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We introduce a new iterative scheme by hybrid method for finding a common element of the set
of common fixed points of infinite family of k-strictly pseudocontractive mappings and the set of
common solutions to a system of generalized mixed equilibrium problems and the set of solutions
to a variational inequality problem in a real Hilbert space. We then prove strong convergence of
the scheme to a common element of the three above described sets. We give an application of our
results. Our results extend important recent results from the current literature.

1. Introduction

Let K be a nonempty closed and convex subset of a real Hilbert space H. A mapping A :
K — His called monotone if

(Ax-Ay,x-y) >0, Vx,yeKk. (1.1)

A mapping A : K — H is called inverse-strongly monotone (see, e.g., [1, 2]) if there exists a
positive real number A such that (Ax — Ay, x — y) > A||Ax — Ay||?, for all x,y € K. For such
a case, A is called A-inverse-strongly monotone. A A-inverse-strongly monotone is sometime
called A-cocoercive. A mapping A is said to be relaxed A-cocoercive if there exists A > 0 such that

(Ax - Ay, x - y) > -A||Ax - Ay|]?,

Vx,y € K. (1.2)
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A is said to be relaxed (A, y)-cocoercive if there exist A,y > 0 such that

(Ax - Ay, x —y) > -A||Ax - Ay||* +y||x - y||>, VxyeK. (1.3)

A mapping A: H — H is said to be y-Lipschitzian if there exists y > 0 such that

[ Ax = Ay|| < pllx ~y

, x,y€H (1.4)

Let A : K — H be a nonlinear mapping. The variational inequality problem is to find an
x* € K such that

(Ax*,y-x*) >0, VyeK. (1.5)

(See, e.g., [3, 4].) We will denote the set of solutions of the variational inequality problem
(1.5) by VI(K, A).

A monotone mapping A is said to be maximal if the graph G(A) is not properly
contained in the graph of any other monotone map, where G(A) = {(x,y) € H x H :
y € Ax} for a multivalued mapping A. It is also known that A is maximal if and only if
for (x,f) € Hx H,(x -y, f —g) > 0 for every (y,g) € G(A) implies f € Ax. Let A be a
monotone mapping defined from K into H and Nkg a normal cone to K at g € K, that is,
Nkg={peH:(q—u,p)>0,for all u € K}. Define a mapping M by

(1.6)
@, q¢ kK.

Ag + Nkg, €K,
Mo - { q+Nkq, q
Then, M is maximal monotone and x* € M(0) & x* € VI(K, A) (see, e.g., [5]).

Amapping T : K — K issaid to be k-strictly pseudocontractive if there exists a constant
k € [0,1) such that

|Tx - Ty|* < ||x - y||” + k|| (I - T)x - (1 - T)y||?, (1.7)

for all x,y € K. If k = 0, then the mapping T is nonexpansive. A point x € K is called a fixed
point of T if Tx = x. The fixed points set of T is the set F(T) := {x € K : Tx = x}. Iterative
approximation of fixed points of k-strictly pseudocontractive mappings have been studied
extensively by many authors (see, e.g., [1, 6-9] and the references contained therein).

Let ¢ : K — R be a real-valued function and A : K — H a nonlinear mapping.
Suppose F : K x K into R is an equilibrium bifunction. That is, F(u, u) = 0, forall u € K. The
generalized mixed equilibrium problem is to find x € K (see, e.g., [10-12]) such that

F(x,y) +¢(y) —p(x) + (Ax,y —x) >0, (1.8)

for all y € K. We shall denote the set of solutions of this generalized mixed equilibrium
problem by GMEP(F, A, ¢). Thus,

GMEP(F, A, ) = {x* €e K: F(x*,y) +p(y) —(x*) + (Ax*,y - x*) >0, Vy e K}.  (1.9)
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If ¢ =0, A = 0, then problem (1.8) reduces to equilibrium problem studied by many authors
(see, e.g., [8,13-17]), which is to find x* € K such that

F(x*,y) 20, (1.10)

for all y € K. The set of solutions of (1.10) is denoted by EP(F).
If ¢ = 0, then problem (1.8) reduces to generalized equilibrium problem studied by
many authors (see, e.g., [18-20]), which is to find x* € K such that

F(x*,y) + (Ax",y - x") 20, (1.11)

for all y € K. The set of solutions of (1.11) is denoted by EP.
If A = 0, then problem (1.8) reduces to mixed equilibrium problem considered by
many authors (see, e.g., [21-23]), which is to find x* € K such that

F(x',y) +9(y) —p(x*) 20, (1.12)

for all y € K. The set of solutions of (1.12) is denoted by MEP.

The generalized mixed equilibrium problems include fixed-point problems, optimiza-
tion problems, variational inequality problems, Nash equilibrium problems, and equilibrium
problems as special cases (see, e.g., [24]). Numerous problems in Physics, optimization, and
economics reduce to find a solution of problem (1.8). Several methods have been proposed
to solve the fixed-point problems, variational inequality problems and equilibrium problems
in the literature (see, e.g., [5, 11, 12, 20, 25-30]).

Recently, Ceng and Yao [25] introduced a new iterative scheme of approximating a
common element of the set of solutions to mixed equilibrium problem and set of common
fixed points of finite family of nonexpansive mappings in a real Hilbert space H. In their
results, they imposed the following condition on a nonempty closed and convex subset K of
H:

(E) A : K — Ris g-strongly convex and its derivative A’ is sequentially continuous
from weak topology to the strong topology.

We remark here that this condition (E) has been used by many authors for
approximation of solution to mixed equilibrium problem in a real Hilbert space (see,
e.g., [31, 32]). However, it is observed that the condition (E) does not include the case
A(x) = ||x||*/2 and 7(x,y) = x — y. Furthermore, Peng and Yao [21], R. Wangkeeree and
R. Wangkeeree [30], and many other authors replaced condition (E) with the following
conditions:

(B1) for each x € H and r > 0, there exists a bounded subset D, C K and y, € K such
that for any z € K \ Dy,

F(z,yx) + 9(yx) — 9(2) + %(yx ~z,z-x) <0, (1.13)

or
(B2) K is a bounded set.
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Consequently, conditions (B1) and (B2) have been used by many authors in
approximating solution to generalized mixed equilibrium (mixed equilibrium) problems in
a real Hilbert space (see, e.g., [21, 30]).

Recently, Takahashi et al. [33] proved the following convergence theorem using hybrid
method.

Theorem 1.1 (Takahashi et al. [33]). Let K be a nonempty closed and convex subset of a real Hilbert
space H. Let T be a nonexpansive mapping of K into itself such that F(T) #@. For C1 = K, x1 = Pc,xo,
define sequences {x, oo and {yn }seq of K as follows:

Yn=anXn+ (1 —an)Tx,, n21,
Con={z€Cp:|lyn—z|<lxn—-2l}, n>1, (1.14)

X1 = Pe,,,x0, n2>1.

n+l

Assume that {ay,},;-; C [0,1) satisfies 0 < a, < a < 1. Then, {x,}, converges strongly to Pr(r)Xo.

Motivated by the results of Takahashi et al. [33], Kumam [28] studied the problem
of approximating a common element of set of solutions to an equilibrium problem, set of
solutions to variational inequality problem and the set of fixed points of a nonexpansive
mapping in a real Hilbert space. In particular, he proved the following theorem.

Theorem 1.2 (Kumam, [28]). Let K be a nonempty closed convex subset of a real Hilbert space
H. Let F be a bifunction from K x K satisfying (A1)-(A4) and let B be a p-inverse-strongly
monotone mapping of K into H. Let T be a nonexpansive mapping of K into H such that
F(T)NEP(F) N VI(K,B) #0. For C1 = K,x1 = Pc,xo, define sequences {xn}mo and {z,}mq of
K as follows:

F(zy,y) + %(y—zn,zn—xﬁ >0, Vyek,
n

Yn = anXxy + (1 — ) TPk (2 — \yBz,), n>1, (1.15)
Cun ={Z€Cnl ”yn_Z” S”xn_Z”}/ n>1,

X1 = Pe,,,x0, m2>1.

n+l

Assume that {a, }2q C [0,1), {rn}eq C (0,00) and {1}, C [0,2p] satisfy

liminfr, >0, 0<c<A, < f<2B, nlg%oan =0. (1.16)

n—oo

Then, {xy},, converges strongly to Pr(r)n\EP(F) (VI(K,B)X0-

Motivated by the ongoing research and the above-mentioned results, we introduce a
new iterative scheme for finding a common element of the set of fixed points of an infinite family of
k-strictly pseudocontractive mappings, the set of common solutions to a system of generalized mixed
equilibrium problems and the set of solutions to a variational inequality problem in a real Hilbert
space. Furthermore, we show that our new iterative scheme converges strongly to a common
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element of the three afore mentioned sets. In our results, we use conditions (B1) and (B2)
mentioned above. Our result extends many important recent results. Finally, we give some
applications of our results.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - || and let K be a nonempty
closed and convex subset of H. The strong convergence of {x,};, to x is denoted by x, — x
asn — oo.

For any point u € H, there exists a unique point Pxu € K such that

lu—Pxu| < ||lu-vy|, Yyek. (2.1)

Py is called the metric projection of H onto K. We know that Pk is a nonexpansive mapping
of H onto K. It is also known that Px satisfies

(x =y, Pxx - Pxy) > || Pxx - PKy||2, (2.2)
for all x, y € H. Furthermore, Pxx is characterized by the properties Pxx € K and
(x — Pxx,Pxx—y) >0, (2.3)
for all y € K and

’ VxeH, yeKk. (2.4)

2
- P < [l =y - fly - P
In the context of the variational inequality problem, (2.3) implies that

x* € VI(A,K) & x* = Px(x* — LAx"), VA>0. (2.5)

If A is a-inverse-strongly monotone mapping of K into H, then it is obvious that A is (1/a)-
Lipschitz continuous. We also have that for all x,y € K and r > 0,

(I -7rA)x - (T -rA)y|]* = ||x -y - r(Ax - Ay)|’
= lx-yl’ ~2r(Ax - Ay, x-y) + Pl Ax - Ay|* (26)

<Jlx - y||2 +r(r—2a)||Ax - Ay”z.

So, if r < 2a, then I — r A is a nonexpansive mapping of K into H.
For solving the generalized mixed equilibrium problem for a bifunction F : K x K —
R, let us assume that F satisfies the following conditions:

(A1) F(x,x) =0forall x € K,
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(A2) F is monotone, that is, F(x,y) + F(y,x) <0forall x,y € K,
(A3) for each x,y,z € K, lim; ,oF(tz+ (1 - t)x,y) < F(x,y),

(A4) for each x € K, y — F(x,y) is convex and lower semicontinuous.

We need the following technical result.

Lemma 2.1 (R. Wangkeeree and R. Wangkeeree [30]). Assume that F : K x K — R satisfies
(A1)—(A4) and let ¢ : K — R be a proper lower semicontinuous and convex function. Assume that

either (B1) or (B2) holds. For r > 0 and x € H, define a mapping T H - K as follows:
T (x) = {z eK:F(z,y)+o(y) —op(z)+ %(y -z,z-x)>0,Vy e K} (2.7)

orall z € H. Then, the following hold:

) h he following hold
(1) for each x € H, T, #0,
(2) Tr(F’q’) is single-valued,

(3) Tr(F’q’) is firmly nonexpansive, that is, for any x,y € H,

L% =Ty || < (TP - Ty, x - y), (2.8)

(4) F(T"") = MEP(F),

(5) MEP(F) is closed and convex.

3. Main Results

Theorem 3.1. Let K be a nonempty closed and convex subset of a real Hilbert space H. For each
m = 1,2, let F,,, be a bifunction from K x K satisfying (A1)-(A4), ¢, : K — R U {+o0o} a proper
lower semicontinuous and convex function with assumption (B1) or (B2), A an a-inverse-strongly
monotone mapping of K into H, B a p-inverse-strongly monotone mapping of K into H and for
eachi=1,2,.., letT; : K — K bea kj-strictly pseudocontractive mapping for some 0 < k; < 1
such that N2, F(T;) #0. Let D be a p-Lipschitzian, relaxed (A, y)-cocoercive mapping of K into H.
Suppose Q := N2, F(T;)NGMEP(F1, A, ¢1)NGMEP(Fy, B, 2)NVI(K, D) # 0. Let {zn} 52y, {ttn} 521,
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{wnoi, (Ynitw (0= 1,2,...) and {x,};2, be generated by xo € K, C1; = K, C; = n2,Cy;,
X1 = P(leC()

Fy,
Zn = Tr(n1 ‘pl)(xn -1 Axy),

Uy = ng,sm (zn — AnBzy),
wy, = Px(u, — s,Duy,),
Yni = Oniwn + (1 — a ) Tiwy, (3.1)
Cuori = {2z € Cuit [lymi — 2| < llxn - 2Il},
Cni1 = N2 Chii,

Xni1 = P, %0, n2>1.

n+l

Assume that {a,;};q C[0,1) (i=1,2,...), {ra}sey C [0,2a] and {1, };-; C [0,2p] satisfy

i)0<a<r,<b<2a,
(i) 0<c<A, < f<2p,
(ifl) 0 < ki < oy < s < 1,
(iv) 0<h <s, <j<2(y-\p?)/p?

Then, {x,}, converges strongly to Poxo.

Proof. For all x,y € K and s,, € (0,2(y — Au?) / p?], we obtain
0 = s (1~ D)y = [ -y - su(Dx - D)
= |lx = yII” = 2su(x - y, Dx ~ Dy) + ;|| Dx - Dy||*
< [lx = ylI* - 2su[-A|Dx - Dy[|* + y[}x - ||| + s}[|Dx - Dy
< Jlx = ylI* + 28 Mlx = ylI* = 25wy e = y|I” + s> =y

= <1 + 281\ — 25,y + yzsfl> lx -y

2
<lx-yl"
(3.2)
This shows that I —s,D is nonexpansive for each n > 1. Let x* € Q. Then
[wn = x*||* = || Pk (ttn = 5pDi1a) = Pic(x* = 5, Dx") ||
< || (st = $2Duy) = (x* = s,Dx*)|1* (3.3)

2
< lun = x|
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Since both I-r, A and I-\,,B are nonexpansive for eachn > 1 and x* = Tr(fl"pl) (x*—r, Ax*), x* =
T)(:Z'W) (x* — A,Bx*), from (2.6), we have

2
i — x| = ||T)Efz’¢2)(zn - A\y,Bz,) — x*

2
= ||ij (2 — AyBzy) = T (" — 1, Bx")

< = 4uB)zy — (I - L, B)x*|)?
< lzn = x| + Xn (A = 2B) || Bz, — Bx*|?

<|lzn —x*|*  (since A, <28, Yn>1),

) (3.4)
* F 7' *
|z — x*||* = Tr(,, ! W(x,1 — 1 AX,) — X
2
= Tr(fl"’”)(x,1 - 1mAxy) — T,(fl’(‘al) (x* —rpAx™)
< = raA)xn = (I = rp A)x|?
< latn = x* |17 + 1 rn = 20)[| Ax, = Ax"|?
< ey = x|
Therefore,
ll1n = x*|| < Jloen = X7 (3.5)

Letn =1, then C;; = K is closed convex for eachi = 1,2,.... Now assume that C,; is closed
convex for some n > 1. Then, from definition of C,.1,;, we know that C,,1,; is closed convex
for the same n > 1. Hence, C,,; is closed convex for n > 1 and for each i = 1,2, .. .. This implies
that C,, is closed convex for n > 1. Furthermore, we show that Q ¢ C,,. Forn =1,Q Cc K = Cy;.
Forn > 2, let x* € Q. Then,

2
ymi = X*||° = cnillewn — x| + (1 = i) | Tiwon = x*||? = @i (1 = i) | Tizon — w0l
*112 * 112 2
< il = x| + (1= ) leon = x| + kil Tieon = wal ]
- an,i(l _an,i)”Tiwn _u]nll2 (36)
= Jlwn = x*|* + (1 = @) (ki = o) | Tiwn — wyl*
2
[

<t = x* [ < [l2c0 — x*

7
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which shows that x* € C,,;, foralln > 2, foralli=1,2,.... Thus, Q € C,;, forall n > 1, for all
i=1,2,....Hence, it follows that @ #Q C C,, for all n > 1. Therefore, {x,},, is well defined.
Since x,, = Pc,xo, for all n > 1 and x,41 € Cpy1 C Cy, for all n > 1, we have

I — x0l] < ||Xne1 —x0ll, Vm2>1 (3.7)

Also, as Q C C,, by (2.1) it follows that

|xn — x0|| £ ||lv—x0l|, v€ Vn>1. (3.8)

From (3.7) and (3.8), we have that lim,_, .,||x,, — xol| exists. Hence, {x,};, is bounded and
so are {z )y, {Axnlyi, {unlyin, {Dunliy, (Bzalle, {wnhile, {Tiwn )iy and {ynilnly, i =
1,2,....For m > n > 1, we have that x,, = Pc,,x9 € C,, C Cy.. By (2.4), we obtain

1%6m = 2| < Jl20m = %01 = 1262 = X0]|%. (3.9)

Letting m,n — oo and taking the limit in (3.9), we have x,, —x, — 0, m,n — oo, which
shows that {x,},., is Cauchy. In particular, lim,_, o ||Xn+1 — x,|| = 0. Since, {x,};-, is Cauchy

and K is closed, there exists z € K such that x, — z,n — oo. Since x,+1 = Pc,,,x0 € Cpy1,
therefore
”yn,i — Xn+l ” < lxn = xpa I, (3.10)
and it follows that
”yn,i - xn” < ”yn,i — Xn+l ” + || = X1l
(3.11)

< 2||xy = xp4a |-

Thus,

nhlr;o”y"’i —x,]| =0, i=1,2,.... (3.12)
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Furthermore,

2
lyni = x*||° = anillwn = x> + (1 = @) | Tiwn — x|
- an,i(l - an,i)”Tiwn - wnllz
*112 *112 2

< il = x| + (1= ) [leon = X[ + kil Tieon = wa]
=i (1 = o) || Tiwy, — wn“2

_ %112 *112

= an,i”wn - X || + (]. - cxm-)||wn - X ||

— (1 = ;) (an; — k) | Tiwy, — wy|*

(3.13)
< illitn = x| + (1 = )| — x°|?
« F, F, X o |12
< il — |2+ (1 - atny) |T§n2 ) (2, — \nBzp) — TA(,,Z ) (x* - \,Bx")
< apillun — x| + (1= @) || (20 — AuBzn) — (x* = 1, Bx")||?
%112 *112 *112
< anillttn =2+ (1 - an,i)[llzn = x|+ A (An = 2B) | Bz — Bx"| ]
w112 %112
<l = x| + (1 = @) dn (A = 28) | Bz, — Bx*||
< lon = x| + (1 = @) An (A — 28) | Bz, — Bx*|*.
Since0<c <A, < f<2B,0< ki <ayi <d;i <1, wehave
(1-di)e(2B~ f)IIBzn = Bx*|* < [l = x| = ||ymi — x*|| (3.14)
< ”yn,i - xn” (”xn - x* + ”]/n,i - x*">
Hence, lim,, _, ,||Bz;, — Bx*|| = 0. From (3.1), we have
i = [1* < @nillen = 21+ (1= ) [l = I + Kill Tizoy = ]
— ni(1 = ) | Tiw, — wn® (3.15)

2 2
= anillitn = I + (1= ) st = 1 = (1 = ) (@n,i = ki) | Tion — w0,

2
< lun = x|
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On the other hand,

« F, F, « o |7
[ — x*|% < ||:r§n”’2>(zn ~ 14Bzy) — T\ 2% (x* — 1, Bx”)

< (20 = AnBzn) = (x" = AuBx"), 1y — x°)

= 310 = ABza) = (@ = 2B 5 = P

~I1(zn = 4uBzy) = (x" = 4,Bx") = (uy - )] (3.16)
(120 = 1+ 1t = %I = (2 = AnB22) = (" = LBx") = (1 = )]

<

Nl = N =

2 2
(120 = "1+ ot = 1 = N1t = 201 + 200 (Z0 = 4, Bzo — Bx")

~2||Bz, - Bx'|P],

and hence
ltn = x*|1* < |2 = X*|1 = ||t — Zull* + 2An {20 — U, Bz, — Bx*)

— A2||Bz, - Bx*|)? (3.17)

2
<lzn = x*|° = |lun - Zn||2 +2Anl|zn — unll|| Bz, — Bx|.

Putting (3.17) into (3.15), we have

* < llzn = %117 = llttn = Zall” + 240125 = | B2, - Bx"]. (3.18)

llyni —x*

It follows that

*

2 "
+ 2|z — unl||| Bz, — Bx™|

Iz = uall® < llzn = X7 = ||y — x

< It = 27 = [y = 2|1 + 24l 20 — nlll|Bzs — Bx| .19

< Nymi =2l (= 271+ [y = x|

+2An|zn — unll|| Bz, — BxX*||.
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Therefore, lim,, _, ||z — uy|| = 0. Furthermore,

2 2
wy = X717+ (1 = an) | Tiwn — x|

ymi = x"|1” < tns
= an,i(1 = )| Tiwy, - wnllz

2 2
< apillxn — X7+ (1= ani)||un — x*|

— (1= ) (an;i — ki) | Tiw, — wy|*

2 2
< apillxn — x|+ (1= ani)||un — x*|

. . 3.20
< il xn — x ||2 +(1—ani)lzn—x ”2 ( )

Tr(fl,(,ﬂl) T(Fl/({?l) 2

< apilln — x|+ (1 - ) (Xn = 1nAxy) =T, " (x" =1, AXT)

<ty |30 = 2|7 + (1= o) | (200 — 7w Axy) = (X" = 1 Ax) |

*112 *112 *112
< anilln = x|+ (1= ) llen = x|+ 770 = 2)]| A, = Ax|P]
= |lon = ¥ |1 + (1 = )7 (7 — 200) || Ay, — Ax*||.

Since0<a<r,<b<2aand0< k; <a,; <dj <1, wehave

(1-d;)aQa - b)||Ax, — Ax*||* < ||xn = x*|* = ||y — x* g
s o

< Nymi = ul (llan = 211+ [lymi = °]))-
Hence, lim,, ., ,|| Ax;, — Ax*|| = 0. From (3.1), we have

2 2
wy = X717+ (1 = a) | Tiwn — x|

”yn,i - x*”2 < Ay
= an,i(1 = )| Tiwy - wnllz

2 2
Xn = X174 (1 = a) [lun — 7|

<ap
(3.22)

— (1= atn;) (an,i — ki) || Tiwn — wy|*

2 2
< apillxn — X7+ (1= ani)||un — x¥|

2 2
S anillxn — X7+ (1= ani)l|zn — x|
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On the other hand,

2
Tr(fl’(‘al) (xn — ThAxy) — T,(fl"pl) (x* =, AxY)

lzn = I < |

< ((oon = 10 Axy) = (X° = 14 AXY), Zy — X7)
1
= 5 [100n = Az = (& = AR + = 7|
11t = T Axy) = (¢ = 1y AX) = (20 - 2P (3.23)

< o [l = 2+ 2 = 1P = 0 = 7 AX) = (3 = 10 AXY) = (20 = 2P|

NIl—= Nl

2 2
[||x,1 —x"|"+ |lzn = X7 = |lzn — xn||2 + 21y {Xn — 2y, Axy — AXY)

2
12l Ax, - Ax* |,

and hence

zn = 2*|1* < | = 2*|* = |20 = Xnl* + 270 { Xy — 20, Axy — AX*) — 12|| Ax,, — Ax*|?

(3.24)
<l = x| = N1z = xal® + 2720 = zu[[| Ax = Ax”].
Putting (3.24) into (3.22), we have
llyni = || < llxw = 7 = (1 = @) 1z = 2all” + 27 ll2cn = Zall[| Axcy = Ax”]| (3.25)
It follows that
(1= d)llx = zal < 12 = I = [|ymi = %[ + 27120 = zall Az — A7 626
< Ny = all (e = 271+ [y = °[]) + 2l = zalll Ay — A7
Therefore, lim,, _, - ||x;, — z,|| = 0. Then, we obtain that
X1 = tnll < lxnsr = Xall + X0 = Znll + |20 = tnll — 0, 1 — oo (3.27)
Since x,,;1 € Cpy1, then
|y = xnaa || < N2 = X - (3.28)

But yi = apiw, + (1 — ay) Tiw, implies that

2
”yn,i — Xn+l ” = an,i”wn — Xn+1 ||2 + (]- - an,i)”Tiwn - xn+1”2 - an,i(]- - “n,i)”wn - Tiwnllz'
(3.29)
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Putting (3.29) into (3.28), we have

(1= ani) | Tiwn = xpa1 II* < atni(1 = ani)||wn = Trwonl|” + 10 = Xnst||* = nillwn — Xna || (3.30)

Thus, we get

2
||T1wn - xn+1”2 < an,i”wn - ’1—‘1'71711”2 + ||xn - xn+1”

_
(1- an,i)

<ty il|w, — Tywon|* + 120 = Xt |-

1-d;
But
(| Tiwn - xn+1||2 = [|otna1 — 'wn”2 +2(Xps1 — Wn, Wy — Tiwy ) + [[wn — Tiwnllz-

Putting (3.32) into (3.31) and rearranging, we have

1
1-d;

(1-dp)l|lw, - Ti"wn”2 < [lxn — xn+1”2 — 2(Xp41 — Wy, Wy — Tywy)

< %60 = X1 > + 2] 241 — w3|||20n — Trwn|)-

1
1-d;
Hence, lim,, . o ||lw, — Tiwy,|| =0,i=1,2,.... Now,

llwn = x*|* < (I - $,D)un — (I - s, D)x*|?
= |lun — x*||* = 25, (14 — x*, Du,, — Dx*) + s2||Du,, — Dx*||*

< s = 2|2 = 25 [~Al| Dty ~ D" | + ljtn ~ x°[[2] + 521Dty ~ D"

2s
< o — x*|1* + <25n)L + 8% - ‘u_nz)’) |Du, — Dx*|)*.

Furthermore,
* 12 *112 * (12
”}/n,i —-X ” < apillwn = |7+ (1 - an) | Tiwy — x7|
< ap,il|xn - x*Hz + (1 - an) || Tiwn — x*”z

2 2
< anillxn = X7+ (1= ani) [wn — X7l

(3.31)

(3.32)

(3.33)

(3.34)

2s
< il — 22+ (1= ) [nxn x| <2snx e ﬂ’”) Dy Dx*||2] .

2

(3.35)
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Thus,

2s
(2001455~ 280 ) 10w, = DI < =y

(3.36)
< lymi = xn | (lloen = x"11 + [| ymi = x7[])-

By conditions (iii) and (iv), we have that lim,,_, ,||Du, — Dx*|| = 0. Now, (2.2), we obtain

@y = x*|* < || Px (it — $yDity) = Pic(x* = 5,Dx*)||?

< {(uy - syDuy) — (x* — s,Dx*), wy, — x*)
1 X * *
= 5 [10tn = $0D1a) = (x* = 5,02+ [l - x|
|12t = $0Dy) = (x* = 5,Dx") = (w0, = x|
]' * * % * *
< 5 [IRon = 1+l = 21 = 112t = 5uD) = (" = 5uDx") = (20 = )|
1 *112 *112 2 *
= 5 [Ilen = 21 + llewn = "I = llewn = wnll® + 25,14 = w0, Duty = Dx*)

82| Duy — Dx*||2].

(3.37)
Thus,
llwn — x*|1* < 10 = x*|* = |wn — tnll* + 25n||wn — ||| Dity, — Dx*||. (3.38)
Using this last inequality, we obtain from (3.1) that
| ymi = x*||* < i illxn — 1P + (1 = @) | T — x*|?
< ttnil|xn — 7|7 + (1 = ) |[eon — X717
(3.39)
< loew = 27 = (1 = @) 2w — uul
+28,(1 = ani) |wn — unl||| Duy — Dx*|.
This implies that
(1= an)llwn = wal® < [1%0 = X% = | Yni = 7|1
+ an(l - “n,i)”wn - un””Dun - Dx*”
(3.40)

< Ny = x| (ltn = "1+ [y = %))

+28,(1 = ani)||[wy — un||| Duy, - Dx*||.
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Since 0 < k; < a,; < d;i <1, we have lim,, o, ||lw, — uy|| = 0. Also since lim,, o ||y, — x| =0
and lim,, . ||w, — z|| = 0, we have that lim,_,||w, - z|| = 0. By lim, _. o||w, — z|| = 0 and
limy, oo |lwy —Tizon|| = 0,i = 1,2,..., we have that z € N, F(T;).Since z, := Ty """ (x, 1y Ax),
n > 1, we have for any y € K that

1
Fr(zn,y) + ¢1(y) = 91(zn) + (Axn, Y = 20) + —(Y = Zn, Zn = Xn) 2 0. (3.41)
Furthermore, from the last inequality and using (A2), we obtain
1
P1 (y) - (Pl(Zn) + (Axn/y —2Zy) + r—(}/ —Zn,Zn— Xn) 2 Fi (}/, Zn). (3.42)

Let z; :=ty + (1 -t)z forallt € (0,1] and y € K. This implies that z; € K. Then, we have

(zt = zn, Azi) > 91(2n) — 01(20) + (2t — 2Zn, AZy) — (2t — Zn, AXp)

Zn — X
_<Zt_zn/ "r n>F1(Zt/Zn)

n

(3.43)
= 1(zn) — @1(2t) + (2t — 20, Az — Azy)

Zn — X
+<zt—zn,Azn—Axn)—<zt—zn, "r ">+F1(zt,zn).

n
Since ||x, — zn|| — 0, n — oo, we obtain ||Ax, — Az,|| — 0, n — oo. Furthermore, by the
monotonicity of A, we obtain (z; — z,, Az; — Az,) > 0. Then, by (A4) we obtain (noting that
zy, — z,n — oo since ||z, — z|| < ||y — z|| + ||xn — zall),
(2t — 2, Az) > 1(2) — p1(z¢) + Fi(zt, 2) (3.44)
Using (A1), (A4) and (3.44), we also obtain

0 = Fi(zt,ze) + 91(z¢) — 91(ze) <tFi(ze,y) + (1 —t)Fi(z, 2)

+tp1(y) + (1-1)1(2) - 1(z1)

(3.45)
<t[Fi(zo,y) +91(y) —o1(z0)] + (1 =t)(z - 2, Az)
= t[F1(z0,y) + 91 (y) =91 (z0)] + (1 -y - 2, Az),
and hence
0<Fi(zoy) +91(y) —1(z) + 1 - 1)(y — z, Az). (3.46)

Letting t — 0, we have, for each y € K,

0<Fi(zy) +¢1(y) —p1(z) + (y — 2z, Az). (3.47)
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This implies that z € GMEP(F1, A, ¢1). By following the same arguments, we can show that
z e GMEP(Pz, B, (Pz)
Next, we show z € V(K, D). Put

Dx + Ngx, x€K,
Mx = (3.48)

0, x¢ K.
Since D is relaxed (A, y)-cocoercive and by condition (iv), we have
(Dx—Dy,x - y) 2 (-V)||Dx = Dy|* +yllx - ylI* 2 (y - 42) [|x -yl 20, (3.49)

which shows that D is monotone. Thus, M is maximal monotone. Let (x,y) € G(M). Since
y — Dx € Ngx and w, € K, we have

(x —wy,y - Dx) >0. (3.50)
On the other hand, from w,, = Px(I — s, A)u,,, we have

(x = wp, wy — (I = $,D)uy) >0, (3.51)

and hence

<x —,, L Dun> > 0. (3.52)

Sn

It follows that

(x_wn/y> > (x_wn/Dx> 2 <x_wn/}/> - <x_wn/ wns_ el +Dun>

n

Wn =t _ Dun> (3.53)

={x—-wy, Dx -
Sn

> (x — wy, Dw, — Duy) — <x—wn,pn_un>,

n

which implies that (x — z,y) > 0. We have z € M~'0 and hence z € VI(K, D). Therefore,
z € N?, F(T;) N GMEP(Fy, A, ¢1) N GMEP(F,, B, ¢2) N VI(K, D).
Noting that x,, = Pc,xo, we have by (2.3) that

(x0 = %n, ¥y = x) <0, (3.54)
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for all y € C,. Since Q C C,, and by the continuity of inner product, we obtain from the above
inequality that

(xo-2z,y-2)<0, (3.55)

for all y € Q. By (2.3) again, we conclude that z = Poxp. This completes the proof. O

Corollary 3.2. Let K be a nonempty closed and convex subset of a real Hilbert space H. For each
m = 1,2, let F,, be a bifunction from K x K satisfying (A1)-(A4), ¢, : K — RU{+o0} a proper lower
semicontinuous and convex function with assumption (B1) or (B2), A an a-inverse-strongly monotone
mapping of K into H, B a p-inverse-strongly monotone mapping of K into H and for eachi =1,2, ...,
let T; : K — K be a nonexpansive mapping such that N2 F(T;) #. Let D be a p-Lipschitzian,
relaxed (\,y)-cocoercive mapping of K into H. Suppose Q := N2 F(T;) N GMEP(F1, A, 1) N
GMEP(Fz, B, p2)NVI(K, D) #0. Let {z } 521, {ttn }yia, A®Wn }oia, AYmitoa (0= 1,2,..) and {xn )7,
be generated by xo € K, C1,; = K, C; =n®,Cy3, x1 = Pc, xo,

Zy = T,(fl’(pl)(xn - 1.AXy),

tn =Ty " (2, ~ AuBza),
wy, = Px(u, — s,Duy,),
Yni = aniwn + (1 = an) Tiwy, (3.56)
Cnii = {Z €Chn,i: ”}/n,i - Z” < lxn — Z”}/
]
Cn+1 = ﬂcn+1,i/
i=1

Xns1 = Pc,, %0, n2>1.

n+l

Assume that {a, i}y C[0,1) (i=1,2,...), {rn}meg C [0,2a], and {A,};2, C [0,20] satisfy
(i)0<a<r,<b<2a
(i) 0<c<A, < f<2p,
(iii) 0 < ay; < di < 1,
(iv)0<h<s,<j<2(y-Ap?)/p>

Then, {x,}, converges strongly to Poxo.

Let C be a nonempty closed and convex cone in H and D an operator of C into H. We
define the polar of C in H to be the set

K*:={y*eH:(x,y*) >0, Vx e C}. (3.57)
Then, the element u € C is called a solution of the complementarity problem if

DueK*, (u,Du)=0. (3.58)
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The set of solutions of the complementarity problem is denoted by C(C, D). We shall assume
that D satisfies the following conditions:

(E1) D is y-inverse strongly monotone,
(E2) C(C,D) #0.

Also, we replace conditions (B1) and (B2) with

(D1) for each x € H and r > 0 there exist a bounded subset D, C C and y, € C such that
for any z € C\ Dy,

F(z,yx) + 9(yx) — 9(2) + %(yx ~z,z2-x) <0, (3.59)

(D2) C is a bounded set.

Theorem 3.3. Let C be a nonempty closed and convex cone of a real Hilbert space H. For each
m = 1,2, let F,, be a bifunction from C x C satisfying (A1)—(A4), ¢, : C — R U {+o0} a
proper lower semicontinuous and convex function with assumption (D1) or (D2), A an a-inverse-
strongly monotone mapping of C into H, B a f-inverse-strongly monotone mapping of C into H
and for each i = 1,2,..., let T; : C — C be a k;-strictly pseudocontractive mapping for some
0 < ki < 1 such that N2, F(T;) #0. Let D be a p-Lipschitzian, relaxed (A, y)-cocoercive mapping
of C into H. Suppose Q := N2, F(T;) N GMEP(Fy, A, 1) N GMEP(Fy, B, ¢2) N C(C, D) #0. Let
{Zn};?;ll {un};?;ll {wn};?;ll {yn,i}:f:l (i=12..),and {xn}:lo:O be genemted by xo € C,Cy; =
C,Cy =n%E,Cyi, x1 = Pc,x0,

Tr(fl,(,ﬂl)

Zp = (2 — 1AXy),

Uy =T % (2, ~ 1,,Bzy),
wy, = Pc(u, — s,Duy),
Yni = aniwn + (1 = ani) Tiwn, (3.60)

Criri={z€Cni: ||yni—z| < llxn—2zl},
[oo]
Cus1 = [ \Cusriv
i=1

X1 = Pe,,, %0, n2>1.

n+l

Assume that {a, i}y C[0,1) (i=1,2,...), {rn}meg C[0,2a], and {A,};2; C [0,2p] satisfy

(i)0<a<r,<b<2a,
(i) 0<c <A, S f <26,
(iii) 0<kj<ap; <di <1,
(iv)0<h<s,<j<2(y-\p?)/p>

Then, {x,},.q converges strongly to Poxo.
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Proof. Using Lemma 7.1.1 of [34], we have that VI(C, D) = C(C, D). Hence, by Theorem 3.1,
we obtain the desired conclusion. O

Remark 3.4. Our Corollary 3.2 extends Theorems 1.1 and 1.2.

Remark 3.5. Our iterative scheme (3.1) is simpler than the iterative schemes (5.1) and (5.11) of
Acedo and Xu [6]. Furthermore, in our results, we use iterative scheme (3.1) to approximate
a common fixed point of an infinite family of k-strictly pseudocontractive mappings while the
iterative schemes (5.1) and (5.11) of Acedo and Xu [6] are used to approximate a common
fixed point of a finite family of k-strictly pseudocontractive mappings.

Remark 3.6. Our results also hold for infinite family of uniformly continuous quasistrict
pseudocontractions. Hence, we can adapt our results for an infinite family of uniformly
continuous quasi-nonexpansive mappings in a real Hilbert space.
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