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We prove a strong convergence theorem for an infinite family of asymptotically strict pseudo-
contractions and an infinite family of equilibrium problems in a Hilbert space. Our proof is simple
and different from those of others, and the main results extend and improve those of many others.

1. Introduction

Let C be a closed convex subset of a Hilbert space H . Let S : C → H be a mapping and if
there exists an element x ∈ C such that x = Sx, then x is called a fixed point of S. The set of
fixed points of S is denoted by F(S). Recall that

(1) S is called nonexpansive if

∥
∥Sx − Sy

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C, (1.1)

(2) S is called asymptotically nonexpansive [1] if there exists a sequence {kn} ⊂ [1,∞)
with kn → 1 such that
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∥
∥Snx − Sny

∥
∥ ≤ kn

∥
∥x − y

∥
∥, ∀x, y ∈ C, n ≥ 1, (1.2)

(3) S is called to be a κ-strict pseudo-contraction [2] if there exists a constant κ with
0 ≤ κ < 1 such that

∥
∥Sx − Sy

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + κ

∥
∥
(

x − y
) − (

Sx − Sy
)∥
∥
2
, ∀x, y ∈ C, (1.3)

(4) S is called an asymptotically κ-strict pseudo-contraction [3, 4] if there exists a constant
κ with 0 ≤ κ < 1 and a sequence {γn} ⊂ [0,∞)with limn→∞γn = 0 such that

∥
∥Snx − Sny

∥
∥
2 ≤ (

1 + γn
)∥
∥x − y

∥
∥
2 + κ

∥
∥
(

x − y
) − (

Snx − Sny
)∥
∥
2
, ∀x, y ∈ C, n ≥ 1. (1.4)

It is clear that every asymptotically nonexpansive mapping is an asymptotically 0-
strict pseudo-contraction and every κ-strict pseudo-contraction is an asymptotically κ-strict
pseudo-contraction with γn = 0 for all n ≥ 1. Moreover, every asymptotically κ-strict
pseudo-contraction with sequence {γn} is uniformly L-Lispchitzian, where L = sup{(κ +
√

1 + γn(1 − κ))/(1 − κ) : n ≥ 1} and the fixed point set of asymptotically κ-strict pseudo-
contraction is closed and convex; see [3, Proposition 2.6].

Let Φ be a bifunction from C × C to �, where � is the set of real numbers. The
equilibrium problem for Φ : C × C → � is to find x ∈ C such that Φ(x, y) ≥ 0 for all
y ∈ C. The set of such solutions is denoted by EP(Φ).

In 2007, S. Takahashi and W. Takahashi [5] first introduced an iterative scheme by
the viscosity approximation method for finding a common element of the set of solutions of
the equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert
space H and proved a strong convergence theorem which is connected with Combettes and
Hirstoaga’s result [6] and Wittmann’s result [7]. More precisely, they gave the following
theorem.

Theorem 1.1 (see [5]). Let C be a nonempty closed convex subset of H . Let Φ be a bifunction from
C ×C to � satisfying the following assumptions:

(A1) Φ(x, x) = 0 for all x ∈ C;

(A2) Φ is monotone, that is, Φ(x, y) + Φ(y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C,

lim
t↓0

Φ
(

tz + (1 − t)x, y
) ≤ Φ

(

x, y
)

; (1.5)

(A4) for all x ∈ C, y 
→ Φ(x, y) is convex and lower semicontinuous.
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Let S : C → H be a nonexpansive mapping such that F(S) ∩ EP(Φ)/= ∅, f : H → H be a
contraction and {xn}, {un} be the sequences generated by

x1 ∈ H,

Φ
(

un, y
)

+
1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)Sun, ∀n ≥ 1,

(1.6)

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy the following conditions:

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞,
∞∑

n=1

|αn+1 − αn| < ∞,

lim inf
n→∞

rn > 0,
∞∑

n=1

|rn+1 − rn| < ∞.

(1.7)

Then, the sequences {xn} and {un} converge strongly to z ∈ F(S) ∩ EP(Φ), where z =
PF(S)∩EP(Φ)f(z).

In [8], Tada and Takahashi proposed a hybrid algorithm to find a common element of
the set of fixed points of a nonexpansive mapping and the set of solutions of an equilibrium
problem and proved the following strong convergence theorem.

Theorem 1.2 (see [8]). Let C be a nonempty closed convex subset of a Hilbert space H . Let Φ be a
bifunction from C ×C → � satisfying (A1)–(A4) and let S be a nonexpansive mapping of C intoH
such that F(S) ∩ EP(Φ)/= ∅. Let {xn} and {un} be sequences generated by x1 = x ∈ H and

un ∈ C such that Φ
(

un, y
)

+
1
rn

〈

y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

wn = (1 − αn)xn + αnSun,

Cn = {z ∈ H : ‖wn − z‖ ≤ ‖xn − z‖},

Dn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Dnx, ∀n ≥ 1,

(1.8)

where {αn} ⊂ [a, 1] for some a ∈ (0, 1) and {rn} ⊂ (0,∞) satisfies lim infn→∞rn > 0. Then {xn}
converges strongly to PF(S)∩EP(Φ)x.

Manymethods have been proposed to solve the equilibrium problems and fixed point
problems; see [9–13].

Recently, Kim and Xu [3] proposed a hybrid algorithm for finding a fixed point of
an asymptotically κ-strict pseudo-contraction and proved a strong convergence theorem in a
Hilbert space.



4 Fixed Point Theory and Applications

Theorem 1.3 (see [3]). Let C be a closed convex subset of a Hilbert space H . Let T : C → C be an
asymptotically κ-strict pseudo-contraction for some 0 ≤ κ < 1. Assume that F(T) is nonempty and
bounded. Let {xn} be the sequence generated by the following algorithm:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Tnxn,

Cn =
{

z ∈ H :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖2 + [κ − αn(1 − αn)]‖xn − Tnxn‖2 + θn

}

,

Dn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Dnx0, ∀n ≥ 1,

(1.9)

where

θn = Δ2
n(1 − αn)γn −→ 0 (n −→ ∞), Δn = sup{‖xn − z‖ : z ∈ F(T)} < ∞. (1.10)

Assume that the control sequence {αn} is chosen such that lim supn→∞αn < 1 − κ. Then {xn}
converges strongly to PF(T)x0.

In this paper, motivated by [3, 8], we propose a new algorithm for finding a common
element of the set of fixed points of an infinite family of asymptotically strict pseudo-
contractions and the set of solutions of an infinite family of equilibrium problems and prove
a strong convergence theorem. Our proof is simple and different from those of others, and the
main results extend and improve those Kim and Xu [3], Tada and Takahashi [8], and many
others.

2. Preliminaries

LetH be a Hilbert space, and letC be a nonempty closed convex subset ofH . It is well known
that, for all x, y ∈ C and t ∈ [0, 1],

∥
∥tx + (1 − t)y

∥
∥
2 = t‖x‖2 + (1 − t)

∥
∥y

∥
∥
2 − t(1 − t)

∥
∥x − y

∥
∥, (2.1)

and hence

∥
∥tx + (1 − t)y

∥
∥
2 ≤ t‖x‖2 + (1 − t)

∥
∥y

∥
∥
2
, (2.2)

which implies that

∥
∥
∥
∥
∥

n∑

i=1

tixi

∥
∥
∥
∥
∥

2

≤
n∑

i=1

ti‖xi‖2 (2.3)

for all {xi} ⊂ H and {ti} ⊂ [0, 1]with
∑n

i=1 ti = 1.
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For any x ∈ H , there exists a unique nearest point in C, denoted by PCx, such that

z = PCx ⇐⇒ 〈

x − z, z − y
〉 ≥ 0, ∀y ∈ C. (2.4)

Let I denote the identity operator of H , and let {xn} be a sequence in a Hilbert space
H and x ∈ H . Throughout the rest of the paper, xn → x denotes the strong convergence of
{xn} to x.

We need the following lemmas for our main results in this paper.

Lemma 2.1 (see [14]). Let C be a nonempty closed convex subset of a Hilbert space H . Let Φ be a
bifunction from C×C to � satisfying (A1)–(A4). Let r > 0 and x ∈ H . Then there exists z ∈ C such
that

Φ
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C. (2.5)

Lemma 2.2 (see [6]). Let C be a nonempty closed convex subset of a Hilbert space H . Let Φ be a
bifunction from C × C to � satisfying (A1)–(A4). For any r > 0 and x ∈ H , define a mapping
Tr : H → C as follows:

Trx =
{

z ∈ C : Φ
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C

}

, ∀x ∈ H. (2.6)

Then the following hold:

(1) Tr is single-valued,

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H ,

∥
∥Trx − Try

∥
∥
2 ≤ 〈

Trx − Try, x − y
〉

, (2.7)

(3) F(Tr) = EP(Φ), and

(4) EP(Φ) is closed and convex.

3. Main Results

Now, we are ready to give our main results.

Lemma 3.1. Let C be a nonempty closed convex subset of a Hilbert space H . Let T : C → C be an
asymptotically κ-strict pseudo-contraction with sequence {γn} ⊂ [0,∞) such that F(T)/= ∅. Assume
that {βn} ⊂ [κ, 1] and define a mapping Sn = βnI + (1 − βn)Tn for each n ≥ 1. Then the following
hold:

∥
∥Snx − Sny

∥
∥
2 ≤ (

1 + γn
)∥
∥x − y

∥
∥
2
, ∀x, y ∈ C,

‖Snx − x‖2 ≤ γn‖x − x∗‖2 + 2〈x − Snx, x − x∗〉, ∀x ∈ C, x∗ ∈ F(T).
(3.1)
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Proof. For all x, y ∈ C, we have

∥
∥Snx − Sny

∥
∥
2 = ‖βn

(

x − y
)

+
(

1 − βn
)(

Tnx − Tny
)‖2

= βn‖x − y‖2 + (

1 − βn
)‖Tnx − Tny‖2 − βn

(

1 − βn
)‖(I − Tn)x − (I − Tn)y‖2

≤ βn‖x − y‖2 + (

1 − βn
)[(

1 + γn
)‖x − y‖2 + κ‖(I − Tn)x − (I − Tn)y‖2

]

− βn
(

1 − βn
)‖(I − Tn)x − (I − Tn)y‖2

= βn‖x − y‖2 + (

1 − βn
)(

1 + γn
)‖x − y‖2

+
(

1 − βn
)(

κ − βn
)‖(I − Tn)x − (I − Tn)y‖2

≤ βn‖x − y‖2 + (

1 − βn
)(

1 + γn
)‖x − y‖2

≤ (

1 + γn
)‖x − y‖2.

(3.2)

By this result, for all x ∈ C and x∗ ∈ F(T), we have

(

1 + γn
)‖x − x∗‖2 ≥ ‖Snx − Snx

∗‖2 = ‖Snx − x + x − x∗‖2

= ‖Snx − x‖2 + ‖x − x∗‖2 + 2〈Snx − x, x − x∗〉,
(3.3)

and hence

‖Snx − x‖2 ≤ γn‖x − x∗‖2 + 2〈x − Snx, x − x∗〉. (3.4)

This completes the proof.

Lemma 3.2. Let C be a nonempty closed subset of a Hilbert space H . Let T : C → C be an
asymptotically κ-strict pseudo-contraction with sequence {γn} ⊂ [0,∞) satisfying γn → 0 as
n → ∞. Let {zn} be a sequence in C such that ‖zn − zn+1‖ → 0 and ‖zn − Tnzn‖ → 0 as
n → ∞. Then ‖zn − Tzn‖ → 0 as n → ∞.

Proof. The proof method of this lemma is mainly from [15, Lemma 2.7]. Since T is an
asymptotically κ-strict pseudo-contraction, we obtain from [3, Proposition 2.6] that

∥
∥
∥Tn+1zn − Tn+1zn+1

∥
∥
∥ ≤ L‖zn − zn+1‖, (3.5)

where L = sup{(κ+√1 + γn(1 − κ))/(1−κ) : n ≥ 1}. Note that ‖zn−zn+1‖ → 0, which implies
that ‖Tn+1zn − Tn+1zn+1‖ → 0, and observe that

‖zn − Tzn‖ ≤ ‖zn − zn+1‖ +
∥
∥
∥zn+1 − Tn+1zn+1

∥
∥
∥ +

∥
∥
∥Tn+1zn+1 − Tn+1zn

∥
∥
∥ +

∥
∥
∥Tn+1zn − Tzn

∥
∥
∥

≤ (1 + L)‖zn − zn+1‖ +
∥
∥
∥zn+1 − Tn+1zn+1

∥
∥
∥ +

∥
∥
∥Tn+1zn − Tzn

∥
∥
∥.

(3.6)
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Since T is uniformly Lipschitzian, T is uniformly continuous. So we have

∥
∥
∥Tn+1zn − Tzn

∥
∥
∥ −→ 0 as n −→ ∞. (3.7)

It follows from ‖zn − zn+1‖ → 0 and ‖zn − Tnzn‖ → 0 as n → ∞ that limn→∞‖zn − Tzn‖ = 0.
This completes the proof.

LetH be a Hilbert space, and, let C be a nonempty closed and convex subset ofH . Let
{Φn} be a countable family of bifunctions from C × C to � satisfying (A1)–(A4) and let {rn}
be a real number sequence in (r,∞)with r > 0. Define

Trix =
{

z ∈ C : Φi

(

z, y
)

+
1
ri

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C

}

, ∀x ∈ H. (3.8)

Lemma 2.2 shows that every Tri (i ≥ 1) is a firmly nonexpansive mapping and hence
nonexpansive and F(Tri) = EP(Φi).

Theorem 3.3. Let C be a nonempty closed convex subset of a Hilbert space H . Let {Ti} : C → C
be an infinite family of asymptotically κi-strict pseudocontractions with the sequence {γi,n} ⊂ [0,∞)
satisfying γi,n → 0 as n → ∞ for each i ≥ 1 and γ1,n ≥ γi,n for each i ≥ 1 and n ≥ 1. Let
{Φn} be a countable family of bifunctions from C × C to � satisfying (A1)–(A4). Assume that Ω =
⋂∞

i=1(F(Ti)∩EP(Φi)) is nonempty and bounded. Set α0 = 1 and θ0 = 1. Assume that {αi} is a strictly
decreasing sequence in [0, a] for some 0 < a < 1, {θn} is a strictly decreasing sequence in (0, 1), {βi,n}
is a sequence in [κi, κ) with 0 < κi < κ < 1 for each i ≥ 1, and {rn} is a sequence in (r,∞) with r > 0.
The sequence {xn} is generated by x1 = x ∈ C and

zn = θnxn +
n∑

i=1

(θi−1 − θi)Trixn,

wn = αnxn +
n∑

i=1

(αi−1 − αi)
(

βi,nI +
(

1 − βi,n
)

Tn
i

)

zn,

Cn = {v ∈ C : ‖wn − v‖ ≤ ‖xn − v‖ + λn},

Dn =
n⋂

j=1

Cj,

xn+1 = PDnx, ∀n ≥ 1,

(3.9)

where {Tri} is defined by (3.8) and

λn = (1 − αn)γ1,nΔn −→ 0 (n −→ ∞), Δn = sup{‖xn − v‖ : v ∈ Ω}. (3.10)

Then {xn} converges strongly to PΩx.
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Proof. We show first that the sequence {xn} is well defined. Obviously, Cn is closed for all
n ≥ 1. Since

‖wn − v‖ ≤ ‖xn − v‖ + λn (3.11)

is equivalent to

‖wn − xn‖2 + 2〈wn − xn, xn − z〉 ≤ λn, (3.12)

Cn is convex for all n ≥ 1. So Dn =
⋂n

j=1 Cj is also closed and convex for all n ≥ 1.
For each n ≥ 1 and i ≥ 1, put Si,n = βi,nI + (1 − βi,n)Tn

i . Let p ∈ Ω. Note that θ0 = 1, {θn}
is strictly decreasing and each Tri is firmly nonexpansive. Hence we have

∥
∥zn − p

∥
∥ ≤ θn

∥
∥xn − p

∥
∥ +

n∑

i=1

(θi−1 − θi)
∥
∥Trixn − p

∥
∥

≤ θn
∥
∥xn − p

∥
∥ +

n∑

i=1

(θi−1 − θi)
∥
∥xn − p

∥
∥

≤ θn
∥
∥xn − p

∥
∥ + (1 − θn)

∥
∥xn − p

∥
∥

=
∥
∥xn − p

∥
∥, ∀n ≥ 1.

(3.13)

Since α0 = 1 and {αn} is strictly decreasing, by (3.13) and Lemma 3.1, we have

∥
∥wn − p

∥
∥ ≤ αn

∥
∥xn − p

∥
∥ +

n∑

i=1

(αi−1 − αi)
∥
∥Si,nzn − p

∥
∥

≤ αn

∥
∥xn − p

∥
∥ +

n∑

i=1

(αi−1 − αi)
√

1 + γi,n
∥
∥zn − p

∥
∥

≤ αn

∥
∥xn − p

∥
∥ +

n∑

i=1

(αi−1 − αi)
(

1 + γ1,n
)∥
∥xn − p

∥
∥

≤ ∥
∥xn − p

∥
∥ + λn.

(3.14)

So we have p ∈ Cn and hence p ∈ Dn =
⋂n

j=1 Cj for all n ≥ 1. This shows that Ω ⊂ Dn for all
n ≥ 1. This implies that the sequence {xn} is well defined.

Since Ω is a nonempty closed convex subset of H , there exists a unique z∗ ∈ Ω such
that

z∗ = PΩx. (3.15)

From xn+1 = PDnx, we have

‖xn+1 − x‖ ≤ ‖z − x‖, ∀z ∈ Dn. (3.16)
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Since z∗ ∈ Ω ⊂ Dn, we have

‖xn+1 − x‖ ≤ ‖z∗ − x‖, ∀n ≥ 1. (3.17)

Therefore, {xn} is bounded. From (3.13) and (3.14), {zn} and {wn} are also bounded.
From xn+1 = PDnx andDn+1 ⊂ Dn, one sees that xn+2 = PDn+1x ∈ Dn+1 ⊂ Dn for all n ≥ 1.

It follows that

‖xn+1 − x‖ ≤ ‖xn+2 − x‖, ∀n ≥ 1. (3.18)

Since {xn} is bounded, the sequence {‖x−xn‖} is bounded and nondecreasing. So there exists
c ∈ � such that

c = lim
n→∞

‖x − xn‖. (3.19)

Since xn+1 = PDnx ∈ Dn, xn+2 = PDn+1x ∈ Dn+1 ⊂ Dn and (xn+1 + xn+2)/2 ∈ Dn, we have

‖x − xn+1‖2 ≤
∥
∥
∥x − xn+1 + xn+2

2

∥
∥
∥

2

=
∥
∥
∥
∥

1
2
(x − xn+1) +

1
2
(x − xn+2)

∥
∥
∥
∥

2

=
1
2
‖x − xn+1‖2 + 1

2
‖x − xn+2‖2 − 1

4
‖xn+1 − xn+2‖2.

(3.20)

So we get

1
4
‖xn+1 − xn+2‖2 ≤ 1

2
‖x − xn+2‖2 − 1

2
‖x − xn+1‖2. (3.21)

Since limn→∞‖x − xn+1‖ = limn→∞‖x − xn+2‖ = c, we obtain

lim
n→∞‖xn+1 − xn+2‖ = 0, (3.22)

that is,

lim
n→∞

‖xn − xn+1‖ = 0. (3.23)

Now, for each l ≥ 1, from (3.23) we get

‖xn+l − xn‖ ≤ ‖xn+l − xn+l−1‖ + · · · + ‖xn+1 − xn‖
−→ 0 as n −→ ∞.

(3.24)
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This implies that there exists an element x̂ ∈ C such that xn → x̂ as n → ∞.
Next we show that x̂ ∈ ⋂∞

i=1 F(Ti) and x̂ ∈ ⋂∞
i=1 EP(Φi).

From xn+1 ∈ Cn, we have

‖xn −wn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 −wn‖

≤ 2‖xn − xn+1‖ + λn.
(3.25)

By (3.10) and (3.23), we obtain

lim
n→∞

‖xn −wn‖ = 0. (3.26)

For p ∈ Ω, we have, from Lemma 2.2,

∥
∥Trixn − p

∥
∥
2 =

∥
∥Trixn − Trip

∥
∥
2

≤ 〈

Trixn − Trip, xn − p
〉

=
〈

Trixn − p, xn − p
〉

=
1
2

(∥
∥Trixn − p

∥
∥
2 +

∥
∥xn − p

∥
∥
2 − ‖xn − Trixn‖2

)

,

(3.27)

and hence

∥
∥Trixn − p

∥
∥2 ≤ ∥

∥xn − p
∥
∥2 − ‖xn − Trixn‖2, ∀i ≥ 1. (3.28)

Therefore

∥
∥zn − p

∥
∥
2 ≤ θn

∥
∥xn − p

∥
∥
2 +

n∑

i=1

(θi−1 − θi)
∥
∥Trixn − p

∥
∥
2

≤ θn
∥
∥xn − p

∥
∥
2 +

n∑

i=1

(θi−1 − θi)
(∥
∥xn − p

∥
∥
2 − ‖xn − Trixn‖2

)

=
∥
∥xn − p

∥
∥
2 −

n∑

i=1

(θi−1 − θi)‖xn − Trixn‖2.

(3.29)
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By (3.29) and Lemma 3.1, we have

∥
∥wn − p

∥
∥
2 ≤ αn

∥
∥xn − p

∥
∥
2 +

n∑

i=1

(αi−1 − αi)
∥
∥Si,nzn − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 +

n∑

i=1

(αi−1 − αi)
(

1 + γ1,n
)2∥
∥zn − p

∥
∥
2

= αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

(

1 + γ1,n
)2∥
∥zn − p

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥2 + (1 − αn)

(

1 + γ1,n
)2

(

∥
∥xn − p

∥
∥2 −

n∑

i=1

(θi−1 − θi)‖xn − Trixn‖2
)

=
∥
∥xn − p

∥
∥
2 + (1 − αn)

(

2γ1,n + γ21,n

)∥
∥xn − p

∥
∥
2

− (1 − αn)
(

1 + γ1,n
)2

n∑

i=1

(θi−1 − θi)‖xn − Trixn‖2,

(3.30)

and hence

(1 − αn)
(

1 + γ1,n
)2

n∑

i=1

(θi−1 − θi)‖xn − Trixn‖2

≤ ∥
∥xn − p

∥
∥2 − ∥

∥wn − p
∥
∥2 + (1 − αn)

(

2γ1,n + γ21,n

)∥
∥xn − p

∥
∥2

≤ ‖xn −wn‖
(∥
∥xn − p

∥
∥ +

∥
∥wn − p

∥
∥
)

+ (1 − αn)
(

2γ1,n + γ21,n

)∥
∥xn − p

∥
∥
2
.

(3.31)

This shows that

(1 − αn)
(

1 + γ1,n
)2(θi−1 − θi)‖xn − Trixn‖2

≤ ‖xn −wn‖
(∥
∥xn − p

∥
∥ +

∥
∥wn − p

∥
∥
)

+ (1 − αn)
(

2γ1,n + γ21,n

)∥
∥xn − p

∥
∥
2
, ∀i ≥ 1.

(3.32)

Since {αn} ⊂ [0, a]with 0 < a < 1, γ1,n → 0, {θn} is strictly decreasing and ‖xn −wn‖ → 0, we
get

lim
n→∞

‖xn − Trixn‖ = 0, ∀i ≥ 1. (3.33)
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Let Mn = supi≥1{‖xn − Trixn‖} for each n ≥ 1. Then Mn → 0 as n → ∞. Hence, from (3.33),
one has

‖xn − zn‖ ≤
n∑

i=1

(θi−1 − θi)‖Trixn − xn‖

≤
n∑

i=1

(θi−1 − θi)Mn = (1 − θn)Mn

−→ 0.

(3.34)

From (3.26) and (3.34), we obtain

‖zn −wn‖ ≤ ‖zn − xn‖ + ‖xn −wn‖ −→ 0. (3.35)

Noting that

n∑

i=1

(αi−1 − αi)(zn − Si,nzn) = αnxn + (1 − αn)zn −wn

= αn(xn −wn) + (1 − αn)(zn −wn),

(3.36)

we have

n∑

i=1

(αi−1 − αi)
〈

zn − Si,nzn, zn − p
〉

= αn

〈

xn −wn, zn − p
〉

+ (1 − αn)
〈

zn −wn, zn − p
〉

.

(3.37)

By Lemma 3.1, we have

‖zn − Si,nzn‖2 ≤ γi,n
∥
∥zn − p

∥
∥
2 + 2

〈

zn − Si,nzn, zn − p
〉

≤ γ1,n
∥
∥zn − p

∥
∥2 + 2

〈

zn − Si,nzn, zn − p
〉

.
(3.38)

Therefore, combining this inequality with (3.37), we get

n∑

i=1

(αi−1 − αi)‖zn − Si,nzn‖2

≤ γ1,n(1 − αn)
∥
∥zn − p

∥
∥2 + 2αn

〈

xn −wn, zn − p
〉

+ 2(1 − αn)
〈

zn −wn, zn − p
〉

,

(3.39)



Fixed Point Theory and Applications 13

and hence (noting that αi−1 > αi for each i ≥ 1)

‖zn − Si,nzn‖2 ≤
γ1,n(1 − αn)
αi−1 − αi

∥
∥zn − p

∥
∥
2 +

2αn

αi−1 − αi

〈

xn −wn, zn − p
〉

+
2(1 − αn)
αi−1 − αi

〈

zn −wn, zn − p
〉

.

(3.40)

From (3.26), (3.35) and limn→∞γ1,n = 0,we have

lim
n→∞

‖zn − Si,nzn‖ = 0, ∀i ≥ 1. (3.41)

From the definition of Si,n and (3.41), we have (noting that {βi,n} ⊂ [κi, κ) ⊂ (0, 1))

∥
∥zn − Tn

i zn
∥
∥ ≤ 1

1 − βi,n
‖zn − Si,nzn‖ −→ 0, ∀i ≥ 1. (3.42)

We next show (3.42) implies that

lim
n→∞

‖zn − Tizn‖ = 0, ∀i ≥ 1. (3.43)

As a matter of fact, from (3.23) and (3.34) we have

‖zn − zn+1‖ ≤ ‖zn − xn‖ + ‖xn − xn+1‖ + ‖xn+1 − zn+1‖
−→ 0.

(3.44)

Now, (3.42), (3.44), and Lemma 3.2 imply (3.43).
Since each Ti is uniformly continuous and zn → x̂ as n → ∞, one get x̂ ∈ F(Ti) for

each i ≥ 1 and hence x̂ ∈ ⋂∞
i=1 F(Ti).

Now we show x̂ ∈ ⋂∞
i=1 EP(Φi).

Since every Tri is nonexpansive, from (3.33) and xn → x̂, we have x̂ ∈ F(Tri) and hence
x̂ ∈ ⋂∞

i=1 F(Tri). Lemma 2.2 shows that x̂ ∈ ⋂∞
i=1 EP(Φi).

Finally, we prove that x̂ = PΩx. From xn+1 = PDnx, one sees

〈xn+1 − z, x − xn+1〉 ≥ 0, ∀z ∈ Dn. (3.45)

Since Ω ⊂ Dn for all n ≥ 1, one arrives at

〈xn+1 − z, x − xn+1〉 ≥ 0, ∀z ∈ Ω. (3.46)

Taking the limit for above inequality, we get

〈x̂ − z, x − x̂〉 ≥ 0, ∀z ∈ Ω. (3.47)

Hence x̂ = PΩx. This completes the proof.
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As direct consequences of Theorem 3.3, we can obtain the following corollaries.

Corollary 3.4. Let C be a nonempty closed convex subset of a Hilbert space H . Let {Φn} be a
countable family of bifunctions from: C×C to � satisfying (A1)–(A4). Assume thatΩ =

⋂∞
i=1 EP(Φi)

is nonempty and bounded. Let {rn} be a sequence in (r,∞) with r > 0. Set θ0 = 1. The sequence {xn}
is generated by x1 = x ∈ C and

zn = θnxn +
n∑

i=1

(θi−1 − θi)Trixn,

Cn = {v ∈ C : ‖zn − v‖ ≤ ‖xn − v‖},

Dn =
n⋂

j=1

Cj,

xn+1 = PDnx, ∀n ≥ 1,

(3.48)

where {Tri} is defined by (3.8) and {θn} is a strictly decreasing sequence in (0, 1). Then {xn} converges
strongly to PΩx.

Proof. Putting Ti = I for all i ≥ 1 and αn = 0 for all n ≥ 1 in Theorem 3.3, we obtain
Corollary 3.4.

Corollary 3.5. Let C be a nonempty closed subset of a Hilbert space H . Let T be an asymptotically
κ-strict pseudo-contraction with sequence {γn} ⊂ (0,∞) satisfying γn → 0 as n → ∞ and F(T)/= ∅.
Let {xn} and {un} be sequences generated by x1 = x ∈ H and

zn = θnxn + (1 − θn)PCxn,

wn = αnxn + (1 − αn)
(

βnI +
(

1 − βn
)

Tn)zn,

Cn = {v ∈ C : ‖wn − v‖ ≤ ‖xn − v‖},

Dn =
n⋂

j=1

Cj,

xn+1 = PDnx, ∀n ≥ 1,

(3.49)

where {θn} ⊂ (0, 1), {αn} ⊂ [0, a] with 0 < a < 1, and {βn} ⊂ [κ, κ′) with κ < κ′ < 1. Then {xn}
converges strongly to PF(T)x.

Proof. Put Φi(x, y) = 0 for all x, y ∈ C and set rn = 1 for all n ≥ 1 in Theorem 3.3.
By Lemma 2.2, we have Trixn = PCxn for each i ≥ 1. Hence, by Theorem 3.3, we obtain
Corollary 3.5.

Remark 3.6. Our algorithms are of interest because the sequence {xn} in Theorem 3.3 is very
different from the known manner. The proof is simple and different from those of others. The
main results extend and improve those of Kim and Xu [3], Tada and Takahashi [8], andmany
others.
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Remark 3.7. Put α0 = 1, θ0 = 1, κ = 3/4, r = 1, γi,n = 1/4in, κi = 1/4 + 1/(3 + i), αn = 1/(1 + n),
θn = 1/4+ 1/8n, βi,n = 1/4+ 1/(3+ i) + 1/8n for all i ≥ 1 and all n ≥ 1, r0 = 1, and rn = 1+ 1/n.
Then these control sequences satisfy all the conditions of Theorem 3.3.
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