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We prove several strong convergence theorems for the Ishikawa iterative sequence with errors to
a fixed point of strictly pseudocontractive mapping of Browder-Petryshyn type in Banach spaces
and give sufficient and necessary conditions for the convergence of the scheme to a fixed point of
the mapping. The results presented in this work give an affirmative answer to the open question
raised by Zeng et al. 2006, and generalize the corresponding result of Zeng et al. 2006, Osilike and
Udomene 2001, and others.

1. Introduction and Preliminaries

Let E be a real Banach space and E∗ its dual. 〈·, ·〉 denotes the generalized duality pairing
between E and E∗. Let J : E → 2E

∗
be the normalized duality mapping defined by the

following:

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥∥f∥∥2

}
, ∀x ∈ E. (1.1)

It is well known that if E is smooth, then J is single-valued. In this paper, we denote a single-
valued selection of the normalized duality mapping by j. I denotes the identity operator.
F(T) is the fixed point set of T , that is, F(T) = {x : Tx = x}.
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Definition 1.1 (see [1]). A mapping T : D(T) ⊂ E → E is said to be strictly pseudocontractive
if there exists λ > 0 and j(x − y) ∈ J(x − y), such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥∥x − y
∥∥2 − λ

∥∥x − y − (
Tx − Ty

)∥∥2
, ∀x, y ∈ D(T). (1.2)

Remark 1.2. (i) Without loss of generality, we may assume λ ∈ (0, 1). Inequality (1.2) can be
written in the form

〈
(I − T)x − (I − T)y, j

(
x − y

)〉 ≥ λ
∥∥(I − T)x − (I − T)y

∥∥2
. (1.3)

(ii) If E is a Hilbert space, then inequality (1.2) is equivalent to the following inequal-
ity:

∥∥Tx − Ty
∥∥2 ≤ ∥∥x − y

∥∥2 + k
∥∥(I − T)x − (I − T)y

∥∥2
, k = 1 − 2λ < 1. (1.4)

(iii) T is a Lipschitz continuous mapping, that is, ∃L > 0, s.t, ‖Tx − Ty‖ ≤ L‖x − y‖. In
fact, by (1.3), we have

‖x − y‖ ≥ λ‖x − y − (
Tx − Ty

)‖ ≥ λ‖Tx − Ty‖ − λ‖x − y‖, (1.5)

so that,

‖Tx − T‖ ≤ L‖x − y‖, ∀x, y ∈ D(T), (1.6)

where L = (λ + 1)/λ.

Definition 1.3. A mapping T : D(T) ⊂ E → E is said to be

(i) compact, if for any bounded sequence {xn} in D(T), there exists a strongly
convergent subsequence of {Txn}, or

(ii) demicompact, if for any bounded sequence {xn} in D(T), whenever {xn − Txn} is
strongly convergent, there exists a strongly convergent subsequence of {xn}.

Let us recall some important iterative processes.

Definition 1.4 (Ishikawa iterative process with errors in the sense of Liu [2]). Let K be a
nonempty convex subset of E with K +K ⊆ K. For any x1 ∈ K, the sequence {xn} is defined
as follows:

xn+1 = (1 − αn)xn + αnTyn + un,

yn =
(
1 − βn

)
xn + βnTxn + vn, n ≥ 1,

(1.7)

where {αn} and {βn} are appropriate sequences in [0, 1], and {un}, {vn}, are appropriate
sequences in K.
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If βn = vn = 0 for all n, then (1.7) reduces to Mann iterative process with errors as
follows:

xn+1 = (1 − αn)xn + αnTxn + un. (1.8)

Definition 1.5 (Ishikawa iterative process with errors in the sense of Xu [3]). Let K be a
nonempty convex subset of E. For any x1 ∈ K, the sequence {xn} is defined as follows:

xn+1 =
(
1 − αn − γn

)
xn + αnTyn + γnun,

yn =
(
1 − βn − δn

)
xn + βnTxn + δnvn, n ≥ 1,

(1.9)

where {un} and {vn} are bounded sequences in K, and {αn}, {γn}, {βn}, {δn} are real
sequences in [0, 1] satisfying αn + γn ≤ 1, βn + δn ≤ 1, for all n ≥ 1.

If βn = δn = 0 for all n, then (1.9) reduces to Mann iterative process with errors as
follows:

xn+1 =
(
1 − αn − γn

)
xn + αnTxn + γnun. (1.10)

Remark 1.6. (i) If un = vn = 0 in (1.7) or γn = δn = 0 in (1.9), then (1.7) and (1.9) reduce to
Ishikawa iterative process [4],

xn+1 = (1 − αn)xn + αnTyn,

yn =
(
1 − βn

)
xn + βnTxn, n ≥ 1.

(1.11)

(ii) If un = 0 in (1.8) or γn = 0 in (1.10), then (1.8) and (1.10) reduce to Mann iterative
process [5],

xn+1 = (1 − αn)xn + αnTxn, n ≥ 1. (1.12)

In 1974, Rhoades [6] proved strong convergence theorem by the Mann iterative
process to a fixed point of strictly pseudocontractive mapping defined on a nonempty
compact convex subset of a Hilbert space. In 2001, Osilike andUdomene [7] provedweak and
strong convergence theorems for strictly pseudocontractive mapping in a real q-uniformly
smooth Banach space E which is also uniform convex.

In 2006, Zeng et al. [8] established the sufficient and necessary conditions on the strong
convergence to a fixed point of strictly pseudocontractive mapping in a real q-uniformly
smooth Banach space. They got the following main results.

Theorem 1.7. Let q > 1 and E be a real q-uniformly smooth Banach space, letK be a nonempty closed
convex subset of E with K + K ⊆ K, and let T : K → K be a strictly pseudocontractive mapping
with F(T)/= ∅. Let {un} be a bounded sequence in K. Let {αn} and {βn} be real sequences in [0, 1]
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satisfying the following conditions:

(i)
∑∞

n=1 ‖un‖ < ∞;

(ii) αn ≤ λ(q/cq)
1/(q−1), and

∑∞
n=1 β

τ
n < ∞, where τ = min{1, (q − 1)} and cq is a constant

depending on q.

From an arbitrary x1 ∈ K, let {xn} be defined by the following:

xn+1 = (1 − αn)xn + αnTyn + un,

yn =
(
1 − βn

)
xn + βnTxn, n ≥ 1.

(1.13)

Then {xn} converges strongly to a fixed point of T if and only if {xn} is bounded and
lim infn→∞d(xn, F(T)) = 0, where d(x, F(T)) = infp∈F(T)‖x − p‖.

In the end of Zeng et al. [8], they raised an open question.

Open Question 1. Can the Ishikawa iterative process with errors (1.7) be extended to Theorem
1.7?

At the same year, Zeng et al. [9] proved the following strong convergence theorem for
strictly pseudocontractive mappings.

Theorem 1.8. Let q > 1 andE be a real q-uniformly smooth Banach space. LetK be a nonempty closed
convex subset of E, and let T : K → K be compact or demicompact, and strictly pseudocontractive
with F(T)/= ∅. Let {un} be a bounded sequence in K. Let {αn}, {βn}, and {γn} be real sequences in
[0, 1] satisfying the following conditions:

(i) αn + γn ≤ 1, for all n ≥ 1;

(ii) limn→∞αn < λ(q/cq)
1/(q−1), limn→∞βn < 1/L and

∑∞
n=1 αn = ∞;

(iii)
∑∞

n=1 γn < ∞ and
∑∞

n=1 αnβ
τ
n < ∞, where τ = min{1, (q − 1)}.

From an arbitrary x1 ∈ K, let {xn} be defined by the following:

xn+1 =
(
1 − αn − γn

)
xn + αnTyn + γnun,

yn =
(
1 − βn

)
xn + βnTxn, n ≥ 1.

(1.14)

If {xn} is the bounded sequence, then {xn} converges strongly to a fixed point of T .

They raised another open question.

Open Question 2. Can the Ishikawa iterative process with errors (1.9) be extended to Theorem
1.8?
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We have answered the Open Question 1 in [10]. The purpose of this paper is to
answer the Open Question 2, and we prove some strong convergence theorems for strictly
pseudocontractive mapping in Banach spaces, which improve Theorem 1.8 in the following:

(i) q-uniformly smooth Banach spaces can be replaced by general Banach spaces.

(ii) Remove the boundedness assumption of {xn}.
(iii) Iterative process (1.14) can be replaced by Ishikawa iterative process with errors

(1.9).

Respectively, our results improve and generalize the corresponding results of Zeng el al. [8],
Osilike and Udomene [7], and others.

In the sequel, we will need the following lemmas.

Lemma 1.9 (see [11]). Let {an}, {bn}, {cn} be sequences of nonnegative real numbers satisfying the
inequality

an+1 ≤ (1 + cn)an + bn, n ≥ 1. (1.15)

If
∑∞

n=1 cn < +∞,
∑∞

n=1 bn < +∞, we have (i) limn→∞an exists. (ii) In particular, if lim infn→∞an =
0, then limn→∞an = 0.

Lemma 1.10 (see [12]). Let E be a Banach space and J : E → 2E
∗
be the normalized duality

mapping, then for any x, y ∈ E, the following conclusions hold

(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, for all j(x + y) ∈ J(x + y);

(ii) ‖x + y‖2 ≥ ‖x‖2 + 2〈y, j(x)〉, for all j(x) ∈ J(x).

2. Main Results

In the rest of paper, we denote by L the Lipschitz constant.

Lemma 2.1. LetK be a nonempty closed convex subset of a real Banach space E. Let T : K → K be a
strictly pseudocontractive mapping with F(T)/= ∅. Let x1 ∈ K; {xn} is defined by (1.9) and satisfying
the following conditions:

(i) βn ≤ αn, δn ≤ γn,
∑∞

n=1 γn < +∞;

(ii)
∑∞

n=1 α
2
n < +∞,

∑∞
n=1 αn = +∞.

Then

(1) there exist two sequences {rn}, {sn} in [0,+∞), such that
∑∞

n=1 rn < +∞,
∑∞

n=1 sn <
+∞, and

‖xn+1 − q‖ ≤ (1 + rn)‖xn − q‖ + sn, ∀q ∈ F(T), n ≥ 1. (2.1)

Furthermore, limn→∞‖xn − q‖ exists.
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(2) For any integer n,m ≥ 1, there exists a constant M1 > 0, such that

‖xn+m − q‖ ≤ M1‖xn − q‖ +M1

n+m−1∑
k=n

sk, ∀q ∈ F(T). (2.2)

Proof. (1) Let q ∈ F(T). Since {un} and {vn} are bounded sequences in K, we have

0 < M := max

{
sup
n≥1

‖un − q‖, sup
n≥1

‖vn − q‖
}

< +∞. (2.3)

Since T is a strictly pseudocontractive mapping, by Remark 1.2(i),

〈
(I − T)x − (I − T)y, j

(
x − y

)〉 ≥ λ
∥∥(I − T)x − (I − T)y

∥∥2 ≥ 0. (2.4)

By Kato [13], the above inequality is equivalent to

‖x − y‖ ≤ ‖x − y + γ
[
(I − T)x − (I − T)y

]‖, ∀x, y ∈ K, γ > 0. (2.5)

Let an = αn + γn and from (1.9), we have

xn+1 = (1 − an)xn + anTyn + γn
(
un − Tyn

)
. (2.6)

It follows that

xn = (1 + an)xn+1 + an(I − T)xn+1 − anxn + 2a2
n

(
xn − Tyn

)

+ an

(
Txn+1 − Tyn

)
+ γn(1 + 2an)

(
Tyn − un

)
.

(2.7)

Observe that

q = (1 + an)q + an(I − T)q − anq. (2.8)

From (2.7) and (2.8), we have

xn − q = (1 + an)
(
xn+1 − q

)
+ an

[
(I − T)xn+1 − (I − T)q

] − an

(
xn − q

)

+ 2a2
n

(
xn − Tyn

)
+ an

(
Txn+1 − Tyn

)
+ γn(1 + 2an)

(
Tyn − un

)
.

(2.9)
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By inequality (2.5), we get

‖xn − q‖ ≥ (1 + an)‖xn+1 − q +
an

1 + an

[
(I − T)xn+1 − (I − T)q

]‖

− an‖xn − q‖ − 2a2
n‖xn − Tyn‖ − an‖Txn+1 − Tyn‖

− γn(1 + 2an)‖Tyn − un‖

≥ (1 + an)‖xn+1 − q‖ − an‖xn − q‖ − 2a2
n‖xn − Tyn‖

− an‖Txn+1 − Tyn‖ − γn(1 + 2an)‖Tyn − un‖.

(2.10)

So

‖xn+1 − q‖ ≤ ‖xn − q‖ + 2a2
n‖xn − Tyn‖ + an‖Txn+1 − Tyn‖

+ γn(1 + 2an)‖Tyn − un‖.
(2.11)

Furthermore, set bn = βn + δn ≤ 1, then

yn = (1 − bn)xn + bnTxn + δn(vn − Txn). (2.12)

We make the following estimations.

‖yn − q‖ = ‖(1 − bn)
(
xn − q

)
+ bn

(
Txn − q

)
+ δn(vn − Txn)‖

≤ [1 + (L − 1)bn]‖xn − q‖ + δn‖vn − Txn‖

≤ L‖xn − q‖ + δnL‖xn − q‖ + δnM

= L(1 + δn)‖xn − q‖ + δnM,

(2.13)

‖xn − Tyn‖ ≤ ‖xn − q‖ + ‖q − Tyn‖

≤ ‖xn − q‖ + L‖yn − q‖

≤ ‖xn − q‖ + L2(1 + δn)‖xn − q‖ + LδnM

=
[
1 + L2(1 + δn)

]
‖xn − q‖ + LδnM,

(2.14)

‖Tyn − un‖ ≤ L‖yn − q‖ + ‖un − q‖

≤ L2(1 + δn)‖xn − q‖ + (1 + Lδn)M,
(2.15)
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‖Txn+1 − Tyn‖≤ L‖xn+1 − yn‖
= L‖xn − yn + an

(
Tyn − xn

)
+ γn

(
un − Tyn

)‖
≤ L‖xn − yn‖ + Lan‖Tyn − xn‖ + Lγn‖Tyn − un‖
= L‖bn(xn−Txn)+δn(Txn − vn)‖ + Lan‖Tyn − xn‖ + Lγn‖Tyn − un‖
≤ Lbn‖xn−Txn‖+Lδn‖Txn− vn‖ + Lan‖Tyn − xn‖ + Lγn‖Tyn − un‖

≤ L(1 + L)bn‖xn − q‖ + L2δn‖xn − q‖ + Lan

[
1 + L2(1 + δn)

]
‖xn − q‖

+ L3γn(1 + δn)‖xn − q‖ + LδnM + L2anδnM + Lγn(1 + Lδn)M.

(2.16)

Substituting (2.14), (2.15), and (2.16) in (2.11), we obtain

‖xn+1 − q‖ ≤ ‖xn − q‖ + 2a2
n

[
1 + L2(1 + δn)

]
‖xn − q‖ + L(1 + L)anbn‖xn − q‖

+ anL
2δn‖xn − q‖ + La2

n

[
1 + L2(1 + δn)

]
‖xn − q‖

+ anL
3γn(1 + δn)‖xn − q‖ + 2a2

nLδnM + anLδnM + L2a2
nδnM

+ Lanγn(1 + Lδn)M

= (1 + rn)‖xn − q‖ + sn,

(2.17)

where

rn = 2a2
n

[
1 + L2(1 + δn)

]
+ L(1 + L)anbn + anL

2δn

+ La2
n

[
1 + L2(1 + δn)

]
+ anL

3γn(1 + δn),

sn = 2a2
nLδnM + anLδnM + L2a2

nδnM + Lanγn(1 + Lδn)M.

(2.18)

By conditions (i) and (ii), we have
∑∞

n=1 rn < +∞,
∑∞

n=1 sn < +∞. It follows from Lemma 1.9
that limn→∞‖xn − q‖ exists. This completes the proof of part (1).

(2) If x ≥ 0, then 1 + x ≤ ex. For any integer n,m ≥ 1 and from part (1), we have

‖xn+m − q‖ ≤ (1 + rn+m−1)‖xn+m−1 − q‖ + sn+m−1

≤ ern+m−1ern+m−2‖xn+m−2 − q‖ + ern+m−1sn+m−2 + sn+m−1
· · ·

≤ e
∑n+m−1

k=n rk‖xn − q‖ + e
∑n+m−1

k=n rk
n+m−1∑
k=n

sk

≤ M1‖xn − q‖ +M1

n+m−1∑
k=n

sk,

(2.19)

where M1 = e
∑∞

k=1 rk . This completes the proof of part (2).
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Lemma 2.2. Let K be a nonempty closed convex subset of a real Banach space E. Let T : K → K be
a strictly pseudocontractive mapping with F(T)/= ∅. Let {xn} be defined as in Lemma 2.1. Then there
exists a subsequence xnj of {xn}, such that

lim
j→∞

‖xnj − Txnj‖ = 0. (2.20)

Proof. Let q ∈ F(T). It follows from (1.3), (1.9), and Lemma 1.10(i) that

‖xn+1 − q‖2

=
∥∥xn − q + αn

(
Tyn − xn

)
+ γn(un − xn)

∥∥2

≤ ∥∥xn − q
∥∥2 + 2

〈
αn

(
Tyn − xn

)
+ γn(un − xn), j

(
xn+1 − q

)〉

=
∥∥xn − q

∥∥2 − 2αn

〈
xn+1 − Txn+1, j

(
xn+1 − q

)〉
+ 2αn

〈
xn+1 − xn, j

(
xn+1 − q

)〉

+ 2αn

〈
Tyn − Txn+1, j

(
xn+1 − q

)〉
+ 2γn

〈
un − xn, j

(
xn+1 − q

)〉

≤ ∥∥xn − q
∥∥2 − 2αnλ‖xn+1 − Txn+1‖2 + 2α2

n

〈
Tyn − xn, j

(
xn+1 − q

)〉

+ 2αn

〈
Tyn − Txn+1, j

(
xn+1 − q

)〉
+
(
2αnγn + 2γn

)〈
un − xn, j

(
xn+1 − q

)〉

≤ ∥∥xn − q
∥∥2 − 2αnλ‖xn+1 − Txn+1‖2 + 2α2

n‖Tyn − xn‖‖xn+1 − q‖
+ 2αnL‖yn − xn+1‖‖xn+1 − q‖ + (

2αnγn + 2γn
)‖un − xn‖‖xn+1 − q‖.

(2.21)

Let

kn = 2α2
n‖Tyn − xn‖‖xn+1 − q‖ + 2αnL‖yn − xn+1‖‖xn+1 − q‖

+
(
2αnγn + 2γn

)‖un − xn‖‖xn+1 − q‖.
(2.22)

Then (2.21) becomes
∥∥xn+1 − q

∥∥2 ≤ ∥∥xn − q
∥∥2 − 2αnλ‖xn+1 − Txn+1‖2 + kn. (2.23)

From Lemma 2.1(1), limn→∞‖xn − q‖ exists. So {‖xn − q‖} is bounded. By inequalities
(2.14), (2.15), and (2.16), the sequences {‖Tyn−xn‖}, {‖yn−xn+1‖}, {‖un−xn‖} are all bounded.
Notice the conditions of

∑∞
n=1 α

2
n < +∞ and

∑∞
n=1 γn < +∞, then

∑∞
n=1 kn < +∞. It follows from

(2.23) that

2αnλ‖xn+1 − Txn+1‖2 ≤
∥∥xn − q

∥∥2 − ∥∥xn+1 − q
∥∥2 + kn, (2.24)

so

2λ
n∑
i=1

αi‖xi+1 − Txi+1‖2 ≤
∥∥x1 − q

∥∥2 +
n∑
i=1

ki. (2.25)

Hence,
∑∞

n=1 αn‖xn+1 − Txn+1‖2 < ∞. Since
∑∞

n=1 αn = ∞, so we have limn→∞‖xn+1−Txn+1‖ = 0.
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By virtue of Lemma 1.10(ii), we obtain

‖xn+1 − Txn+1‖2

=
∥∥(1 − αn − γn

)
xn + αnTyn + γnun − Txn+1

∥∥2

=
∥∥(xn − Txn) + (Txn − Txn+1) + αn

(
Tyn − xn

)
+ γn(un − xn)

∥∥2

≥ ‖xn − Txn‖2+2
〈
(Txn−Txn+1)+αn

(
Tyn − xn

)
+ γn(un − xn), j(xn − Txn)

〉
,

(2.26)

therefore,

‖xn − Txn‖2 ≤ ‖xn+1 − Txn+1‖2 + 2
〈
Txn+1 − Txn, j(xn − Txn)

〉

+ 2αn

〈
xn − Tyn, j(xn − Txn)

〉
+ 2γn

〈
xn − un, j(xn − Txn)

〉

≤ ‖xn+1 − Txn+1‖2 + 2‖Txn+1 − Txn‖‖xn − Txn‖
+ 2αn‖xn − Tyn‖‖xn − Txn‖ + 2γn‖xn − un‖‖xn − Txn‖.

(2.27)

Observe the right side of the above inequality, since

‖Txn+1 − Txn‖ ≤ L‖xn+1 − xn‖
≤ αn‖Tyn − xn‖ + γn‖un − xn‖ −→ 0 (n −→ ∞),

(2.28)

and {‖xn − Txn‖}, {‖xn − Tyn‖}, {‖xn − un‖} are all bounded. Together with limn→∞‖xn+1 −
Txn+1‖ = 0, then limn→∞‖xn − Txn‖ = 0, that is, there exists a subsequence xnj of {xn}, such
that

lim
j→∞

‖xnj − Txnj‖ = 0. (2.29)

Theorem 2.3. LetK be a nonempty closed convex subset of a real Banach space E. Let T : K → K be
a strictly pseudocontractive mapping with F(T)/= ∅. Let {xn} be defined as in Lemma 2.1, then {xn}
converges strongly to a fixed point of T if and only if lim infn→∞d(xn, F(T)) = 0, where d(x, F(T)) =
infp∈F(T)‖x − p‖.

Proof. The necessity is obvious. So, we will prove the sufficiency. From Lemma 2.1(1), we
have

‖xn+1 − q‖ ≤ (1 + rn)‖xn − q‖ + sn, ∀q ∈ F(T), n ≥ 1. (2.30)

Therefore,

d(xn+1, F(T)) ≤ (1 + rn)d(xn, F(T)) + sn. (2.31)
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Note that
∑∞

n=1 rn < +∞,
∑∞

n=1 sn < +∞. By Lemma 1.9 and lim infn→∞d(xn, F(T)) = 0, we get
limn→∞d(xn, F(T)) = 0.

Next, we prove {xn} is a cauchy sequence. For each ε > 0, there exists a natural number
n1, such that

d(xn, F(T)) ≤ ε

12M1
, ∀n ≥ n1, (2.32)

where M1 is the constant in Lemma 2.1 (2). Hence, there exists p1 ∈ F(T) and a natural
number n2 > n1, such that

‖xn2 − p1‖ ≤ ε

4M1
,

∞∑
k=n2

sk <
ε

4M1
. (2.33)

From Lemma 2.1(2) and (2.33), for all n ≥ n2, we have

‖xn+m − xn‖ ≤ ‖xn+m − p1‖ + ‖p1 − xn‖

≤ 2M1‖xn2 − p1‖ +M1

n+m−1∑
k=n2

sk +M1

n−1∑
k=n2

sk

≤ 2M1
ε

4M1
+ 2M1

ε

4M1
= ε.

(2.34)

Hence, {xn} is a cauchy sequence. SinceK is a closed subset of E, so {xn} converges strongly
to a p ∈ K.

Finally, we prove p ∈ F(T). In fact, since d(p, F(T)) = 0. So, for any ε1 > 0, there exists
p′ ∈ F(T), such that ‖p′ − p‖ < ε1. Then we have

‖Tp − p‖ ≤ ‖Tp − p′‖ + ‖p′ − p‖
≤ (1 + L)ε1.

(2.35)

By the arbitrary of ε1, we know that ‖Tp − p‖ = 0. Therefore, p ∈ F(T).

A mapping T : K → K is said to satisfy Condition(A) [14], if there exists a
nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0, for all r ∈ [0,∞)
such that ‖x − Tx‖ ≥ f(d(x, F(T))) for all x ∈ K.

Theorem 2.4. Let K be a nonempty closed convex subset of a real Banach space E. Let T : K → K
be a strictly pseudocontractive mapping with F(T)/= ∅, and satisfy Condition(A). Let {xn} be defined
as in Lemma 2.1. Then {xn} converges strongly to a fixed point of T .
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Proof. By Lemma 2.2, there exists a subsequence xnj of {xn}, such that

lim
j→∞

‖xnj − Txnj‖ = 0. (2.36)

By Condition(A), limj→∞f(d(xnj , F(T))) = 0. Since f is a nondecreasing function and f(0) =
0, therefore limj→∞d(xnj , F(T)) = 0. The rest of the proof is the same to Theorem 2.3.

Theorem 2.5. LetK be a nonempty closed convex subset of a real Banach space E. Let T : K → K be
a compact and strictly pseudocontractive mapping with F(T)/= ∅. Let {xn} be defined as in Lemma 2.1.
Then {xn} converges strongly to a fixed point of T .

Proof. From Lemma 2.1 (1), it follows that limn→∞‖xn − q‖ exists, for any q ∈ F(T). By
Lemma 2.2, there exists a subsequence {xnj} of {xn} such that limj→∞‖xnj − Txnj‖ = 0. Since
{xnj} is bounded and T is compact, {Txnj} has a strongly convergent subsequence. Without
loss of generality, we may assume that {Txnj} converges strongly to p ∈ K. Next, we prove
p ∈ F(T).

‖xnj − p‖ ≤ ‖xnj − Txnj‖ + ‖Txnj − p‖ −→ 0
(
j −→ ∞)

, (2.37)

that is, limj→∞‖xnj − p‖ = 0. By the Lipschitz continuity of T , it follows that

‖p − Tp‖ ≤ ‖p − xnj‖ + ‖xnj − Tp‖ −→ 0
(
j −→ ∞)

. (2.38)

This means that p ∈ F(T). By Lemmas 1.9(ii) and 2.1(i), the sequence {xn} converges strongly
to p ∈ F(T).

Theorem 2.6. Let K be a nonempty closed convex subset of a real Banach space E. Let T : K → K
be a demicompact and strictly pseudocontractive mapping with F(T)/= ∅. Let {xn} be defined as in
Lemma 2.1. Then {xn} converges strongly to a fixed point of T .

Proof. From Lemma 2.1(1), it follows that limn→∞‖xn − q‖ exists, for any q ∈ F(T). By
Lemma 2.2, there exists a subsequence {xnj} of {xn} such that limj→∞‖xnj − Txnj‖ = 0. Since
{xnj} is bounded together with T being demicompact, there exists a subsequence of {xnj}
which converges strongly to some p ∈ K. Taking into account that limj→∞‖xnj − Txnj‖ = 0
and the Lipschitz continuity of T , we have p ∈ F(T). By Lemma 1.9, {xn} converges strongly
to p ∈ F(T).
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