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We propose a hybrid extragradient method for finding a common element of the solution set of
a variational inequality problem, the solution set of a general system of variational inequalities,
and the fixed-point set of a strictly pseudocontractive mapping in a real Hilbert space. Our hybrid
method is based on the well-known extragradient method, viscosity approximation method, and
Mann-type iteration method. By constrasting with other methods, our hybrid approach drops the
requirement of boundedness for the domain in which various mappings are defined. Furthermore,
under mild conditions imposed on the parameters we show that our algorithm generates iterates
which converge strongly to a common element of these three problems.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C be a nonempty
closed convex subset of H and S : C — C be a self-mapping on C. We denote by Fix(S) the
set of fixed points of S and by Pc the metric projection of H onto C. Moreover, we also denote
by R the set of all real numbers. For a given nonlinear operator A : C — H, we consider the
following variational inequality problem of finding x* € C such that

(Ax*, x—-x*)y >0, VYxeC. (1.1)
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The solution set of the variational inequality (1.1) is denoted by VI(A,C). Variational
inequality theory has been studied quite extensively and has emerged as an important tool in
the study of a wide class of obstacle, unilateral, free, moving, equilibrium problems. See, for
example, [1-21] and the references therein.

For finding an element of Fix(S) N VI(A,C) when C is closed and convex, S is
nonexpansive and A is a-inverse strongly monotone, Takahashi and Toyoda [22] introduced
the following Mann-type iterative algorithm:

Xpi1 = ApXy + (1 — ay)SPe(x, — My Axy,), VYn >0, (1.2)

where Pc is the metric projection of H onto C, xg = x € C, {a,} is a sequence in (0,1), and
{1} is a sequence in (0,2a). They showed that, if Fix(S) N VI(A,C) #0, then the sequence
{xn} converges weakly to some z € Fix(S) N VI(A, C). Nadezhkina and Takahashi [23] and
Zeng and Yao [24] proposed extragradient methods motivated by Korpelevi¢ [25] for finding
a common element of the fixed point set of a nonexpansive mapping and the solution set of
a variational inequality problem. Further, these iterative methods were extended in [26] to
develop a new iterative method for finding elements in Fix(S) N VI(A, C).

Let By,B, : C — H be two mappings. Now we consider the following problem of
finding (x*,y*) € C x C such that

(mBiy* +x* -y, x-x*) >0, VxeC, 13
(poBox* +y* —x*,x—y*) >0, VxeC, ‘

which is called a general system of variational inequalities where y; > 0 and p» > 0 are two
constants. The set of solutions of problem (1.3) is denoted by GSVI(By, B, C). In particular, if
Bi = B, = A, then problem (1.3) reduces to the problem of finding (x*, y*) € C x C such that

(mAYy* +x*—y*,x-x*)>0, VxeC, 1)
DAX  +yf - x*,x—-y*) >0, VxeC(C, '
KU y y

which was defined by Verma [27] (see also [28]) and is called the new system of variational
inequalities. Further, if x* = y* additionally, then problem (1.4) reduces to the classical
variational inequality problem (1.1).

Ceng etal. [29] studied the problem (1.3) by transforming it into a fixed-point problem.
Precisely and for easy reference, we state their results in the following lemma and theorem.

Lemma CWY (see [29]). For given x,y € C, (X, V) is a solution of problem (1.3) if and only if X is
a fixed point of the mapping G : C — C defined by

G(x) = Pc[Pc(x = poBax) — p1B1Pe(x — o Box)], Vx €C, (1.5)

where y = Pc(X — ppBox). In particular, if the mapping B; : C — H is p;-inverse strongly monotone
fori=1,2, then the mapping G is nonexpansive provided p; € (0,2;) fori =1,2.
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Throughout this paper, the fixed-point set of the mapping G is denoted by I'. Utilizing
Lemma CWY, they introduced and studied a relaxed extragradient method for solving
problem (1.3).

Theorem CWY (see [29, Theorem 3.1]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let the mapping B; : C — H be p;-inverse strongly monotone fori =1,2. Let S : C — C
be a nonexpansive mapping with Fix(S) NT #@. Suppose x1 = u € C and {x,} is generated by

Yn = Pc(xy — poBoxy),
(1.6)
Xnil = Al + PuXy + YnSPc(Yn — p1B1yn),

where p; € (0,26;) fori=1,2, and {a,}, {Pn}, {yn} are three sequences in [0, 1] such that
Q) an+Pu+yn=1foralln>1;
(i) lim,, - a, =0, ZZ‘;O ap = 00,
(iii) 0 < liminf, , B, < limsup, B, <1.

Then {x,} converges strongly to X = Priys)nru and (X,Vy) is a solution of problem (1.3), where
y = PC (E - ‘ungJ_C)

It is clear that the above result unifies and extends some corresponding results in the
literature.

Based on the relaxed extragradient method and viscosity approximation method, Yao
et al. [30] proposed and analyzed an iterative algorithm for finding a common element of the
solution set of the general system (1.3) of variational inequalities and the fixed-point set of a
strictly pseudocontractive mapping in a real Hilbert space H.

Theorem YLK (see [30, Theorem 3.2]). Let C be a nonempty bounded closed convex subset of a
real Hilbert space H. Let the mapping B; : C — H be p;-inverse strongly monotone for i = 1,2. Let
S :C — C bea k-strictly pseudocontractive mapping such that Fix(S)NT #0. Let Q : C — Cbea
p-contraction with p € [0,1/2). For given xo € C arbitrarily, let the sequences {x,}, {y,}, and {z,}
be generated iteratively by

zn = Pc (% — p2Boxy),

Yn = ayQxy + (1 — &) Pc (2 — p1B12y), (1.7)

Xn+l = ﬁnxn + YnPC (Zn - /’llBlzn) + 6nsyn/ Vn >0,

where p; € (0,26;) fori =1,2 and {a,}, {Pu}, {yn}, {6a} are four sequences in [0, 1] such that
(1) Pn+Yn+6n=1and (yu + 6n)k <y < (1 -2p)6, forall n > 0;
(if) imy, — o, = 0 and 3775 oy = 00;
(iii) 0 < liminf, , o, < limsup,,_, B, <1and liminf, 6, > 0;
)

(iv) limy - oo (Va1 /(1 = Prs1) = ¥u/ (1 = Bn)) = 0.

Then the sequence {x,} generated by (1.7) converges strongly to X = Prixs)nr - QX and (X,y) is a
solution of the general system (1.3) of variational inequalities, where y = Pc(X — paByXx).
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Motivated by the above work, in this paper, we introduce an iterative algorithm for
finding a common element of the solution set of the variational inequality (1.1), the solution
set of the general system (1.3) and the fixed-point set of the strictly pseudocontractive map-
ping S : C — C via a hybrid extragradient method based on the well-known extragradient
method, viscosity approximation method, and Mann-type iteration method, that is,

zn = Pe(x, — MyAxy),
Yn = 0, Qxy + (1 — a,) Pe[Pe (2 — p2Bozn) — p1B1Pc (20 — p2Bozn)], (1.8)

Xn+l = ﬁnxn + YnYn + 6nsynr Vn >0,

where {A,} C (0,00), {an}, {Pn}, {yn}, {64} C [0,1] such that B, +y, + 6, = 1 foralln > 0.
Moreover, we prove that the studied iterative algorithm converges strongly to an element
of Fix(S) NnI' N VI(A, C) under some mild conditions imposed on algorithm parameters. Our
method improves and extends Yao et al. [30, Theorem 3.2] in the following aspects:

(i) the problem of finding an element of Fix(S) NI in [30, Theorem 3.2] is extended to
the the problem of finding an element of Fix(S) NI’ N VI(A, C);
(ii) the requirement of boundedness of C in [30, Theorem 3.2] is removed;

(iii) the condition (y, + 6n)k < yu < (1 —2p)6y, for all n > 0 in [30, Theorem 3.2] is
replaced by the one (y;, + 6,)k < yy, for all n > 0;

(iv) the argument of Step 5 in the proof of [30, Theorem 3.2] is simplified under the lack
of the condition y,, < (1 -2p)6,, for all n > 0;

(v) our iterative algorithm is similar to but different from the one of [30, Theorem 3.2]
because the problem of finding an element of Fix(S) n I N VI(A,C) is more
challenging than the problem of finding an element of Fix(S) n I' in [30,
Theorem 3.2].

2. Preliminaries

In this section, we collect some notations and lemmas. Let C be a nonempty closed convex
subset of a real Hilbert space H. A mapping A : C — H is called monotone if

(Ax - Ay,x-y)>0, VYx,yeC (2.1)

A mapping A : C — H is called Lipschitz continuous if there exists a real number L > 0 such
that

||Ax - Ay|| < L||x-y|, Vx,yeC (2.2)

Recall that a mapping A : C — H is called a-inverse strongly monotone if there exists a real
number a > 0 such that

(Ax - Ay, x-y) > a||Ax - Ay 2 Vx,y € C. (2.3)
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It is clear that every inverse strongly monotone mapping is a monotone and Lipschitz
continuous mapping. Also, recall that a mapping S : C — C is said to be k-strictly
pseudocontractive if there exists a constant 0 < k < 1 such that

1Sx = Sy||> < |x - y|> + k|| I =S)x - I -S)y|>, vxyeC. (2.4)

For such a case, we also say that S is a k-strict pseudo-contraction [31]. It is clear that, in a
real Hilbert space H, inequality (2.4) is equivalent to the following;:

1-k
(Sx-Sy,x-y) <|x-y|*- T”(I—S)x— (I-S)y|’, Vvx,yeC (2.5)

This immediately implies that if S is a k-strictly pseudocontractive mapping, then I — S is
(1 - k)/2-inverse strongly monotone; see [32] for more details. We use Fix(S) to denote the
set of fixed points of S. It is well known that the class of strict pseudo-contractions strictly
includes the class of nonexpansive mappings which are mappings S : C — C such that
|ISx = Sy|| < |[x = yl|, for all x,y € C. A mapping Q : C — C is called a contraction if there
exists a constant p € [0, 1) such that ||Qx - Qy| < pllx —y|| forall x,y € C.

For every point x € H, there exists a unique nearest point in C, denoted by Pcx such
that

llx = Pex|| < ||lx -y

, VyecC. (2.6)

The mapping Pc is called the metric projection of H onto C. It is well known that P¢ is a
nonexpansive mapping and satisfies

> VYx,yeH (2.7)

(x =y, Pcx - Pcy) > ||Pcx - Pcy
It is known that Pcx is characterized by the following property:

(x=Pcx,y—Pcx)<0, VxeH, yeC. (2.8)
In order to prove the main result in this paper, we will need the following lemmas in
the sequel.

Lemma 2.1 (see [33]). Let {x,} and {y,} be bounded sequences in a Banach space X and let {f,} be
a sequence in [0,1] with 0 < liminf, _, B, <limsup, B, < 1. Suppose xps1 = (1= Pn)Yn + PnXn
for all integers n > 0 and limsup,, ., (1yne1 = Yall = [%ns1 X)) < 0. Then, limy ool y — x| = 0.

Lemma 2.2 (see [34, Proposition 2.1]). Let C be a nonempty closed convex subset of a real Hilbert
space Hand S : C — C be a self-mapping of C.

(i) If S is a k-strict pseudocontractive mapping, then S satisfies the Lipschitz condition

1+k
||Sx—5y||§1:r—k||x—y||, Vx,y e C. (2.9)
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(ii) If S is a k-strict pseudocontractive mapping, then the mapping I — S is demiclosed at 0, that
is, if {x,,} is a sequence in C such that x,, — X weakly and (I — S)x, — 0 strongly, then
(I-S)x=0.

(iii) If S is k-(quasi-)strict pseudo-contraction, then the fixed-point set Fix(S) of S is closed and
convex so that the projection Prix(s) is well defined.

Lemma 2.3 (see [9, Lemma 2.1]). Let {s,} be a sequence of nonnegative real numbers satisfying
the condition

Sp+1 < (1 - an)sn + anﬁnr Vn >0, (210)

where {a,}, {Pn} are sequences of real numbers such that

(i) {an} C [0,1] and >,;> an = oo, or equivalently,

[10-a):= im[[0-a) =0; 211)
n=0 k=1

(i) imsup,_,  pBn <0;0r

(i) X2 anpy is convergent.
Then, lim,, _. o5, = 0.

Lemma 2.4 (see [30]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
S : C — C bea k-strictly pseudocontractive mapping. Let y and 6 be two nonnegative real numbers.
Assume (y + 6)k < y. Then

ly(x-y) +6(Sx-Sy)|[[ < (y +0)[[x-yl, vxyeC (2.12)

The following lemma is an immediate consequence of an inner product.

Lemma 2.5. In a real Hilbert space H, there holds the inequality
x+y|* < lIxl* +2(y, x +y), Vx,y€H. (2.13)

Let A be a monotone mapping of C into H. In the context of the variational inequality problem
the characterization of projection (2.8) implies that

ueVI(AC) = u=Pc(u-rAu), VA>0. (2.14)

It is also known that a set-valued mapping T : H — 2 is called monotone if for all x,y € H, f € Tx
and ¢ € Ty imply that (x — vy, f — g) > 0. A monotone set-valued mapping T : H — 2 is
maximal if its graph Gph(T) is not properly contained in the graph of any other monotone set-valued
mapping. It is known that a monotone set-valued mapping T : H — 2 is maximal if and only if
for(x,f) e HxH, (x -y, f —g) >0 for every (y,g) € Gph(T) implies that f € Tx. Let A bea
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monotone and Lipschitz continuous mapping of C into H. Let Ncv be the normal cone to C at v € C,
that is,

Nev={weH:{(v-uw)>0, VeC}. (2.15)

Define

Tv =

Av+Ncv ifveC,
(2.16)

0 ifvgcC

It is known that in this case the mapping T is maximal monotone, and 0 € Tv if and only if v €
VI(A, C); see [35] for more details.

3. Main Results

The main idea for showing strong convergence of the sequence {x,} generated by (1.8) to an
element of VI(A, C) is first to transform the variational inequality problem (1.1) into the zero
point problem of a maximal monotone mapping T and then to derive the strong convergence
of {x,} to a zero of T by using the technique in [10]. We are now in a position to state and
prove the main result in this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A: C — H
be a-inverse strongly monotone and B; : C — H be fi-inverse strongly monotone for i = 1,2. Let
S : C — C bea k-strictly pseudocontractive mapping such that Fix(S) N T N VI(A,C) #0. Let
Q : C — C be a p-contraction with p € [0,1/2). For given x, € C arbitrarily, let the sequences
{xn}, {yn} and {z,} be generated iteratively by

Zn = PC(xn - )LnAxn)/

Yn = 0,Qxy + (1 — ay) Pc [P (2 — p2Bazn) — p1B1Pc (20 — p2Baza)], (3.1)

Xps1 = PuXn + YuYn + 6,5y, Yn>0,

where p; € (0,2p;) fori=1,2, {A,} C (0,2a] and {a,}, {Pn}, {¥n}, {6} C [0,1] such that
(1) Pn+Yn+06n=1and (y, + 6p)k < yn foralln > 0;
(ii) limy, & ay = 0and X7 ay = 00,
(iii) 0 <liminf, . o, < limsup,_, pBn <1and liminf, .6, > 0;
(1v) limy,— oo (Y1 / (1 = Pus1) = ¥n/ (1= Bu)) = 0;

(v) 0 <liminf, ., oA, <limsup, | A, <2aand limy, ., o|Aps1 — Ay| = 0.

Then the sequence {x,} generated by (3.1) converges strongly to X = Prix(s)nrnvi(ac) QX and (X, 7)
is a solution of the general system (1.3) of variational inequalities, where iy = Pc(X — p2BoX).

Proof. We divide the proof into several steps.

Step 1. {x,} is bounded.
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Indeed, take x* € Fix(S) NI' N VI(A, C) arbitrarily. Then Sx* = x*, x* = Pc(x* — 1, Ax™)
and

x* = PC [PC (X* - yszx*) - ‘LtlBch(x* - ‘uzBQx*)]. (32)
Since A : C — H be a-inverse strongly monotone and 0 < A, < 2a, we have forall n > 0,

iz = |* = [Pt = A Ax) = Po(x" = An Ax")|

<l (otn = AnAxy) = (7 = Ly Ax")|?

= [1Gen = x7) = (At = Ax)? (33)

< ln = x** = A 2 = A | Aty — AX|

< floew = |1
For simplicity, we write y* = Pc(x* — poBox*) and u,, = Pc(z, — p2Baz,) for all n > 0. Since
B; : C — H be pj-inverse strongly monotone fori = 1,2 and 0 < y; < 2f; fori = 1,2, we know
that foralln > 0,

| Pc [Pc(zn = p2Bazn) = p1B1Pe(zn — poBozu)| - x° ’

= ||Pc[Pc(zn — p2Bozn) — p1B1Pc(zn — p2Brzy)]

~Pc[Pe(x" = paBax") — pBiPe(x” = paBox)] |
< || [Pc(zn = p2Bazn) = 1 B1Pc(zn = poBaozn)]
~[Pe(x" = paBax") = puBiPe(x” = paBox”)] ||°
= || [Pc(zn = paBazn) = Pe(x" = paBox")]
1 [BiPc (20 ~ p2B2zn) = BiPe(x” — jaBox”) ]|
< ||Pc(zn - p2Bazn) - Pe(x* - paBox*) || (3.4)
— 11 (2B1 = 1) | B1Pe (zn — p2Baza) — B Pe(x* = paBox®) ||
< || (20 = p2Boza) = (x* = paBox”) || = 1 (21 = pur) || Buaes = Bry” |’
= [|(zn = x") = p2(Bazo = Box")|* = 1 (21 = 1) || Bran = By ||®
< llzn = x*|* = u2(2B2 - o) B2z — Box*|* = 1 (281 — 1) || Bt — Bry*||?
< llatn = 17 = A (2 = An) | Axy — Ax"|?
— 12(2B2 = j12) | Bazn = Box*|* = pa (21 — 1) || Bt — Buy* ||

2
< loen = x*|I°.
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Hence we get

llyn = x*|| = || @n(Qxp — x*) + (1 = &) (Pc[Pe(zn — p2Bozn) — 1 BiPe(zn — poBozn)| — x*) ||
< a,||Qxy — x*|| + (1 = &) || Pc [Pe (20 — p2Bozn) — 1 BiPe(zn — p2Bazn)| — x*||

< an(pllxn — x| + 1Qx" = x7[[) + (1 = atn)l|2cn — x|

. Qx* _x*
= (1= (1 -p)an)lxn - x| + (1 —P)“n”TP”
S max{ ||le — x*”, M}
T-p
(3.5)
Since (Y, + 6n)k < ¥y for all n > 0, utilizing Lemma 2.4 we obtain from (3.5)
21 = 2 = [|Bn(xn = x7) + Yu (Y = x7) + 6u (Sym = x7) ||
< Bullts =211+ [y (- 5°) + 64(Syn — )
< Pullxn = x"[1+ (pn + 60) lym = x"||
(3.6)
. . x* _x*
< Bullea =11+ -+ 6) max{ I, -}, LT =1
< max{||xn —x*||,M}.
I-p
By induction, we obtain that for all n > 0
x* —x*
llc, — x*|| Smax{||xo—x*ll,w}. (3.7)

Hence, {x,} is bounded. Consequently, we deduce immediately that {z,}, {y.}, {Sy.}, and
{u,} are bounded, where u,, = Pc(z, — pu2B>z,) for alln > 0.
Now, put

tn = PC [PC (Zn - /,tszzn) - lelp(_‘ (Zn - yszzn)], Vn > 0. (3.8)

Then it is easy to see that {t,} is bounded because Pc, Bi, and B, are Lipschitz continuous
and {z,} is bounded.

Step 2. limy, — || Xp41 — x4]| = 0.
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Indeed, define x,,+1 = Bux, + (1 - p)w, for all n > 0. It follows that

Xn+2 — ﬂn+1xn+l Xn+l — ﬂnxn
Wyl — Wy = -

1- ﬂn+] 1- ﬁn
_ Yn+1Yn+1 + 6n+15yn+1 _ YnYn + 6n5yn
1- ﬂn+1 1- ﬂn
_ Yn+1 (yn+1 - yn) + Ot (Syn+1 - Syn) + < Ynt1  Yn >
1_,Bn+1 1_ﬂn+1 1_[5" Yr

6n+1 6;1 >
+ - Sy,.
( 1- ﬂn+1 1- ﬂn 4
Since (y, + 6n)k <y, for all n > 0, utilizing Lemma 2.4 we have

||Yn+1 (]/n+1 - yn) + 6n+1 (Syn+1 - S]/n) ” < (Yn+1 + 6n+l) ”yn+1 - yn”

Next, we estimate ||1/,41 — ¥x||. Observe that
Zn41 = Znll = [Pe(xni1 = Ans1 Axna1) = Po(xn = 1nAxy) ||
< [(xne1 = Ans1 Axnin) = (6 — Ly Axy) ||
= [[(xn1 = Xn) = Ans1 (AxXnar — Axn) + (An = dnit) Axy |
<[ = Xn) = A1 (Axnar = Axn) || + [Ansr = A [| Al
< %1 = Xall + [Ans1 — Anll|Axnll,
1 = tall® = || Pc[Pc(zns1 = p2Bozn1) = p1B1Pc (zus1 — p2Bazisn) |
—Pc[Pc(zn — p2Bozn) — p1B1Pc(zn — p2Brzy)] ||2
< | [Pe(zna — p2Bazns1) — p1BiPe(zne1 — p2Bozna) ]
~[Pc(zn - p2Bazn) = j1B1 Pe(zn — p2Boza) ] ||
= || [Pc(znn — p2Bazns1) = Po(zn — p2Boza)]
—p1 [B1Pc (zns1 — p2Bozns1) — BiPc(zn — p2Bozy) | ||2
< ||Pc(zn1 = H2Bazni1) = Po(zn — poBoza) ||2
— 11 (2p1 — 1) || BiPe (zna1 — p2Bozni1) — BiPe(zn — poBozy) ||2
< ||Pe(zns1 = H2Bozni1) = Po(zn — poBoza) ||2
< ||(zne1 = p2Bazni1) = (20 — p2Bazy) ||2
= || (zne1 — 2n) — p2(B2zps1 — BzZn)”2
< l1zn1 = zall® = p2(2B2 = p2) 1 B2zwi1 = Bozall®

< “Zn+1 - Zn”z'

(3.9)

(3.10)

(3.11)

(3.12)
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Combining (3.11) with (3.12), we get

tne1 — tull = || Pc[Pe(zne1 — p2Bozni1) — 1 BiPc(zni1 — poBazain)]
~Pc[Pc(zn — p2Bazn) — p1BiPc(zn — p2Bazn)] || (3.13)

< ||-xn+1 - xn” + |-)Ln+1 - -)Ln“len”
This together with (3.13) implies that

||yn+1 - ]/n” = |[tns1 + i1 (QXps1 = tni1) — tn — an(Qxpn — £,) ||
< ||tn+1 - tn“ + an+1“an+l - tn+1|| + an”an - tn” (314)

< ”xn+1 - xn” + |-/\n+1 - -)Ln|||Axn|| + an+1||an+1 - tn+1|| + ‘Xn”an - tn”-
Hence it follows from (3.9), (3.10), and (3.14) that

||Yn+1 (yn+1 - ]/n) +Opn1 (S]/n+1 - Syn) ”
1- ﬂn+1

lwns1 — wa|| <

Yn+1 On+1 _ On

Yn
i el 2 -

+ ‘

ISyl

Yn+1 + Ons1 Yn+1 Yn |
<—FF n+l — Yn|| + - n|| T S n
< B s vl | - g Al s
Yn+1 Yn
= nel — Yn|| + - n|| T S n
oot =yl + | 25— = 2|l + ISl
< ”xn+1 - xn” + |~/\n+1 - )Ln|||Axn|| + “n+1||an+1 - tn+1|| + an”an - tn”
Yn+1 Yn
+ - all + 1| Syall)-
| gl + ISl
Since {x,}, {y,}, and {t,} are bounded, it follows from conditions (ii), (iv), (v) that
lim sup([wns1 = wall = [1Xn1 — xull)
< lim Sup{l)lnﬂ = Ll [Axs || + ani1l|Qxnr =t |l + an||Qxy — Ll (3.16)

Yn+1 _ Yn _
o 2= T ll + Nswal) } =0

Hence by Lemma 2.1 we get lim,, _, o, ||w,, — x,|| = 0. Thus,

Jim || 241 = 2]l = lim (1= ) [[eon = xa]| = 0. (3.17)
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Step 3. limy, o || B2z, — Box™|| = 0, lim, — o || Bit, — Biy*|| = 0 and lim,, . ||Ax,, — Ax*|| = 0,
where y* = Pc(x* — paByx™).
Indeed, utilizing Lemma 2.4 and the convexity of || - I, we get from (3.1) and (3.4)

|2

%1 = X*[1> = ||Bn(xn = X7) + ¥ (Y = x°) + 64 (Sy — x7)

2
S ﬂn”xn - x*”Z + (Yn + 671)

1 " *
m[}’n(yn = X") + 6, (Syn — x")]

2

< Bulln = %I + (i + 6a) [l yn — x°
< Ballt = X2+ (o + 60 [aall Q= X7 + (1 = t) 1 = x°I1]
< Balltn = ¥ + aal|Qxw = X + (¥ + 6) Itn — 7|7

< Bullotn — x| + anl|Qacn = x* |1 + (yu + 61)

x [llxn = x|P = A (2 = L) | Axy = AXT|? = 2 (22 = pi2) || Baz = Box”||®

—p1(2f1 = pn) || Brun — Bly*”Z]
= |0 = X*|* + || Qxn — X*|* = (yu + 61)

x [An2a = 1)1 Ax, - Ax|P

~12(22 — p2) | Bozn — Box®||* = p1 (21 — p1) || Bittn — B1y* ||2]
(3.18)

Therefore,

(5 + ) [An & = L) | A%y = AXIP + 2 (2 = p2) | Boz = Boxc“|

+u1(2p1 — 1) ||Bivn — Bry” :
( ) il ] 319)
< lxn = 2P = 12ne1 = X*|% + ]| Quxn — x*|1P

< (ll2n = X711+ %1 = X D10 = 2 | + | Q2 = X7

Since a, — 0, ||x, = Xpi1|| — 0,liminf, _, o (y,+06,)>0and O<liminf, 1, <limsup, , A,<
2a, we have

lim [|Ax, - Ax'[ =0, lim |Biwy = Biy'| =0, lim [[Boz,~ Box’|| =0.  (3.20

Step 4. limy, ., ||Syn — yull = 0.
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Indeed, noticing the firm nonexpansivity of Pc we have

l1zn = x*|* = |Pc (30 = AnAxy) = Po(x" = Ay Ax*)|?
< {(xy = MyAxy) — (3" — A AX"), 2, — X¥)
_ 1[ *_ (A Ax* 2 *112
_E ”xn_x - n( Xn — x)“ +||Zn_x ”

=II(xn = x*) = Ay (Axy — AX™) = (24 — X*)Hz]

1 . . . (3.21)
< 5 [llen = I+ llz = 21 = 16 = 2a) = An(Ax = Ax) ]
1 %112 %112 2
= 5 [llen = 1+ llz = 21 = s =zl
+200 (X — 2, Aty — Ax") — 12| Axy — Ax*||2]
1 *
< 5 [l = %I+ llza = 21 = 1 = 22l + 24l = ZalllAxs - Ax7],
that is,
1z = x* |17 < ll2tn = "1 = [1n = Zall” + 2An ]|t — Zal[| Axy — Ax"|. (322)
Similarly to the above argument, we obtain
lln =y II* = 1P (20 = H2B2za) = Pe(x = paBox”) ||°
<((zn = p2B2zn) = (x" = p2Box"), un — y*)
1 *
= 5 [l170 = %" = 2 (Baz = Bax) | + [|un — ||
* * * 2
_”(Z"_x ) — p2(Bazy — Box™) — (un—y )” ] (3.23)

2~ |(zn — tn) - p2(Bazy — Box™) - (x" - )

]

1 * *
< 5 [lzn =P+ -y

2

2= lzn - un = (2" - y)

1 \ .
= 5 lzn =P+ =y
+2p2(zp =ty — (X* = y*), Bozn — Box™) — y3||Baz — Bzx*llz],
that is,

ln = ¥ |I° < 12 = 2P = || 20 =t = (x* = y*) || + 202|120 = 0 = (5" = ) ||1Baz — Box*|.
(3.24)
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Substituting (3.22) in (3.24), we have

lltn = v | < 1120 = X1 = 160 = Zall? + 24| %n — Za|[| A, — Ax|
(3.25)

~[lzn == (2" =y P+ 202l 20— = (5" = y) |1 Baza = Box”].
Further, similarly to the above argument, we derive

lItn = x*|I* = || P (un — p1 Biuan) = P (y* = i Biy*) ||

< ((un = Brun) = (y" = puBry™), tn — x°)

1 % * 2 12
= E[”un —y" — 1 (Biun = Biy") || + [Itn — x"||

* * * 2
_”(un -y ) ! (Blun - By ) —(tn—x )” ] (3.26)

1
< 5 [l =y I+ e = 71 = [t = £a) = 1 (Brsaw = Buy*) + (x* = ") |]

1 * 12 %112 * *\ |2
= 5 [l =y I + it =21 = [l = £+ (< = 97|

#2401 (1ty = by + (x* = y*), Bittn = Bry*) = || Bru = Bry*||],

that is,

lew =27 < [t = " [I* = Nt = b+ (" = y") I + 2401 |4 = b + (<" = y*) ||| Byt = Bry* |-
(3.27)

Substituting (3.25) in (3.27), we have

£ = X* [ < 1% = 21 = 11260 = Zall* + 20|30 — 2|l A2y — Ax*|
= ||zn = tn = (x* = y*) ||2 + 212|120 — ttn — (x* = y*)||[1B2zn — Box™|| (3.28)

b+ " =y P 2 b+ =y 1Bt~ By
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Thus from (3.1) and (3.28), it follows that
et = I = [|BuCn = ) + Y (yn = %) + 62(Syn — ) ||
< Bulln = 21 + (g + 6) |y = ||
= ulln = %1 + (1= ) [lym - x|
< Pl = %I + (1= Bu) [allQn = 1P + (1 = ) 1 = "I
< Bullxn = %" + @nl|Qun — x*|* + (1= Bo) 1t — 717
< Bullxn = |7 + | Qxn — x| + (1= B)
x [len = 1> = 1w = zall? + 24 lls = Zu [ Axy = Ax"
~Nlzn = un = (" =y + 2p2| 20 = 1 = (" = y*) |1 Baza - Box”|
=t (" = y) 1P+ 2p |1 = b+ (5" = y*) || Braew = Buy|
= flaew = 27 + | Qaen = x*|* + (1 - )

X [2Anllxn = znl|| A%y — AX*|| + 242 || 20 — n — (x* = y¥)

| B2z, — Box™||

#2p || — o+ (27 = y*) || Brsan = Bry”|]]

= (U= o) [ln = zall + |20 = s = (" = ) [P+ [latn = £+ (<" = )],

(3.29)
which hence implies that
(1= B [0 = zall® + |20 =100 = (" =y P+ [l = 0 + (=" = ) |]
< lxn = 7 = 1201 = X + @nl|Qxn = I + (1= )
X [20llxn = Zallll A = Ax*|| + 2p2|| 20 = 1t = (x* = y*) [[I1 B2z = Bax'||
2401 ||t — ta + (" = v |||| Brttn - Bry*|] (3.30)

< (e = 2"+ s = 2 )10 = X + tull Qs = 2°[2 + (1= )
x [l — zallll A — Ax*]| + 24| 20— 1 — (x° = y°) | I1Bazn — Box”|

#2p || =ty + (2" = y") ||| Buen = Bry”|l]-
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Since limsup, | _fr, < 1,0 < Ay, < 2a, a, — 0, ||[Ax, — AX*[| — O, ||Bazy — Box*|| — 0O,
|Biuy, — B1y*|| — 0and ||xp1 —x5|| — 0, it follows from the boundedness of {x,}, {z.}, {us},
and {t,} that

lim ||x, — z,|| = 0, lim ||z, —u, — (x*—y*)|| =0, lim [|u, - t, + (x* = y*)|| = 0.
(3.31)

Consequently, it immediately follows that
nlE}goHZn - tn“ =0, nlgl;”xn - tn” =0. (3.32)

This together with ||y, — t,|| < a,||Qx, — t,|| — 0 implies that

Tim [|x, = yul| = 0. (3.33)
Since

1162 (Syn = 2u) | < %1 = Xull + Yullyn = 2, (3.34)
it follows that

lim [|Syn —xu|| =0, lim [[Syn - yu|| = 0. (3.35)

Step 5. limsup, , (Qx —X,x, —X) <0, where X = Prix(s)nrnvia,c) - QX.
Indeed, since {x,} is bounded, there exists a subsequence {x,,} of {x,} such that

limsup(Qx - X, x, — x) = lim (Qx — X, x,,, — X). (3.36)

n— oo

Also, since H is reflexive and {y,} is bounded, without loss of generality we may assume
that y,, — p weakly for some p € C. First, it is clear from Lemma 2.2 that p € Fix(S). Now
let us show that p € I'. We note that

Iy = G(yn)l

< anl|Qxn = G(yn) || + (1 = @n) [ Pe [Pe (20 = p2Bazn) = s BiPe (20 = p2B22n)] = G(y) |
= || Qxw = G(yn) || + (1 = @) [ G(zn) - G(wa) |

< | Qxn = G(yn) | + (1 = an) |20 = vl

— 0.

(3.37)
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According to Lemma 2.2 we obtain p € I'. Further, let us show that p € VI(A,C). As a matter
of fact, since [|x, — z,|| — 0and ||x, —y,|| — 0, we deduce that x,, — p weaklyand z,, — p
weakly. Let

To =

Av+ Ncv if v e(C,
(3.38)

0 ifvéC,
where N¢v is the normal cone to C at v € C. In this case, the mapping T is maximal monotone,
and 0 € Tv if and only if v € VI(A, C); see [10] for more details. Let Gph(T) be the graph of
T and let (v, w) € Gph(T). Then, we have w € Tv = Av + Ncv and hence w — Av € N¢v. So,

we have (v —t,w — Av) > 0 for all t € C. On the other hand, from z,, = Pc(x, — A,,Ax,) and
v € C we have

(xp — AyAxy — 2,2 —0) >0 (3.39)

and hence

<v -z, Z")L_ Iy Axn> > 0. (3.40)
n

From (v -t,w - Av) >0forall t € C and z,, € C, we have
(v —zp,w) 2 (V- z,,, AV)

Zn — X,
> (v -z, Av) — <v—zm,% +Axni>
s

i

=(0— 2y, AV — Azp,) + (U — 2y, Azy, — AXp,) — <’0 - Zp, —

Zp; — X,
> <U_Z11i/AZn,' _Axrl,'> - <U—Zm, 1 >/
n,

i

Hence, we obtain (v — p,w) > 0asi — oo. Since T is maximal monotone, we have p € T-10
and hence p € VI(A, C). Therefore, p € Fix(S) NI' N VI(A, C). Hence it follows from (2.8) and
(3.36) that

limsup(Qx - X, x, — x) = lim (Qx — X, x,,, — X)

- (Q-%,p-%) (3.42)
<0.

Step 6. lim,,_, x X, = X.
Indeed, since G : C — C is nonexpansive, we have

[t =X = [1G(zn) = G| < llxn = ]|. (343)
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Note that

<an - X, Yn _§> =(Qxy =X, x, = X) + <an ~X,Yn— xn>
=(Qx, —QX, X, —X) + (QX = X, X — X) + (QXy = X, Y — Xp) (3.44)

< pllon =TI +(QF =T, 2 = %) + 1Qxw — X[[| s = 2
Utilizing Lemmas 2.4 and 2.5, we obtain from (3.4) and the convexity of || - 112

251 = XI* = || B (30 = %) + ¥ (Y = X) + 64(Syu - %) ||

2

< Bullcn = %> + (yu + 6n)

g (v =) +6,(5, - )]
< Pullen =TI + (3 + 60) |y - %

< Pl = 3+ (o + 62) [ (1 = )l = 3P + 200 Q= %,y — %)
< Pallt = FI + (1 + 60) [ (1 = )10 = FI + 200 Qs — %, yu %)

= (1= (fu + 6n) @) 1260 = ZI* + (Y + 6)20( Q2 = X, Y — X)

< (1= (yu + ) )10 — X2

(3.45)

+ (Y + 60) 200 plln = XI + (QF = %, X = X) +11Q%0 = X[ yn =
< [1= (1=2p) (fu + 6n)n] l1xn = X

+ (Y + 60) 20 [(QX X, x0 = %) + Q= Xl |y = xal]
= [1 = (1~ 2p) (3 + 6u)ta] 00 ~ T

S (1=2p)(pa + 6ﬂ)un2[<Qx—zxn —§>1+_||2pr” = Flllyn - xalll

Note that liminf, (1 — 2p)(y. + 6,) > 0. It follows that 37> (1 — 2p) (yn + On)a, = oo. It is
clear that

i sup 2LQE = %% =) + 10, ~Sllys = xall]_ g

3.46
n— oo 1 _2P ( )

because limsup, _,  (Qx-X,x,—X) < 0and lim, _, ., [|x, — y»|| = 0. Therefore, all conditions of
Lemma 2.3 are satisfied. Consequently, we immediately deduce that x, — X. This completes
the proof. O

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A: C — H
be a-inverse strongly monotone and B; : C — H be Pi-inverse strongly monotone for i = 1,2. Let
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S :C — C bea k-strictly pseudocontractive mapping such that Fix(S) NI N VI(A, C) #0. For fixed
u € Cand given xq € C arbitrarily, let the sequences {x,}, {yn}, and {z,} be generated iteratively by
zn = Pe(xy — A\yAxy),

Yn = antt + (1 = ay) Pc[Pc(zn — p2Bazy) = p1 B1Pc (20 — p2Bazn)], (3.47)
Xn+l = ,ann + YnYn + 6nS]/n/ Vn > O/

where p; € (0,2p;) fori=1,2, {A,,} € (0,2a] and {a,}, (P}, {yn}, {6n} C [0,1] such that

(1) P+ Yn +06n =1and (yu + 6p)k < yn foralln > 0;

(ii) imy, o, = 0 and 307 ay = 00;

(IV hmn%oo(YnH/(l _ﬂn+1) - Yn/(l _:6”)) =0

)
)
(iii) 0 < liminf, _ B, < limsup, B, <1and liminf,_ .6, > 0;
)
(v) 0 <liminf, oA, <limsup, | A, <2aand lim, , | Ap1 = Ay| = 0.

Then the sequence {x,} converges strongly to X = Prixs)nravi(a,c) - QX and (X,y) is a solution of
the general system (1.3) of variational inequalities, where J = Pc(X — paBoX).

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A: C — H
be a-inverse strongly monotone and B; : C — H be f;-inverse strongly monotone for i = 1,2. Let
S : C — C be a nonexpansive mapping such that Fix(S)NT' N VI(A,C)#0. Let Q : C — Cbea
p-contraction with p € [0,1/2). For given xo € C arbitrarily, let the sequences {x,}, {y,} and {z,}
be generated iteratively by
zn = Po(x, — My Axy),
Yn = 0,Qxy + (1 — a,) Pc[Pe (20 — p2Bozn) — p1B1Pc (20 — p2Bazy)], (3.48)

Xpi1 = PnXp + YnYn + GnSyn/ Vn >0,

where p; € (0,2p;) fori=1,2, {A,} € (0,2a] and {a,}, (B}, {yn}, {6n} C [0,1] such that

(1) Pn+Yn+6n=1foralln>0;

(if) imy, o, = 0 and 307 oy = 00;

(iv) limy, — oo (Y1 / (X = Brs1) =¥/ (1= Bu)) =0;

)
)
(iii) 0 < liminf, B, < limsup, , B, <1and liminf,_, 6, > 0;
)
(v) 0 <liminf, oA, <limsup, | A, <2aand limy, ., |Api1 — Ay| = 0.

Then the sequence {x,} converges strongly to X = Prix(synrnvi(a,c) - Qx and (X,Vy) is a solution of
the general system (1.3) of variational inequalities, where iy = Pc(X — ppa BoXx).

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A: C — H
be a-inverse strongly monotone and B; : C — H be Pi-inverse strongly monotone for i = 1,2. Let



20 Fixed Point Theory and Applications

S : C — C be a nonexpansive mapping such that Fix(S) N T N VI(A, C) # 0. For fixed u € C and
given xo € C arbitrarily, let the sequences {x,},{y,} and {z,} be generated iteratively by

zn = Po(xy, — MyAxy),
Yn = g+ (1 — a,)Pc[Pc(zn — p2Bozn) — p1B1Pc(zn — poBazy)], (3.49)

Xn+1 = PuXn + YuYn + 00SYn, Yn 20,

where p; € (0,2p;) fori=1,2, {A,} C (0,2a] and {a,}, {Pn}, {¥n}, {6} C [0,1] such that
(1) Pn+Yn+6p=1foralln>0;

(ii) imy, - 0, = 0 and 3775 oy = o0;

(iV limnqw(}/n-ﬂ/(l _ﬂn+l) - Yn/(l _ﬁn)) = 0’

)
)
(iii) 0 < liminf, _ B, < limsup, , pn <1and liminf,_, 6, > 0;
)
(v) 0 <liminf,_, oA, <limsup, A, <2aand limy, _, [Ny — Ay| = 0.

Then the sequence {x,} converges strongly to X = PrixsynTnvia,c)i and (X,y) is a solution of the
general system (1.3) of variational inequalities, where i = Pc(X — ppByX).
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