{T(t) : t > 0} be a nonexpansive semigroup from X into itself. Let also {xn} defined by (1.9) satisfies
the following conditions:

(i) C ∩D(xn)/= ∅,
(ii) limn→∞‖xn − T(t)xn‖ = 0 for all t > 0.

Assume that F : X → X is η-strongly monotone and κ-Lipschitzian, and that {tn} is a sequence
of positive numbers that limn→∞tn = ∞. Assume also that the sequence {λn} in (0, 1) satisfies the
control condition

∞∑

n=1

λn = ∞. (4.13)

If μ ∈ (0, η/κ2), then {xn} converges strongly to some fixed point x∗ ∈ C, which is the unique
solution in C for the following variational inequality:

〈Fx∗, J(x − x∗)〉 ≥ 0, ∀x ∈ C. (4.14)

Proof. Existence and uniqueness of the solution of VI∗(F,C) is attained from Theorem 3.2.
Now, we claim that {xn} is bounded. Indeed, taking a fixed x∗ ∈ C, we have

‖xn+1 − x∗‖ =
∥∥λnxn + (1 − λn)T(tn)xn − λnμFxn − x∗∥∥

≤ λn
∥∥xn − μFxn − x∗∥∥ + (1 − λn)‖T(tn)xn − x∗‖

≤ λn
∥∥(I − μF)xn −

(
I − μF)x∗∥∥ + λn

∥∥(I − μF)x∗ − x∗∥∥ + (1 − λn)‖xn − x∗‖

≤ λn
√
1 − 2μ

(
η − μκ2)‖xn − x∗‖ + (1 − λn)‖xn − x∗‖ + λnμ‖Fx∗‖

≤
(
1 − λn

(
1 −

√
1 − 2μ

(
η − μκ2)

))
‖xn − x∗‖ + λnμ‖Fx∗‖.

(4.15)

Taking an = λn(1 −
√
1 − 2μ(η − μκ2)), bn = λnμ‖Fx∗‖, cn = 0, and using Lemma 2.2,

we conclude that ‖xn − x∗‖ is bounded and so is ‖xn‖.
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Next, we prove that {xn} converges strongly to the unique solution x∗ of VI∗(F,C). By

definition of the algorithm and taking γ = 1 −
√
1 − 2μ(η − μκ2), we have

‖xn+1 − x∗‖2 = λn
〈(
I − μF)xn − x∗, J(xn+1 − x∗)

〉
+ (1 − λn)〈T(tn)xn − x∗, J(xn+1 − x∗)〉

≤ λn
〈(
I − μF)xn −

(
I − μF)x∗, J(xn+1 − x∗)

〉
+ λn

〈−μFx∗, J(xn+1 − x∗)
〉

+ (1 − λn)‖T(tn)xn − x∗‖‖xn+1 − x∗‖

≤ μλn〈−Fx∗, J(xn+1 − x∗)〉 + λn
√
1 − 2μ

(
η − μκ2)‖xn − x∗‖‖xn+1 − x∗‖

+ (1 − λn)‖xn − x∗‖‖xn+1 − x∗‖

≤ μλn〈Fx∗, J(x∗ − xn+1)〉 + λn
√
1 − 2μ

(
η − μκ2)‖xn − x

∗‖2 + ‖xn+1 − x∗‖2
2

+ (1 − λn)‖xn − x
∗‖2 + ‖xn+1 − x∗‖2

2

≤ (
1 − λnγ

)‖xn − x∗‖2 + 2μλn〈Fx∗, J(x∗ − xn+1)〉.

(4.16)

Taking an = λnγ , bn = 2μλn〈Fx∗, J(x∗−xn+1)〉, and cn = 0 and using Lemma 4.1 together
with Lemma 2.2 lead to limn→∞‖xn+1 − x∗‖2 = 0, that is, xn → x∗ in norm. This completes the
proof.

Corollary 4.3. Let X be a real reflexive strictly convex Banach space with a uniformly Gateaux
differentiable norm. Let also {T(t) : t > 0} be a nonexpansive semigroup from X into itself such that
C =

⋂
t>0 Fix(T(t))/= ∅. Assume that {xn} defined by (1.9) satisfies condition (ii) in Theorem 4.2,

then condition (i) holds.

Proof. Clearly, g(x) = μn‖xn − x‖2 is a convex and continuous function. Because X is a
reflexive Banach space, according to [12, Theorem 1.3.11], D(xn) is nonempty. Also, by
convexity and continuity of g, the set D(xn) is a closed convex subset of X. Since
limn→∞‖T(t)xn − xn‖ = 0 for every x ∈ D(xn) and t > 0, we have

g(T(t)x) = μn‖xn − T(t)x‖2 = μn(‖xn − T(t)xn‖ + ‖T(t)xn − Tx‖)2 ≤ μn‖xn − x‖2 = g(x).
(4.17)

So, T(t)x ∈ D, and therefore T(t)(D(xn)) ⊂ D(xn). Suppose that u ∈ C. Because every
nonempty closed convex subset of a strictly convex and reflexive Banach space X is a
Chebyshev set, according to [14, Corollary 5.1.19], there exists a unique x∗ ∈ D(xn) such
that

‖u − x∗‖ = inf
x∈D(xn)

‖u − x‖. (4.18)

On the other hand, T(t)u = u for all t > 0, T(t)x∗ ∈ D(xn) and T(t) is nonexpansive, so we get

‖u − T(t)x∗‖ = ‖T(t)u − T(t)x∗‖ ≤ ‖u − x∗‖, (4.19)
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that is, T(t)x∗ = x∗, by uniqueness of x∗ ∈ D(xn). Thus, x∗ ∈ C ∩ D(xn). This completes the
proof.

Corollary 4.4. Let X be a real Banach space, and let {T(t) : t > 0} be a nonexpansive uniformly
asymptotically regular semigroup from X into itself. If {xn} is defined by (1.9), where λn satisfies
(C1), then condition (ii) in Theorem 4.2 holds.

Proof. From (1.9), (C1), and the boundedness of {xn}, we conclude that

‖xn+1 − T(tn)xn‖ = λn
∥
∥xn − T(tn)xn − μFxn

∥
∥ −→ 0, (4.20)

as n → ∞. On the other hand, the semigroup {T(t) : t > 0} is uniformly asymptotically
regular, limn→∞tn = ∞, and S = {xn} is a bounded subset in X, so for all t > 0, we have

lim
n→∞

‖T(t)(T(tn)xn) − T(tn)xn‖ ≤ lim
n→∞

sup
x∈S

‖T(t)(T(tn)x) − T(tn)x‖ = 0. (4.21)

Hence,

‖xn+1 − T(t)xn+1‖ ≤ ‖xn+1 − T(tn)xn‖ + ‖T(tn)xn − T(t)(T(tn)xn)‖ + ‖T(t)(T(tn)xn) − T(t)xn+1‖

≤ 2‖xn+1 − T(tn)xn‖ + ‖T(t)(T(tn)xn) − T(tn)xn‖.
(4.22)

So, from (4.20), (4.21), and (4.22), we get

lim
n→∞

‖xn − T(t)xn‖ = 0, ∀t > 0, (4.23)

and it completes the proof.

Remark 4.5. According to Corollaries 4.3 and 4.4, our assumptions are weaker than those of
Song and Xu [11]. Also, noticing that for a contraction f : X → X, the mapping (1/μ)(I − f)
is strongly monotone and Lipschitzian. So, by replacing (1/μ)(I − f) by F in (1.8) and (1.9),
the following schemes are, respectively, obtained:

xn := λnfxn + (1 − λn)T(tn)xn,

xn+1 := λnfxn + (1 − λn)T(tn)xn.
(4.24)

Remark 4.6. In the same way and with the same conditions mentioned in Theorem 4.2, it’s
easy to see that the sequence {xn} defined by

xn+1 := T(tn)xn − λn+1μF(T(tn)xn), n ≥ 0 (4.25)

converges strongly to the variational inequality VI∗(F,C).
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5. Modified Iterative Method

In this section, we show that the modified sequence {xn} defined by (1.10) also converges
strongly to the solution of variational equality VI∗(F,C), but first, we need to prove the
following lemma.

Lemma 5.1. Let X be a Banach space. Assume that F : X → X is η-strongly monotone and κ-
Lipschitzian nonlinear operator and T : X → X a nonexpansive mapping. If μ ∈ (0, η/σ2), where
σ = κ + 2, then

ϕ(x) = I(x) − μ(F + I − T)(x) (5.1)

is a contraction on X.

Proof. Considering the inequality

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, J

(
x + y

)〉
, (5.2)

from Lemma 2.3 in a Banach space X, where J : X → 2X
∗
is the normalized single-valued

duality, we have

∥∥ϕx − ϕy∥∥2 =
∥∥(I − μ(F + I − T))x − (

I − μ(F + I − T))y∥∥2

=
∥∥(x − y) + μ((F + I − T)y − (F + I − T)x)∥∥2

≤ ∥∥x − y∥∥2 + 2
〈
μ
(
(F + I − T)y − (F + I − T)x), J((x − y)

+μ
(
(F + I − T)y − (F + I − T)x))〉

≤ ∥∥x − y∥∥2 + 2μ
〈
(F + I − T)y − (F + I − T)x, J(x − y)〉 + 2μ2〈(F + I − T)y

−(F + I − T)x, J((F + I − T)y − (F + I − T)x)〉

≤ ∥∥x − y∥∥2 − 2μ
〈
(F + I − T)x − (F + I − T)y, J(x − y)〉

+ 2μ2∥∥(F + I − T)y − (F + I − T)x∥∥∥∥J((F + I − T)y − (F + I − T)x)∥∥

≤ ∥∥x − y∥∥2 − 2μ
〈
Fx − Fy, J(x − y)〉 − 2μ

〈
(I − T)x − (I − T)y, J(x − y)〉

+ 2μ2∥∥(F + I − T)y − (F + I − T)x∥∥∥∥J((F + I − T)y − (F + I − T)x)∥∥.

(5.3)

Noticing that

〈
(I − T)x, (I − T)y, J(x − y)〉 ≥ 0, (5.4)
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we obtain

∥
∥ϕx − ϕy∥∥2 ≤ ∥

∥x − y∥∥2 − 2μη
∥
∥x − y∥∥2 + 2μ2∥∥(F + I − T)y − (F + I − T)x∥∥2

≤ ∥
∥x − y∥∥2 − 2μη

∥
∥x − y∥∥2 + 2μ2(κ + 2)2

∥
∥x − y∥∥2

≤
(
1 − 2μη + 2μ2σ2

)∥
∥x − y∥∥2

.

(5.5)

Thus, we have
∥
∥ϕx − ϕy∥∥ ≤

√
1 − 2μ

(
η − μσ2

)∥∥x − y∥∥. (5.6)

Note that for μ ∈ (0, η/σ2), we conclude
√
1 − 2μ(η − μσ2) ∈ (0, 1). That is, ϕ is a contraction

and the proof is complete.

Theorem 5.2. LetX be a real Banach space with a uniformly Gateaux differentiable norm and {T(t) :
t > 0} a nonexpansive semigroup from X into itself. Let also {xn} defined by (1.10) satisfies the
following conditions:

(i) C ∩D(xn)/= ∅,
(ii) limn→∞‖xn − T(t)xn‖ = 0 for all t > 0.

Assume that F : X → X is η-strongly monotone and κ-Lipschitzian and {tn} a sequence of positive
numbers that limn→∞tn = ∞. Assume also that the sequences {μn} ⊂ (0, η/(1+σ2)), where σ = κ+2,
and {λn} in (0, 1) satisfy the following control conditions:

(C1)
∑∞

n=1 λn = ∞,

(C2) {μn} does not take 0 as it’s limit point.

Then, {xn} converges strongly to some fixed point x∗ ∈ C, which is the unique solution in C
for the variational inequality VI∗(F,C).

Proof. Existence and uniqueness of the solution of VI∗(F,C) is obtained from Theorem 3.2. We
claim that {xn} is bounded. Indeed, taking a fixed x∗ ∈ C, we have

‖xn+1 − x∗‖ =
∥∥λnyn + (1 − λn)T(tn)xn − x∗∥∥

≤ λn
∥∥(I − μn(F + I − T(tn))

)
xn − x∗∥∥ + (1 − λn)‖T(tn)xn − x∗‖

≤ λn
∥∥(I − μn(F + I − T(tn))

)
xn −

(
I − μn(F + I − T(tn))

)
x∗∥∥

+ λn
∥∥(I − μn(F + I − T(tn))

)
x∗ − x∗∥∥ + (1 − λn)‖xn − x∗‖

≤ λn
√
1 − 2μn

(
η − μnσ2

)‖xn − x∗‖ + (1 − λn)‖xn − x∗‖ + λnμn‖Fx∗‖

≤
(
1 − λn

(
1 −

√
1 − 2μn

(
η − μnσ2

)
))

‖xn − x∗‖ + λnμn‖Fx∗‖.

(5.7)
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Noticing that

μ2
n < 1 −

√
1 − 2μn

(
η − μnσ2

)
, (5.8)

and by assumption that there exists ε > 0 so that μn > ε, for all n ∈N. Thus, we get

‖xn+1 − x∗‖ ≤
(
1 − λnμ2

n

)
‖xn − x∗‖ + 1

ε
λnμn

2‖Fx∗‖, (5.9)

and from Lemma 2.2, we conclude that {xn} is bounded.
By Theorem 3.2, there exists a unique solution x∗ to VI∗(F,C). We prove that {xn}

converges strongly to x∗

‖xn+1 − x∗‖2 = λn
〈(
I − μn(F + I − T(tn))

)
xn − x∗, J(xn+1 − x∗)

〉

+ (1 − λn)〈T(tn)xn − x∗, J(xn+1 − x∗)〉
≤ λn

〈(
I − μn(F + I − T(tn))

)
xn −

(
I − μn(F + I − T(tn))

)
x∗, J(xn+1 − x∗)

〉

+ λn
〈−μn(F + I − T(tn))x∗, J(xn+1 − x∗)

〉
+ (1 − λn)‖T(tn)xn − x∗‖‖xn+1 − x∗‖

≤ μnλn〈−Fx∗, J(xn+1 − x∗)〉 + λn
√
1 − 2μn

(
η − μnσ2

)‖xn − x∗‖‖xn+1 − x∗‖

+ (1 − λn)‖xn − x∗‖‖xn+1 − x∗‖

≤ μnλn〈Fx∗, J(x∗ − xn+1)〉 + λn
√
1 − 2μn

(
η − μnσ2

)‖xn − x∗‖2 + ‖xn+1 − x∗‖2
2

+ (1 − λn)‖xn − x
∗‖2 + ‖xn+1 − x∗‖2

2

≤
(
1 − λn

(
1 −

√
1 − 2μn

(
η − μnσ2

)
))

‖xn − x∗‖2 + 2λnμn〈Fx∗, J(x∗ − xn+1)〉

≤
(
1 − λnμ2

n

)
‖xn − x∗‖2 + 2λnμ2

n

ε
〈Fx∗, J(x∗ − xn+1)〉.

(5.10)

Taking an = λnμ2
n, bn = (2λnμ2

n/ε)〈Fx∗, J(x∗ − xn+1)〉, and cn = 0 and using Lemma 4.1
together with Lemma 2.2 imply limn→∞‖xn+1 − x∗‖2 = 0, that is,

lim
n→∞

‖xn − x∗‖ = 0. (5.11)

This completes the proof.

Remark 5.3. In Theorem 5.2, if η > 1, then μn < 1 −
√
1 − 2μn(η − μnσ2), and therefore we can

remove (C2), also (C1) turns to
∑∞

n=1 λnμn = ∞.
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Remark 5.4. We can easily see that under some restrictions all the strongly monotone and
Lipschitzian nonlinear operators used in this paper are replaceable by strongly accretive and
strictly pseudocontractive ones (see [15]).
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