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We study variational-like inclusions involving infinite family of set-valued mappings and their
equivalence with resolvent equations. It is established that variational-like inclusions in real
Banach spaces are equivalent to fixed point problems. This equivalence is used to suggest an
iterative algorithm for solving resolvent equations. Some examples are constructed.

1. Introduction

The important generalization of variational inequalities, called variational inclusions, have
been extensively studied and generalized in different directions to study a wide class of
problems arising in mechanics, optimization, nonlinear programming, economics, finance
and applied sciences, and so forth; see, for example [1-7] and references theirin. The
resolvent operator technique for solving variational inequalities and variational inclusions
is interesting and important. The resolvent operator technique is used to establish an
equivalence between variational inequalities and resolvent equations. The resolvent equation
technique is used to develop powerful and efficient numerical techniques for solving various
classes of variational inequalities (inclusions) and related optimization problems.

In this paper, we established a relationship between variational-like inclusions and
resolvent equations. We propose an iterative algorithm for computing the approximate
solutions which converge to exact solution of considered resolvent equations. Some examples
are constructed.
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2. Formulation and Preliminaries

Throughout the paper, unless otherwise specified, we assume that E is a real Banach space
with its norm || - ||, E* is the topological dual of E, (-, -) is the pairing between E and E*, d
is the metric induced by the norm || - ||, 2F (resp., CB(E)) is the family of nonempty (resp.,
nonempty closed and bounded) subsets of E, and (:, ) is the Housdorff metric on CB(E)
defined by

H(P,Q) = max{sup d(x,Q),sup d(P,y)}, (2.1)
x€P yeQ

where d(x,Q) = infyeod(x,y) and d(P,y) = infiepd(x,y). The normalized duality
mapping 2 : E — 2F is defined by

2(x)={f €E(x, f) = Il - || f

fll = llxll, ¥x € E}. (2.2)

7

Definition 2.1. Let E be a real Banach space. Letry: ExE — E; g,A: E — E be the single-
valued mapping, and let M : E — 2F be a set-valued mapping. Then,

(i) the mapping g is said to be accretive if

(g(x)-g(W), j(x-y)) 20, Vx,y€E, (2.3)

(ii) the mapping g is said to be strictly accretive if
(8(x)-g(y),j(x-y)) 20, Vx,y€E, (24)
and the equality hold if and only if x = y,

(iii) the mapping g is said to be k-strongly accretive (k € (0,1)) if for any x,y € E,
there exists j(x —y) € 2(x — y) such that

(860~ g(),j(x-y)) 2 kl|x -y, (25)

(iv) the mapping A is said to be r-strongly 7-accretive, if there exists a constant r >
0 such that

> Vx,y€E, (2.6)

(A(x) - A(y),j(n(x,y))) 2r|lx -y

(v) the mapping M is said to be m-relaxed r-accretive, if there exists a constant m >
0 such that

2, Vx,y€E, ue M(x), ve M(y). (2.7)

(u-v,j(n(xy))) 2 -m|x-y
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Definition 2.2. Let A : E — E,n : Ex E — Ebe the single-valued mappings.
Then, a set-valued mapping M : E — 2F is called (A, n)-accretive if M is m-relaxed 7-
accretive and (A + pM)(E) = E, for every p > 0.

Proposition 2.3 (see [8,9]). Let E be a real Banach space, and let 2 : E — 2E be the normalized
duality mapping. Then, for any x,y € E

x+y|* < Ixl? +2(y, j(x + ), Vi(x+y) € 2(x+y). (2.8)

Definition 2.4. Let At E — E,W :ExE — E,andlet N : E® = ExExE--- — E be the
mappings. Then,

(i) the mapping A is said to be Lipschitz continuous with constant A 4 if

|A(x) - A(W)|| < rallx-y||, VYxy€E, (2.9)

(ii) the mapping W is said to be Lipschitz continuous in the first argument with
constant Ay, if

||W(X1,') - W(.X'z,')” < )LW1||.X'1 - .X'z”, VX1,.X'2 € E. (2.10)

Similarly, we can define Lipschitz continuity in the second argument.

(iii) the mapping N is said to be Lipschitz continuous in the ith argument with
constant f; if

||N(~,...,xi,...)—N(.,...,yi,...)” Sﬁi”x,-—y,-

, Vxl-,yi €E. (211)

Definition 2.5. Let A : E — E be a strictly 77-accretive mapping, and let M : E — 2F be an
(A, m)-accretive mapping. Then, the resolvent operator | 5:;31 : E — E is defined by

Joi@ = (A+pM) " (w), VueE, (2.12)

Proposition 2.6 (see [10]). Let E be a real Banach space, and let nj : E x E — E be T-Lipschitz
continuous; let A : E — E be an r-strongly n-accretive mapping, and let M : E — 2F be an (A, n)-
accretive mapping. Then the resolvent operator ]5/’?4 : E — Eis v /(r — pm)-Lipschitz continuous,
that is,

pA T

7030 = e )]| <

lx-yll, Vxy€E, (2.13)

r—pm

where p € (0,r/m) is a constant.
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Example2.7. Let E = R, A(x) = v/x, M(y) = /¥, and 1(x,y) = (v/x—,/y) forall x,y >0 € E.
Then, M is n-accretive.

Example 2.8. Let M(-,-) : E x E — 2F be r-strongly 5-accretive in the first argument.
Then, M is m-relaxed n-accretive for m € (1,r + r?), for r > 0.6180.

LetT; : E — CB(E), i =1,2,...,00 be an infinite family of set-valued mappings, and
let N : E®* = ExExE--- — E beanonlinear mapping. Let §, W : ExE — E;A,gm:E — E
be single-valued mappings, let and B,C,D:E — CB(E) be set-valued mappings. Suppose
that M(-,-) : E x E — 2F is (A, n)-accretive mapping in the first argument. We consider the
following problem.

FindueE, w; € Ti(u), i=1,2,...,00, a € B(u), x € C(u), and y € D(u) such that

0€ N(wy, ws,...) - W(x,y) +m(a) + M(g(u) —m(a),u). (2.14)
The problem (2.14) is called variational-like inclusions problem.

Special Cases

(i) If W =0, m =0, then problem (2.14) reduces to the problem of finding u € E, w; €
Ti(u), i=1,2,...,00 such that

0€ N(wy,ws,...)+ M(g(u),u). (2.15)

Problem (2.15) is introduced and studied by Wang [11].

(i) IfW =0 m=0, N(,...) = N(,), then problem (2.14) reduces to a problem
considered by Chang, et al. [12, 13] that is, find u € H, w; € Ti(u), w2 € Tr(u)
such that

0 € N(w1, wy) + M(g(u), u). (2.16)

It is now clear that for a suitable choice of maps involved in the formulation of
problem (2.14), we can drive many known variational inclusions considered and studied
in the literature.

In connection with problem (2.14), we consider the following resolvent equation
problem.

Find z,u € E, w; € Ti(u),i=1,2,...,00; a € B(u), x € C(u), y € D(u) such that

_1ppA
N(wi,wy,...) - W(x,y) + m(a) +p 1RZ,M<_,u)(z) =0, (2.17)
: A A A A
where p is a constant and RZ,M(~,u) =1- A(]Z/M(./u)), where A[]T’;/M(./u)(z)] = [A(]T’;/M(./u))](z)

and [ is the identity mapping. Equation (2.17) is called the resolvent equation problem.
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In support of problem (2.17), we have the following example.
Example 2.9. Let us suppose that E = R, Ti(u) = [-i,i],i=1,2,...,00, C(u) = {or/2}, B(u) =

[0,1], and D(u) = {1}.
We define for w; € T;(u), i=1,2,...,00, a € B(u), x € C(u) and y € D(u).

(i) N(wy,wy,...) = min{-1,sinw;, sinws,, ...},
(i) m(a) = sin"'a + cos'a,
(iii) W(x, y) = xy,
(iv) A(x) =x-1, forall x € R,
(v) M(-,x) =1, forall x € R,

Then, for p = 1,itis easy to check that the resolvent equation problem (2.17) is satisfied.

3. An Iterative Algorithm and Convergence Result

We mention the following equivalence between the problem (2.14) and a fixed point problem
which can be easily proved by using the definition of resolvent operator.

Lemma 3.1. Let (u,a,x,y, (w1, w,,...)) whereu € E, w; € T;(u), i=1,2,...,00, a€ B(u), x €
C(u), and y € D(u), is a solution of (2.14) if and only if it is a solution of the following equation:

,A

() =m(a)+ "y [A(3() —m(a)) - p{N(w1,ws,..) - W (x,y) + m(@)}].  (3.1)

Now, we show that the problem (2.14) is equivalent to a resolvent equation problem.

Lemma 3.2. Let u € E, w; € Ti(u), i =1,2,...,00, a € B(u), x € C(u), y € D(u), then the
following are equivalent:

(i) (u,a,x,y, (w1, wy,...)) is a solution of variational inclusion problem (2.14),

(ii) (z,u,a,x,y, (w1, ws,...)) is a solution of the problem (2.17),

where

z=A(gw) -m(a)) - p{N(wi,ws,...) - W(x,y) + m(a)} ,

g(u) =m(a) + ];?:1?4(.,11) [A(g(u) —m(a)) - p{N (w1, ws,...) -W(x,y) + m(a)}].

(3.2)
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Proof. Let (u,a,x,y, (w1, w>,...)) be a solution of the problem (2.14), then by Lemma 3.1, it is
a solution of the problem

g(u) =m(a) + ]5,’]':‘4(.,“) [A(g(u) —m(a)) - p{N (w1, w,,...) - W(x,y) +m(a)}], (3.3)
using the fact that

R = 1= AT )
R (2) = R [A(3(0) = m(@)) - p[N (w1, ws,..) = W (x,y) +m(a))]
= (1= AT ) ) TAGS () = m(@)) = {pN (wr, 105, ..) = W (x, ) + m(a) )]
= A(g(w) -m(a)) - p{N (w1, w,,...) - W(x,y) + m(a)}
AT e [A(8 () = m(@)) = p(N(@r,ws, ..) - W (x,y) +m(a))])
= A(g(u) -m(a)) - p{N (w1, w,,...) - W(x,y) + m(a)}
- A(g(u) —m(a)),

(3.4)
which implies that
N(wi,wy,...) - W(x,y) +m(a) + p‘lRZ:;\‘/I('/u)(z) =0, (3.5)
with
z = A(g(u) -m(a)) - p{N (w1, w,...) - W(x,y) + m(a)}, (3.6)
thatis, (z,u,a,x,y, (w1, w,,...)) is a solution of problem (2.17).
Conversly, let (z,u, a,x,y, (w1, w,...)) be a solution of problem (2.17), then
p{N w1, w,...)-W(x,y) +m(a)} = —RZ’;:‘/I(./”)(Z), .
PIN(w1,ws,..) =W (x,y) +m(a)} = A|J 0 (3)] - 2 o
from (3.2) and (3.7), we have
p{N (w1, w,...)-W(x,y) + m(a)}
= A1 0 (Ag@) = m(a)) = p{N (o1, ws,..) - W (x,y) +m@))]  (38)

- [A(g(w) - m(a)) - p{N (w1, ws,...) =W (x,y) + m(a)}],
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which implies that
gu) = m(a) + v o [A(8(w) = m(@) = p[N(wr,ws,..) =W (x,y) +m(@)})],  (39)

thatis, (1, a, x,y, (w1, wo,...)) is a solution of (2.14). O

We now invoke Lemmas 3.1 and 3.2 to suggest the following iterative algorithm for
solving resolvent equation problem (2.17).

Algorithm 3.3. For a given zy, up € E, w? €Ti(uy), i=1,2,...,00, ag € B(ug), xo € C(ug), and
Yo € D(up). Let

z1 = A(g(uo) —m(ag)) — p{N<w$, wy, .. ) - W (x0,y0) + m(ao) } (3.10)
Take z1,u; € E such that

glun) = m(ar) + [ (z0). (3.11)

Since for each i,w? € Ti(uo), ao € B(up), xo € C(up), and yo € D(ug) by Nadler’s
theorem [14] there exist wl.1 € Ti(u1), a1 € B(u1), x1 € C(u1), and y; € D(u;) such that

[e0? = w}|| < (Tiuo), Titaur)),

llao — a1l < H(B(uo), B(u1)),

(3.12)
[lxo = 21| < H(C(u0), C(111)),
llvo = 11| < #(D(uo), D(u1)),
where # is the Housdorff metric on CB(E).
Let
zp = A(g(u1) —m(ar)) —p{N(w%,wé,...) -W(x1, 1) + m(al)}, (3.13)
and take any u, € E such that
) = m(ar) + [y (22). (3.14)

Continuing the above process inductively, we obtain the following.
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For any zp,up € E, wl.0 € Ti(up), i = 1,2,...,00, a0 € B(up), xo € C(up), and
Yo € D(up). Compute the sequences {z,}, {u,}, {w!'}, i =1,2,...,00,{ao}, {x0}, {yo} by the
following iterative schemes:

() (un) = m(an) + J7n (), (3.15)
(i) an € B(un), |lan — anell < L(B(un), Buni1)), (3.16)
(i) Xn € Clutn), |10~ Xuir ]| < H(Cttn), Cttni1)), (3.17)
(V) Yu € D), ||y — et || < (D (ttn), D(ttns)), (3.18)
(v) foreach i,w! € Ti(uy), | w! — W < H(Ti (), Ti(thns1)), (3.19)
(Vi) Zui = A((un) — m(an)) = p{N (w0}, w0}, ..) =W (xn, yu) + m(an)},  (3.20)

where p > 0is a constantand n=0,1,2,....

Theorem 3.4. Let E be a real Banach space. Let T;,B,C,D : E — CB(E) be H-Lipschitz
continuous mapping with constants 6;,a, t,y, respectively. Let N = E® = ExExE--- — E be
Lipschitz continuous with constant p;, let A,g,m : E — E be Lipschitz continuous with constants
Xa, Ag, A, respectively, and let A be r-strongly n-accretive mapping. Suppose that n,W : ExXE — E
are mappings such that v is Lipschitz continuous with constant T and W is Lipschitz continuous in
both the argument with constant Ay, and w,, respectively. Let M : E x E — 2F be (A, n7)-accretive
mapping in the first arqument such that the following holds for p > 0O:

17ty E) = Tt )| < Bl = s (3.21)

Suppose there exists a p > 0 such that

Aadg + Ana(da +p) +p > Bibi + p(Aw,t + Aw,Y)
( ) = (3.22)
r—pm r
<+\/1—(/\%1a2+‘u2—2k), m<f—), A2 <1+ 2k - p2.

Then, there exist z,u,€ E, a € B(E), and x € C(E), y € D(E), and w; € T;(u) that
satisfy resolvent equation problem (2.17). The iterative sequences {z,}, {u,}, {a.} {xn}, {yn},
and {w!'}, i = 1,2,...,00, n = 0, 1,... generated by Algorithm 3.3 converge strongly to
z,U,a, X, Yy, w;, respectively.
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Proof. From Algorithm 3.3, we have

lzns1 = 2l = || A(gtn) = m(@n)) = p[N (w0, ...) = W (xn, yu) + m(an)}
- |A(g @) - m(an))
- P{ ( wi™, Wy ) - W (xn-1, Yn-1) +m(an—1)}”|
< [|A(g(un) = m(an)) = (A(g(n1) — m(an-1)) ||

+p||N(w1,w2, ) - N< i >||

(3.23)

+p||W (%0, Yn) = W (Xn-1, Y1) || + plim(an) = m(an-1)ll.

By using the Lipschitz continuty of A, g, and m with constants 14, A¢, and A, respectively,
and by Algorithm 3.3, we have

| A(g(un) - m(an)) = (A(g(tn-1) — m(an-1)))||
< Aa|lg(un) = g(una) || + Xallm(an) — m(an-1)||

< )LA)Lg”un - un—l” + -)‘A/\m”an - an—l”
(3.24)
< Madgllun — upa|| + AadyH (B(uy), B(un-1))

< Madgllun — upa || + Aadmal||u, — uy1]|

= (Aadg + Aadpa) iy — up1]].

Since N is Lipschitz continuous in all the arguments with constant f;, i = 1,2,...,
respectively, and using H#-Lipschitz continuity of T;’s with constant 6;, we have

[N Gop s, = N(p )|
= [|NGop ) = Nt )+ N (e, ) o |
< [NGof et - N, )|
N I SR BN (7 SR SN (I

< pi||w y —w)y !

_wl ||_|_ﬂ2 |+
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< Zlﬂz| |

< 3 Bk (T (), Ti(itn))

i=1

n n—1
w; —w;

[ee)
< > Bibillun —unall, n=0,1,2,....
i=1

(3.25)

Since W is a Lipschitz continuous in both the arguments with constant Aw,, Aw,
respectively, and C and D are J#-Lipschitz continuous with constant ¢ and y, respectively,
we have

”W(xnz yn) - W(xn—ll yn—l) ” < )LWZ ”yn —Yn-1 ” + )LW1 ||xn - xn—l”
S Ay llun = tna |l + dw tlug = tna || (3.26)

= ()‘Wlt + ‘)LWZY) ”un - un—l”-

Combining (3.24), (3.25), and (3.26) with (3.23), we have

|zn1 = zall < ()LA)Lg + J\A)Lma)”un —Up1|| + PZﬂiéi”un — Un-1|

i=1

+ P()‘Wlt + )‘WZY) lun = un-all + pAmalun — un-1|| (3.27)

= [()LA)Lg +dma(Aa +p)) +p Y fibi+ p(Awt + AWZY)] [l = tina |-

i=1
By using Proposition 2.3 and k-strong accretiveness of g, we have
=ttt = {{m(@n) + 3t ) (20) = m1(anr)
(/ Yl)
2
T4 Ene) = [804n) =100 = (gata) = )] |
2
< lim(an) = m(@n) I+ || Togt y (Z0) = Tty Znct) |
- 2<g(un) —Un — (g(un—l) - un—l)/j(un - un—l))
< Im(an) = m(an-1)|*
2
o AR [N CA RS [ R NG

—2(g(un) = tun — (§(tn-1) — tn-1), j(ttn — 1)),
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2

= sl < N2t = st P + | Ty ) = Tt ()

2
8 LSIRSCAEY N C]

- 2<g(un) —Un — (g(unfl) - unfl)/].(un - un71)>

< J\%ﬂzﬂun - un—1||2 + /42”1{” - un—l”2

T ? 2 2
+ < > |zn = zn-1||” = 2k||ttn = ttn1 ||,
r—pm

2
.
) ezl

o4 = ttna P < (A3 + 42 = 2K ) 1t = s+ <r

(z/ (r—pm))’
(A2,a2 + p2 - 2k)]

||Z1’l - Zn—l ”2/

e

-
llun — unall < lzn — zn-1l]-

(r- pm)\/[l - (A% + p2 - 2k)]

(3.28)

Using (3.28), (3.27) becomes

[iads +dma(a +p) +p 3 B0+ pCUwit + Awp]T
n — 4“n-1||,
(r - pm)\[1 - (A® + 2 — 2K) 629)

thatis, ||zus1 — zall € 0|20 — zn-1 ||,

|zns1 = znl| £

where

[.)LAJ\g + )Lma()LA + P) + PZ;;:l ﬁi‘si + P()‘Wlt + )LWZY)]T
(r- pm)\/l — (A3a? + p? - 2k)

0 =

(3.30)

From (3.22), we have 6 < 1, and consequently {z,} is a Cauchy sequence in E. Since E
is a Banach space, there exists z € E such that z, — z. From (3.28), we know that {u,}
is also a Cauchy sequence in E. Therefore, there exists u € E such that u, — wu. Since
the mappings Ti’s, B, C and D are #-Lipschitz continuous, it follows from (3.16)—(3.19) of
Algorithm 3.3 that {a,}, {x.}, {y.}, and {w!'} are also Cauchy sequences. We can assume that
w! — w;, a, — a, X, — x,and y, — v.



12 Fixed Point Theory and Applications

Now, we prove that w; € T;(u). In fact, since w! € T;(u;) and

d(w;, T;(u)) < ||wi — wi'|| + d(w}, Ti(u))

- m{ sup (g Tw), sup d(Ti(u),ql)}

92€T; () qi€Ti(u) (3.31)

= ||wi - w}|| + H(Ti(un), Ti(u))

< ||w1 —w:‘” + 6illun — tp-1]| — 0 (n— o0),

which implies that d(w;, T; (1)) = 0. As T;(u) € CB(E), we have w; € Ti(u),i=1,2,...c0.
Finally, by the continuity of A, g,m, N, and W and by Algorithm 3.3, it follows that

zne1 = A(g(un) —m(an)) — p{N(wy,w},...) =W (xn, yu) + m(a)},
— z=A(gw) ~m(a)) - p{N(wi,wy,..) -W(x,y) +m(a)} (n— o), (3.32)

Jo o (2n) = () — m(ay) — g(u) ~m(a) = J7L (2) (n— oo).
From (3.32), and Lemma 3.2, it follows that

N(wi,wy,..) = W(x,y) +m(a) +p" 2= A(J ()] =0,

N(wi,ws,...) - W(x,y) +m(a) + p_lR%(,/u)(z) =0,

(3.33)

thatis, (z,u,a,x,y, (w1, wy,...)) is a solution of resolvent equation poblem (2.17). O
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