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We study the weak solutions and strong solutions of set equilibrium problems in real Hausdorff
topological vector space settings. Several new results of existence for theweak solutions and strong
solutions of set equilibrium problems are derived. The new results extend and modify various
existence theorems for similar problems.

1. Introduction and Preliminaries

Let X, Y , Z be arbitrary real Hausdorff topological vector spaces, letK be a nonempty closed
convex set of X, and let C ⊂ Y be a proper closed convex and pointed cone with apex at
the origin and intC/= ∅, that is, C is proper closed with intC/= ∅ and satisfies the following
conditions:

(1) λC ⊆ C, for all λ > 0;

(2) C +C ⊆ C;

(3) C ∩ (−C) = {0}.
Letting A, B be two sets of Y , we can define relations “≤C” and “/≤C” as follows:

(1) A≤CB ⇔ B −A ⊂ C;

(2) A/≤CB ⇔ B −A/⊂C.

Similarly, we can define the relations “≤intC” and “/≤intC” if we replace the set C by intC.
The trimapping f : Z × K × K → 2Y and mapping T : K → 2Z are given. The set

equilibrium problem (SEP)I is to find an x ∈ K such that

f
(
s, x, y

)
/≤intC{0} (1.1)
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for all y ∈ K and for some s ∈ T(x). Such solution is called a weak solution for (SEP)I . We
note that (1.1) is equivalent to the following one:

f
(
s, x, y

)
/⊂ − intC (1.2)

for all y ∈ K and for some s ∈ T(x).
For the case when s does not depend on y, that is, to find an x ∈ K with some s ∈ T(x)

such that

f
(
s, x, y

)
/≤intC{0} (1.3)

for all y ∈ K, we will call this solution a strong solution of (SEP)I . We also note that (1.3) is
equivalent to the following one:

f
(
s, x, y

)
/⊂ − intC (1.2′)

for all y ∈ K.
We note that if f is a vector-valued function and themapping s → f(s, x, y) is constant

for each x, y ∈ K, then (SEP)I reduces to the vector equilibrium problem (VEP), which is to
find x ∈ K such that

f
(
x, y

)
/≤intC0 (1.4)

for all y ∈ K. Existence of a solution of this problem is investigated by Ansari et al. [1, 2].
If f is a vector-valued function and Z = L(X, Y) which is denoted the space of all

continuous linear mappings from X to Y and f(s, x, y) = (s, y − x), where (s, y) denotes the
evaluation of the linear mapping s at y, then (SEP)I reduces to (GVVIP): to find x ∈ K and
s ∈ T(x) such that

(
s, y − x

)
/≤intC0 (1.5)

for all y ∈ K. It has been studied by Chen and Craven [3].
If we consider F : K → K, Z = L(X, Y), A : L(X, Y) → L(X, Y), and f(s, x, y) =

(As, y − x) + F(y) − F(x), where (s, y) denotes the evaluation of the linear mapping s at y,
then (SEP)I reduces to the (GVVIP)which is discussed by Huang and Fang [4] and Zeng and
Yao [5]: to find a vector x ∈ K and s ∈ T(x) such that

(
As, y − x

)
+ F

(
y
) − F(x)/≤intC0, ∀y ∈ K. (1.6)

If Z = L(X, Y), T : K → L(X, Y) is a single-valued mapping, f(s, x, y) = (T(x), y − x), then
(SEP)I reduces to the (weak) vector variational inequalities problem which is considered by
Fang and Huang [6], Chiang and Yao [7], and Chiang [8] as follows: to find a vector x ∈ K
such that

(
T(x), y − x

)
/≤intC0 (1.7)
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for all y ∈ K. The vector variational inequalities problem was first introduced by Giannessi
[9] in finite-dimensional Euclidean space.

Summing up the above arguments, they show that for a suitable choice of the mapping
T and the spacesX, Y , and Z, we can obtain a number of known classes of vector equilibrium
problems, vector variational inequalities, and implicit generalized variational inequalities.
It is also well known that variational inequality and its variants enable us to study many
important problems arising in mathematical, mechanics, operations research, engineering
sciences, and so forth.

In this paper we aim to derive some solvabilities for the set equilibrium problems.
We also study some results of existence for the weak solutions and strong solutions of set
equilibrium problems. Let K be a nonempty subset of a topological vector space X. A set-
valued function Φ from K into the family of subsets of X is a KKM mapping if for any
nonempty finite set A ⊂ K, the convex hull of A is contained in

⋃
x∈AΦ(x). Let us first recall

the following results.

Fan’s Lemma (see [10]). Let K be a nonempty subset of Hausdorff topological vector space X. Let
G : K → 2X be a KKM mapping such that for any y ∈ K, G(y) is closed and G(y∗) is compact for
some y∗ ∈ K. Then there exists x∗ ∈ K such that x∗ ∈ G(y) for all y ∈ K.

Definition 1.1 (see [11]). Let Ω be a vector space, let Σ be a topological vector space, let K be
a nonempty convex subset of Ω, and let C ⊂ Σ be a proper closed convex and pointed cone
with apex at the origin and intC/= ∅, and ϕ : K → 2Σ is said to be

(1) C-convex if tϕ(x1) + (1 − t)ϕ(x2) ⊂ ϕ(tx1 + (1 − t)x2) + C for every x1, x2 ∈ K and
t ∈ [0, 1];

(2) naturally quasi -C-convex if ϕ(tx1 + (1 − t)x2) ⊂ co{ϕ(x1) ∪ ϕ(x2)} − C for every
x1, x2 ∈ K and t ∈ [0, 1].

The following definition can also be found in [11].

Definition 1.2. Let Y be a Hausdorff topological vector space, let C ⊂ Y be a proper closed
convex and pointed cone with apex at the origin and intC/= ∅, and let A be a nonempty
subset of Y . Then

(1) a point z ∈ A is called a minimal point of A if A ∩ (z − C) = {z}; MinA is the set of
all minimal points of A;

(2) a point z ∈ A is called a maximal point of A if A ∩ (z + C) = {z}; MaxA is the set of
all maximal points of A;

(3) a point z ∈ A is called a weakly minimal point of A if A ∩ (z − intC) = ∅; MinwA is
the set of all weakly minimal points of A;

(4) a point z ∈ A is called a weakly maximal point of A if A ∩ (z + intC) = ∅; MaxwA is
the set of all weakly maximal points of A.

Definition 1.3. Let X, Y be two topological spaces. A mapping T : X → 2Y is said to be

(1) upper semicontinuous if for every x ∈ X and every open set V in Y with T(x) ⊂ V ,
there exists a neighborhood W(x) of x such that T(W(x)) ⊂ V ;
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(2) lower semicontinuous if for every x ∈ X and every open neighborhood V (y) of
every y ∈ T(x), there exists a neighborhood W(x) of x such that T(u) ∩V (y)/= ∅ for
all u ∈ W(x);

(3) continuous if it is both upper semicontinuous and lower semicontinuous.

We note that T is lower semicontinuous at x0 if for any net {xν} ⊂ X, xν → x0, y0 ∈ T(x0)
implies that there exists net yν ∈ T(xν) such that yν → y0. For other net-terminology
properties about these two mappings, one can refer to [12].

Lemma 1.4 (see [13]). Let X, Y , and Z be real topological vector spaces, and let K and C be
nonempty subsets of X and Y , respectively. Let F : K × C → 2Z, S : K → 2C be set-valued
mappings. If both F and S are upper semicontinuous with nonempty compact values, then the set-
valued mapping G : K → 2Z defined by

G(x) =
⋃

y∈S(x)
F
(
x, y

)
= F(x, S(x)), ∀x ∈ K (1.8)

is upper semicontinuous with nonempty compact values.

By using similar technique of [11, Proposition 2.1], we can deduce the following
lemma that slight-generalized the original one.

Lemma 1.5. Let L, K be two Hausdorff topological vector spaces, and let L,K be nonempty compact
convex subsets of L andK, respectively. Let G : L ×K → 2� be continuous mapping with nonempty
compact valued on L × K; the mapping s → −G(s, x) is naturally quasi �+ -convex on L for each
x ∈ K, and the mapping x → G(s, x) is �+ -convex onK for each s ∈ L. Assume that for each x ∈ K,
there exists sx ∈ L such that

MinG(sx, x)≥�+ Min
⋃

x∈K
Maxw

⋃

s∈L
G(s, x). (1.9)

Then, one has

Min
⋃

x∈K
Maxw

⋃

s∈L
G(s, x) = Max

⋃

s∈L
Minw

⋃

x∈K
G(s, x). (1.10)

2. Existence Theorems for Set Equilibrium Problems

Now, we state and show our main results of solvabilities for set equilibrium problems.

Theorem 2.1. Let X, Y , Z be real Hausdorff topological vector spaces, let K be a nonempty closed
convex subset of X, and let C ⊂ Y be a proper closed convex and pointed cone with apex at the origin
and intC/= ∅. Given mappings f : Z ×K ×K → 2Y , T : K → 2Z, and ν : K ×K → 2Y , suppose
that

(1) {0}≤Cν(x, x) for all x ∈ K;

(2) for each x ∈ K, there is an s ∈ T(x) such that for all y ∈ K,

ν
(
x, y

)≤Cf
(
s, x, y

)
, (2.1)
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(3) for each x ∈ K, the set {y ∈ K : {0}/≤Cν(x, y)} is convex;
(4) there is a nonempty compact convex subset D of K, such that for every x ∈ K\D, there is

a y ∈ D such that for all s ∈ T(x),

f
(
s, x, y

)≤intC{0}, (2.2)

(5) for each y ∈ K, the set {x ∈ K : f(s, x, y)≤intC{0} for all s ∈ T(x)} is open in K.

Then there exists an x ∈ K which is a weak solution of (SEP)I . That is, there is an x ∈ K such that

f
(
s, x, y

)
/≤intC{0} (2.3)

for all y ∈ K and for some s ∈ T(x).

Proof. Define Ω : K → 2D by

Ω
(
y
)
=
{
x ∈ D : f

(
s, x, y

)
/≤intC{0} for some s ∈ T(x)

}
(2.4)

for all y ∈ K. From condition (5) we know that for each y ∈ K, the set Ω(y) is closed in K,
and hence it is compact in D because of the compactness of D.

Next, we claim that the family {Ω(y) : y ∈ K} has the finite intersection property, and
then the whole intersection

⋂
y∈K Ω(y) is nonempty and any element in the intersection⋂

y∈K Ω(y) is a solution of (SEP)I , for any given nonempty finite subset N of K. Let DN =
co{D ∪N}, the convex hull of D ∪N. Then DN is a compact convex subset of K. Define the
mappings S, R : DN → 2DN , respectively, by

S
(
y
)
=
{
x ∈ DN : f

(
s, x, y

)
/≤intC{0} for some s ∈ T(x)

}
,

R
(
y
)
=
{
x ∈ DN : {0}≤Cν

(
x, y

)}
,

(2.5)

for each y ∈ DN . From conditions (1) and (2), we have

{0}≤Cν
(
y, y

) ∀y ∈ DN, (2.6)

and for each y ∈ K, there is an s ∈ T(y) such that

ν
(
y, y

) − f
(
s, y, y

)≤C{0}. (2.7)

Hence {0}≤Cf(s, y, y), and then y ∈ S(y) for all y ∈ DN .
We can easily see that S has closed values inDN . Since, for each y ∈ DN ,Ω(y) = S(y)∩

D, if we prove that the whole intersection of the family {S(y) : y ∈ DN} is nonempty, we can
deduce that the family {Ω(y) : y ∈ K} has finite intersection property because N ⊂ DN and
due to condition (4). In order to deduce the conclusion of our theorem, we can apply Fan’s
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lemma if we claim that S is a KKMmapping. Indeed, if S is not a KKMmapping, neither is R
since R(y) ⊂ S(y) for each y ∈ DN . Then there is a nonempty finite subsetM ofDN such that

coM/⊂
⋃

u∈M
R(u). (2.8)

Thus there is an element u ∈ coM ⊂ DN such that u/∈R(u) for all u ∈ M, that is, {0}/≤Cν(u, u)
for all u ∈ M. By (3), we have

u ∈ coM ⊂ {
y ∈ K : {0}/≤Cν

(
u, y

)}
, (2.9)

and hence {0}/≤Cν(u, u) which contradicts (2.6). Hence R is a KKM mapping, and so is S.
Therefore, there exists an x ∈ K which is a solution of (SEP)I . This completes the proof.

Theorem 2.2. Let X, Y , Z be real Hausdorff topological vector spaces, let K be a nonempty closed
convex subset of X, and let C ⊂ Y be a proper closed convex and pointed cone with apex at the origin
and intC/= ∅. Let the mapping f : Z × K × K → 2Y be such that for each y ∈ K, the mappings
(s, x) → f(s, x, y) and T : K → 2Z are upper semicontinuous with nonempty compact values and
ν : K × K → 2Y . Suppose that conditions (1)–(4) of Theorem 2.1 hold. Then there exists an x ∈ K
which is a solution of (SEP)I . That is, there is an x ∈ K such that

f
(
s, x, y

)
/≤intC{0} (2.10)

for all y ∈ K and for some s ∈ T(x).

Proof. For any fixed y ∈ K, we define the mapping G : K → 2Y by

G(x) =
⋃

s∈Tx
f
(
s, x, y

)
(2.11)

for all s ∈ Z and x ∈ K. Since the mappings (s, x) → f(s, x, y) and T : K → 2Z are upper
semicontinuous with nonempty compact values, by Lemma 1.4, we know that G is upper
semicontinuous on K with nonempty compact values. Hence, for each y ∈ K, the set

{
x ∈ K : f

(
s, x, y

)≤intC{0} ∀s ∈ T(x)
}
= {x ∈ K : G(x) ⊂ (− intC)} (2.12)

is open in K. Then all conditions of Theorem 2.1 hold. From Theorem 2.1, (SEP)I has a
solution.

In order to discuss the results of existence for the strong solution of (SEP)I , we
introduce the condition (�). It is obviously fulfilled that if Y = �, f is single-valued function.

Theorem 2.3. Under the framework of Theorem 2.2, one has a weak solution x of (SEP)I with s ∈
T(x). In addition, if Y = �, C = �+ , and K is compact, T(x) is convex, the mapping (s, x) →
f(s, x, x) is continuous with nonempty compact valued on T(x) ×K, the mapping s → −f(s, x, x)
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is naturally quasi �+ -convex on T(x) for each x ∈ K, and the mapping x → f(s, x, x) is �+ -convex
on K for each s ∈ T(x). Assuming that for each x ∈ K, there exists tx ∈ T(x) such that

Min f(tx, x, x)≥C Min
⋃

x∈K
Maxw

⋃

s∈T(x)
f(s, x, x), (�)

then x is a strong solution of (SEP)I ; that is, there exists s ∈ T(x) such that

f(s, x, x)/≤intC{0} (2.13)

for all x ∈ K. Furthermore, the set of all strong solutions of (SEP)I is compact.

Proof. From Theorem 2.2, we know that x ∈ K such that (1.1) holds for all x ∈ K and for some
s ∈ T(x). Then we have Min

⋃
x∈K Max

⋃
s∈T(x) f(s, x, x)≥C0.

From condition (�) and the convexity of T(x), Lemma 1.5 tells us that
Max

⋃
s∈T(x) Minw

⋃
x∈K f(s, x, x)≥C0. Then there is an s ∈ T(x) such that Minw

⋃
x∈K f(s, x,

x)≥C0. Thus for all ρ ∈ ⋃
x∈K f(s, x, x), we have ρ≥C 0. Hence there exists s ∈ T(x) such that

f(s, x, x)/≤intC{0} (2.14)

for all x ∈ K. Such an x is a strong solution of (SEP)I .
Finally, to see that the solution set of (SEP)I is compact, it is sufficient to show that

the solution set is closed due to the coercivity condition (4) of Theorem 2.2. To this end, let Γ
denote the solution set of (SEP)I . Suppose that net {xα} ⊂ Γ which converges to some p. Fix
any y ∈ K. For each α, there is an sα ∈ T(xα) such that

f
(
sα, xα, y

)
/≤intC{0}. (2.15)

Since T is upper semicontinuous with compact values and the set {xα} ∪ {p} is compact, it
follows that T({xα} ∪ {p}) is compact. Therefore without loss of generality, we may assume
that the sequence {sα} converges to some s. Then s ∈ T(p) and f(sα, xα, y)/⊂ − intC. Let
Ω = {(s, x) ∈ (

⋃
z∈K T(z)) ×K : f(s, x, y) ⊂ − intC}. Since the mapping (s, x) → f(s, x, y) is

upper semicontinuous with nonempty compact values, the set Ω is open in (
⋃

z∈K T(z)) ×K.
Hence (

⋃
z∈K T(z))×K\Ω is closed in (

⋃
z∈K T(z))×K. By the facts (sα, xα) ∈ (

⋃
z∈K T(z))×K\Ω

and (sα, xα)→ α (s, p), we have (s, p) ∈ (
⋃

z∈K T(z))×K\Ω. This implies that f(s, p, y)/⊂ −intC.
We then obtain

f
(
s, p, y

)
/≤intC{0}. (2.16)

Hence p ∈ Γ and Γ is closed.

We would like to point out that condition (�) is fulfilled if we take Y = � and f is a
single-valued function. The following is a concrete example for both Theorems 2.1 and 2.3.

Example 2.4. Let X = Y = �, Z = L(X, Y), K = [1, 2], C = �+ , and D = [1, 2]. Choose T :
K → 2L(X,Y) to be defined by T(x) = {ax : a ∈ [1, 2]} ∈ 2L(X,Y) for every x ∈ K and f :
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T(K) × K × K → 2Y is defined by f(s, x, y) = {(a + δ)x(y − x) : δ ∈ [0, 1]}, where x ∈ K,
s ∈ T(x) with s = ax, for some a ∈ [1, 2], y ∈ K, and ν : K ×K → 2Y is defined by

ν
(
x, y

)
=

⎧
⎨

⎩

{
x
(
y − x

)}
, y ≥ x,

{
3x

(
y − x

)}
, y ≤ x.

(2.17)

Then all conditions of Theorems 2.1 and 2.3 are satisfied. By Theorems 2.1 and 2.3,
respectively, the (SEP)I not only has a weak solution, but also has a strong solution. A simple
geometric discussion tells us that x = 1 is a strong solution for (SEP)I .

Corollary 2.5. Under the framework of Theorem 2.1, one has a weak solution x of (SEP)I with s ∈
T(x). In addition, if Y = � and C = �+ , K is compact, T(x) is convex, �+ -convex on T(x) for each
x ∈ K and the mapping x → f(s, x, x) is �+ -convex on K for each s ∈ T(x), f : Z ×K ×K → 2Y

such that (s, x) → f(s, x, y) is continuous with nonempty compact values for each y ∈ K, and
T : K → 2Z is upper semicontinuous with nonempty compact values. Assume that condition (�)
holds, then x is a strong solution of (SEP)I ; that is, there exists s ∈ T(x) such that

f(s, x, x)/≤intC{0} (2.18)

for all x ∈ K. Furthermore, the set of all strong solutions of (SEP)I is compact.

Theorem 2.6. Let X, Y , Z, K, C, T , f be as in Theorem 2.1. Assume that the mapping y →
f(s, x, y) is C-convex on K for each x ∈ K and s ∈ T(x) such that

(1) for each x ∈ K, there is an s ∈ T(x) such that f(s, x, x)/≤intC{0};
(2) there is a nonempty compact convex subset D of K, such that for every x ∈ K \D, there is

a y ∈ D such that for all s ∈ T(x),

f
(
s, x, y

)≤intC{0}, (2.19)

(3) for each y ∈ K, the set {x ∈ K : f(s, x, y)≤intC{0} for all s ∈ T(x)} is open in K.

Then there is an x ∈ K which is a weak solution of (SEP)I .

Proof. For any given nonempty finite subset N of K. Letting DN = co(D ∪N), then DN is a
nonempty compact convex subset ofK. Define S : DN → 2DN as in the proof of Theorem 2.1,
and for each y ∈ K, let

Ω
(
y
)
=
{
x ∈ D : f

(
s, x, y

)
/≤intC{0} for some s ∈ T(x)

}
. (2.20)

We note that for each x ∈ DN , S(x) is nonempty and closed since x ∈ S(x) by conditions
(1) and (3). For each y ∈ K, Ω(y) is compact in D. Next, we claim that the mapping S
is a KKM mapping. Indeed, if not, there is a nonempty finite subset M of DN , such that
coM/⊂ ⋃

x∈M S(x). Then there is an x∗ ∈ coM ⊂ DN such that

f(s, x∗, x)≤intC{0} (2.21)
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for all x ∈ M and s ∈ T(x∗). Since the mapping

x −→ f(s, x∗, x) (2.22)

is C-convex on DN , we can deduce that

f(s, x∗, x∗)≤intC{0} (2.23)

for all s ∈ T(x∗). This contradicts condition (1). Therefore, S is a KKM mapping, and by
Fan’s lemma, we have

⋂
x∈DN

S(x)/= ∅. Note that for any u ∈ ⋂
x∈DN

S(x), we have u ∈ D by
condition (2). Hence, we have

⋂

y∈N
Ω
(
y
)
=

⋂

y∈N
S
(
y
) ∩D/= ∅, (2.24)

for each nonempty finite subset N of K. Therefore, the whole intersection
⋂

y∈K Ω(y) is
nonempty. Let x ∈ ⋂

y∈K Ω(y). Then x is a solution of (SEP)I .

Corollary 2.7. Let X, Y , Z, K, C, T , f be as in Theorem 2.1. Assume that the mapping y →
f(s, x, y) is C-convex on K for each x ∈ K and s ∈ T(x), f : Z × K × K → 2Y such that
(s, x) → f(s, x, y) is continuous with nonempty compact values for each y ∈ K, and T : K → 2Z

is upper semicontinuous with nonempty compact values. Suppose that

(1) for each x ∈ K, there is an s ∈ T(x) such that f(s, x, x)/≤intC{0};
(2) there is a nonempty compact convex subset D of K, such that for every x ∈ K\D, there is

a y ∈ D such that for all s ∈ T(x),

f
(
s, x, y

)≤intC{0}. (2.25)

Then there is an x ∈ K which is a weak solution of (SEP)I .

Proof. Using the technique of the proof in Theorem 2.2 and applying Theorem 2.6, we have
the conclusion.

The following result is another existence theorem for the strong solutions of (SEP)I .
We need to combine Theorem 2.6 and use the technique of the proof in Theorem 2.3.

Theorem 2.8. Under the framework of Theorem 2.6, on has a weak solution x of (SEP)I with s ∈ Tx.
In addition, if Y = � and C = �+ , K is compact, T(x) is convex and the mapping s → −f(s, x, x)
is naturally quasi C-convex on T(x) for each x ∈ K, f : Z × K × K → 2Y such that (s, x) →
f(s, x, y) is continuous with nonempty compact values for each y ∈ K, and T : K → 2Z is upper
semicontinuous with nonempty compact values. Assuming that condition (�) holds, then x is a strong
solution of (SEP)I ; that is, there exists s ∈ T(x) such that

f(s, x, x)/≤intC{0} (2.26)
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for all x ∈ K. Furthermore, the set of all strong solutions of (SEP)I is compact.

Using the technique of the proof in Theorem 2.3, we have the following result.

Corollary 2.9. Under the framework of Corollary 2.7, one has a weak solution x of (SEP)I with
s ∈ Tx. In addition, if Y = � and C = �+ , K is compact, T(x) is convex, and the mapping
s → −f(s, x, x) is naturally quasi C-convex on T(x) for each x ∈ K. Assuming that condition
(�) holds, then x is a strong solution of (SEP)I ; that is, there exists s ∈ T(x) such that

f(s, x, x)/≤intC{0} (2.27)

for all x ∈ K. Furthermore, the set of all strong solutions of (SEP)I is compact.

Next, we discuss the existence results of the strong solutions for (SEP)I with the setK
without compactness setting from Theorems 2.10 to 2.14 below.

Theorem 2.10. Letting X be a finite-dimensional real Banach space, under the framework of
Theorem 2.1, one has a weak solution x of (SEP)I with s ∈ T(x). In addition, if Y = � and C = �+ ,
T(x) is convex, f(s, x, x) = {0} for all s ∈ T(x) and for all x ∈ K, the mapping y → f(s, x, y) is
C-convex on K for each x ∈ K and s ∈ T(x) and the mapping s → −f(s, x, x) is naturally quasi
C-convex on T(x) for each x ∈ K, f : Z ×K ×K → 2Y such that (s, x) → f(s, x, y) is continuous
for each y ∈ K, and T : K → 2Z is upper semicontinuous with nonempty compact values. Assume
that for some r > ‖x‖, such that for each x ∈ Kr , there is a tx ∈ T(x) such that the condition

Min f(tx, x, x)≥C Min
⋃

x∈Kr

Maxw
⋃

s∈T(x)
f(s, x, x) (�′)

is satisfied, whereKr
.= B(0, r)∩K. Then x is a strong solution of (SEP)I ; that is, there exists s ∈ T(x)

such that

f(s, x, x)/≤intC{0} (2.28)

for all x ∈ K. Furthermore, the set of all strong solutions of (SEP)I is compact.

Proof. Let us choose r > ‖x‖ such that condition (�′) holds. Letting B(0, r) = {x ∈ X : ‖x‖ ≤
r}, then the set Kr is nonempty and compact in X. We replace K by Kr in Theorem 2.3; all
conditions of Theorem 2.3 hold. Hence by Theorem 2.3, we have s ∈ T(x) such that

f(s, x, z)/≤intC{0} (2.29)

for all z ∈ Kr . For any x ∈ K, choose t ∈ (0, 1) small enough such that (1 − t)x + tx ∈ Kr .
Putting z = (1 − t)x + tx in (2.29), we have

f(s, x, (1 − t)x + tx)/≤intC{0}. (2.30)
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We note that

f(s, x, (1 − t)x + tx)≤C (1 − t)f(s, x, x) + tf(s, x, x) = tf(s, x, x) (2.31)

which implies that

f(s, x, x)/≤intC{0} (2.32)

for all x ∈ K. This completely proves the theorem.

Corollary 2.11. Letting X be a finite-dimensional real Banach space, under the framework of
Theorem 2.2, one has a weak solution x of (SEP)I with s ∈ T(x). In addition, if Y = � and C = �+ ,
T(x) is convex, f(s, x, x) = {0} for all s ∈ T(x) and for all x ∈ K, the mapping y → f(s, x, y) is
C-convex on K for each x ∈ K and s ∈ T(x), and the mapping s → −f(s, x, x) is naturally quasi
C-convex on T(x) for each x ∈ K. Assume that for some r > ‖x‖, condition (�′) holds. Then x is a
strong solution of (SEP)I ; that is, there exists s ∈ T(x) such that

f(s, x, x)/≤intC{0} (2.33)

for all x∈K. Furthermore, the set of all strong solutions of (SEP)I is compact.

Using a similar argument to that of the proof in Theorem 2.10 and combining
Theorem 2.6 and Corollary 2.7, respectively, we have the following two results of existence
for the strong solution of (SEP)I .

Theorem 2.12. LetX be a finite-dimensional real Banach space, under the framework of Theorem 2.6,
one has a weak solution x of (SEP)I with s ∈ T(x). In addition, if Y = � and C = �+ , T(x) is convex,
f(s, x, x) = {0} for all s ∈ T(x) and for all x ∈ K, the mapping s → −f(s, x, x) is naturally quasi
C-convex on T(x) for each x ∈ K, f : Z ×K ×K → 2Y such that (s, x) → f(s, x, y) is continuous
for each y ∈ K, and T : K → 2Z is upper semicontinuous with nonempty compact values. Assume
that for some r > ‖x‖, condition (�′) holds. Then x is a strong solution of (SEP)I ; that is, there exists
s ∈ T(x) such that

f(s, x, x)/≤intC{0} (2.34)

for all x ∈ K. Furthermore, the set of all strong solutions of (SEP)I is compact.

In order to illustrate Theorems 2.10 and 2.12 more precisely, we provide the following
concrete example.

Example 2.13. LetX = Y = �, Z = L(X, Y),K = [1, 2], C = �+ , andD = [1, 2]. Choose T : K →
2L(X,Y) to be defined by T(x) = [x/2, x] ∈ 2L(X,Y) for every x ∈ K and f : T(K) ×K ×K → 2Y
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is defined by f(s, x, y) = {sx(y − x) : s ∈ T(x)}, where x ∈ K, y ∈ K, and ν : K ×K → 2Y is
defined by

ν
(
x, y

)
=

⎧
⎪⎪⎨

⎪⎪⎩

{
x2(y − x

)

2

}

, y ≥ x,

{
x2(y − x

)}
, y ≤ x.

(2.35)

We claim that condition (�′) holds. Indeed, We know that the weak solution x = 1. For each
x ∈ Kr = [1, r] ∩ [1, 2], if we choose any tx ∈ T(1), then Minf(tx, x, x) = Min{tx(x − 1)} =
{tx(x − 1)} and Min

⋃
x∈Kr

Maxw
⋃

s∈T(x) f(s, x, x) = Min
⋃

x∈[1,r]∩[1,2] Maxw{s(x − 1) : s ∈
[1/2, 1]} = Min

⋃
x∈[1,r]∩[1,2]{x − 1} = Min[0, r − 1] ∩ [0, 1] = {0}. Hence condition (�′)

and all other conditions of Theorems 2.10 and 2.12 are satisfied. By Theorems 2.10 and 2.12,
respectively, the (SEP)I not only has a weak solution, but also has a strong solution. We can
see that x = 1 is a strong solution for (SEP)I .

Theorem 2.14. Letting X be a finite-dimensional real Banach space, under the framework of
Corollary 2.7, one has a weak solution x of (SEP)I with s ∈ T(x). In addition, if Y = � and C = �+ ,
T(x) is convex, f(s, x, x) = {0} for all s ∈ T(x) and for all x ∈ K, and the mapping s → −f(s, x, x)
is naturally quasi C-convex on T(x) for each x ∈ K. Assume that for some r > ‖x‖, condition (�′)
holds. Then x is a strong solution of (SEP)I ; that is, there exists s ∈ T(x) such that

f(s, x, x)/≤intC{0} (2.36)

for all x ∈ K. Furthermore, the set of all strong solutions of (SEP)I is compact.

We would like to point out an open question naturally arising from Theorem 2.3: is
Theorem 2.3 extendable to the case of Y = �

p or more general spaces, such as Hausdorff
topological vector spaces?
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