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The confluent hypergeometric function kind 1 distribution with the probability density function
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1. Introduction

The multivariate Liouville family of distributions was proposed by Marshall and Olkin [1].
Sivazlian [2] introduced Liouville distributions as generalizations of gamma and Dirichlet
distributions. The Dirichlet and Liouville distributions have applications in such diverse
fields as Bayesian analysis, modeling of multivariate data, order statistics, limit laws,
multivariate analysis, reliability theory, and stochastic processes. These distributions have
also been applied in geology, biology, chemistry, forensic science, and statistical genetics. A
comprehensive review on applications and theoretical developments of these distributions
are given in [1-5].

In this article, we propose a multivariate generalization of the confluent hypergeomet-
ric function kind 1 distribution which is a new member of the multivariate Liouville family
of distributions.

The random variable X is said to have a confluent hypergeometric function kind 1
distribution, denoted by X ~CH(v, a, , kind 1), if its probability density function (pdf) is
given by Gupta and Nagar [6],

(I -v)

ToT@Ia-v" @k, x>0 (11)
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where f > v >0, a > v >0, and | F; is the confluent hypergeometric function kind 1 (Luke
[7]). The confluent hypergeometric function kind 1 distribution occurs as the distribution of
the ratio of independent gamma and beta variables. Distributions of the product and ratio
of independent beta and gamma variates can be found in [8]. For a = p, the density (1.1)
reduces to a gamma density given by

v-1

%x exp(-x), x>0. (1.2)

Recently, Nagar and Septlveda-Murillo [9] studied several properties and stochastic
representations of the confluent hypergeometric function kind 1 distribution.

In this article we define and study multivariate generalization of the confluent
hypergeometric function kind 1 distribution. In Section 3, the multivariate generalization
of the confluent hypergeometric function kind 1 distribution is defined and derived as
the distribution of the quotient of a set of independent gamma variables variable with an
independent beta variable. Several properties of this distribution including marginal and
conditional distributions, distribution of partial sums and several factorizations are studied
in Section 4.

2. Some useful definitions

Several definitions and results on special functions and integrals used in this article are given
in this section. Throughout this work we will use the Pochhammer symbol (a),, defined by
(a),=a(a+1)---(a+n-1)=(a),1(a+n-1)forn=1,2,...,and (a), = 1.

The generalized hypergeometric function of scalar argument is defined by

(a1)g -~ (ap)
JFy(ar,...,ayb,... by z) = Z(bl)’; (b:):;, 2.1)

where a;, i=1,...,p; bj, j=1,...,q are complex numbers with suitable restrictions and z is
a complex variable. Conditions for the convergence of the series in (2.1) are available in the
literature, see Luke [7]. From (2.1) it is easy to see that

o _k 0 k
0Fo(2) = >z =exp(@), 1Fo(@2) = D@y = (1-2) <1,
k=0 """ k=0 : 2 2)
(@), ¢ (@), (b)i 2* -
1Fi(a;c;z) = Z( O kI’ 2F1(a,b;c;z) = kzo ©Or K’ |z < 1.

Also, under suitable conditions,

exp(-62)z* L F (a1,...,ay;b1,...,by;zy)dz
fo p pt g\l pr Y1 a2y (23)

= I’(oc)6’“p+1Fq(a1,...,ap,ac; bi,..., by 6’1y).
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The integral representations of the confluent hypergeometric function and the Gauss
hypergeometric function are given as

. e — F(C) ! a- c-a-1
1Fi(a;c;z) = mfot l1-1) exp(zt)dt (2.4)
Re(c) > Re(a) > 0,
e — F(C) ! a— c—a-1 -b
2F1([1, b, C, Z) = mj‘ot 1(1 - t) (1 - Zt) dt, (25)

Re(c) > Re(a) >0, |arg(l-z)| <,

respectively. Note that the series expansions for 1 F; and »F; given in (2.2) can be obtained by
expanding exp(zt) and (1 - zt)_b, |zt| < 1,in (2.4) and (2.5) and integrating ¢. Substituting
z = 1in (2.5) and integrating, we obtain

I'(c)['(c—a-Db)

2Fi(a,b;c;1) = Tle—al(c—b)’

Re(c—a-b)>0, c£-1,-2,.... (2.6)

The confluent hypergeometric function 1 Fi (a; c; z) satisfies Kummer’s relation

1F1(a; c;—z) = exp(-z)1F1(c - a;c; 2). (2.7)

The Lauricella hypergeometric function F I(Dm) in m variables zy, ..., z,, is defined by

jl jm
(m) 0 (a)j1+"‘+jm (bl)]l e (bm)].mzl .. 'Zm
F 7 la,by,...,by;c;21,...,2m] = E . :
D [ 1 m 1 m] ‘ (C)il+"'+jm]1!"']m!

;o (28

where max{|zi|,...,|zm|} < 1. For m = 1, the Lauricella hypergeometric function reduces to a
Gauss hypergeometric function and for m = 2 it slides to an Appell hypergeometric function
F;. Using the result

% ) %f :f‘”jl(l ~HldE, Re(c) > Re(a) >0, @9)
]

forj=0,1,2,...,and

=, (bi); (tzi)"
Z"j—,,aﬂ)(bﬁ tz;) = (1-tz)", |zil<1,i=1,...,m, (2.10)
=0 JF
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in (2.8), an integral representation of F g") is given by

F(Dm)[a,bl,...,bm;c;zl,...,zm]

I'(c) L c-a-1 -b -b (2.11)
= | (1 1- (1= zpt) P dt,
T@Te-a) fot (1-1¢) (1-zit) (1= zyt) " dt
Further, replacing (1 — z;t) ™ by its equivalent gamma integral, namely,
(1-zit) b = LJ‘ exp[-(1- z,-t)vi]vf"_ldv,-, Re(b;) > 0, (2.12)
I'(bi) J o
fori=1,...,mand integrating out ¢, one obtains
[Tr®)ES [a,by,... bwi 21, 2]
(2.13)

i=1
[ee] [oe] m m m
= J‘ I exp <_Zvi>HU?i—1lF1 <a;c;—ZZivi>dvl...d’0m.
0 0 i=1 i=1

i=1

For further results and properties of this function the reader is referred to [10, 11].
Let f(-) be a continuous function and a; > 0, i =1,...,n. The integral

Dy(ay,..., a5 f) = IO fo ]_[x;"f*lf <in>ndxi (2.14)
i=1 i=1 i=1

is known as Liouville’s integral. Substituting y; = x;/x, i=1,...,n—1and x = X/, x; with
the Jacobian J(x1,...,Xu-1,Xn — Y1,..., Yn-1,X) = x"1itis easy to see that

[T () (*

== Siai-1
ran ), X f(x)dx. (2.15)

Dy(ai,...,an f) =

3. Density function

In this section, we present a multivariate generalization of the hypergeometric function kind
1 distribution and derive it using independent beta and gamma variables.

Definition 3.1. The random variables Xj,...,X, are said to have a multivariate
confluent hypergeometric function kind 1 distribution, denoted as (Xj,...,Xn)~
CH(®v1, ..., v a, B, kind 1), if their joint pdf is given by

n n
Cvi, ..., v (x,ﬁ)Hx;”'fllFl <a;ﬁ; —le), x>0,i=1,...,n, (3.1)
i=1 i1

where C(vy, ..., v,; a, B) is the normalizing constant.
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The normalizing constant in (3.1) is given by

{C(vl,...,vn;cx,ﬂ)}_lzf J‘Hxvl F1<cx,ﬂ le>del

0 =1 i=

_ 1= 1r(Vz
F(Z Vi)
_ [T T (v
F(Zz 1Vi)

)J X2V Fy (o B; —x)dox (3.2)

)J xZimvil exp (—x)F1(f — a; ; x)dx,

where the last line has been obtained by using Liouville’s integral and (2.7). Now, evaluating
the above integral and simplifying the resulting expression using (2.3) and (2.6), we get

-1 _ [TLT )T (BT (a = X7vi)
T (B~ XLvi) ’

{C(vll-”rvn;“rﬁ)} (33)

where v; > 0, i =1,...,n, a > 3" v, and p > > v. For a = f, multivariate confluent
hypergeometric function kind 1 density simplifies to the product of n univariate gamma
densities. Several special cases of the density (3.1) can be obtained by specializing a and f
and using results on confluent hypergeometric function. For example, substitution of = 2a
in (3.1) and application of the result

no o T(a+1/2)exp(z/2) z
1Fi(a;2a;z) = /)17 Ia_1/2<§>, (3.4)

where I is the modified Bessel function of the first kind, yield

exp (- 031 /2) [T
-1/2
(Zix)" (3.5)
n .
XIu_1/2<M>, x;>0,i=1,...,n.

1
Cvi,..., v a,2a)4“_1/21"<a + E)
2

It may be noted here that the multivariate confluent hypergeometric function kind 1
distribution belongs to the Liouville family of distributions (Sivazlian [2], Gupta and Song
[3]). Because of mathematical tractability of the confluent hypergeometric function and its
several special cases, the multivariate confluent hypergeometric function kind 1 distribution
enriches the class of multivariate Liouville distributions and may serve as an alternative to
many existing distributions belonging to this class. The next theorem derives the multivariate
confluent hypergeometric function kind 1 distribution using independent gamma and beta
variables. First, we define the gamma, beta type 1 and beta type 2 distributions. These
definitions can be found in [12].
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Definition 3.2. A random variable X is said to have the gamma distribution with shape
parameter a, a > 0, denoted as X ~Ga(a), if its pdf is given by

exp(—x)x*t
T, x> 0. (36)

Definition 3.3. A random variable X is said to have the beta type 1 distribution with
parameters (a,b), a >0, b >0, denoted as X ~Bl(a, b), if its pdf is given by

[(a+b) .4 b-1
F(a)F(b)x 1-x)"", 0<x<l. (3.7)
Definition 3.4. A random variable X is said to have the beta type 2 distribution with
parameters (a,b), denoted as X ~B2(a,b), a >0, b >0, if its pdf is given by

F(a+b) ., —(a+b)
— 1 . .
F(a)F(b)x (1+x) , x>0 (3.8)
If X~Bl1(a,b), then 1 - X~B1(b,a), X/(1 - X)~B2(a,b), and (1 - X)/X~B2(b, a).
Further, if Y ~B2(a,b), then1/Y ~B2(b,a), Y/(1+Y)~Bl(a,b),and 1/(1+Y)~B1(b, a).
The matrix variate generalizations of gamma, beta type 1, beta type 2 distributions
have been defined and studied extensively. For example, see [6].

Theorem 3.5. Let Y,...,Y, and Z be independent, Y;~Ga(c;), i = 1,...,n, and Z~B1(a,b).
Then, (Y1/Z,...,Yn/Z)~CH(cy,...,cn; Diici+ a, X ci + a+ b, kind 1) with the pdf

Fa+b)T(SLci+a) e
[TLT ()T (@) (Xci +a +b) ]z;IXi

N . . (3.9)
x1F1<Zci+a;2ci+a+b;—2xi>, x;>0,i=1,...,n
i=1 i=1 i=1
Proof. The joint density of Y3,...,Y,, and Z is given by
I'(a+b) ol < 1 b-1
7 ex - )z (1 -2)7, (3.10)
ML rer@re LY P < 2 >

where0 <z <1, y; >0, i=1,...,n Transforming X; = Y;/Z, i = 1,...,n with the Jacobian
JWi, - Yz — X1,...,%5,2) = 2" in (3.10) and integrating out z, we get the marginal
density of (X,...,Xy,) as

n 1 n
Trormrall ] e <_ zzx’)ZZ?lw_l“ -2 dz, @1
=17\ i=1

i=1

where x; >0, i =1,...,n. Now, evaluation of the above integral using (2.4) yields the desired
result. O
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Corollary 3.6. Let Yi,...,Y, and Z be independent, Y;~Gal(c;), i = 1,...,n, and Z~B1(a,b).
Then

Yl Yn - - .
(1_2,..., 1 —z> ~CH<c1,...,cn;ch~+b,Zci+a+b, kind 1>. (3.12)

i=1 i=1

Corollary 3.7. Let Yi,...,Y, and V be independent, Y;~Ga(c;), i = 1,...,n, and V ~B2(a,b),
then

1 Y, 1 Y, n n
<( +‘Y) 1/-",( +“//) n)NCH<01,...,cn;Zci+a,Zci+a+b, kind 1>,
i=1 i=1

. ., (3.13)
(1+V)Y,,...,(1 +V)Yn)~CH<c1,...,cn;Zci +b, > ci+a+b, kind 1).

i=1 i=1

The Laplace transform of the multivariate confluent hypergeometric function kind 1
density (3.1) is given by

[oe] 0 n n n n
C(vl,...,vn;a,ﬁ)J‘ f exp <— Zs,-xi>l_[xfi111-"1 <(x;ﬁ; —in>ndxi, (3.14)
0 0 i=1 i=1 i=1 i=1

where Re(s;) >0, i =1,...,n. Now, rewriting 1 F; by applying (2.7) and integrating xi, ..., xp,
using (2.13), the above expression is evaluated as

T)T(B -1 v
(@T(p Z;;“”) E [ﬁ v i, —]. (3.15)
F(ﬁ)r([x - Zi=1vi) 1+s5 1+s,
The joint moments of Xj, ..., X, are given by
E(X{'---Xy') = C(vl,...,vn;a,ﬂ)j J [Tk <a;ﬂ;—zxi>ndxi
0 0 j= i= i=
! ! ! (3.16)

_ C, oo, vma, p) T T (Vi +17) E|xZhri ,
c(stmmed) Tzt P

where X ~CH(3,",vi, a, B, kind 1). Note that if X ~CH(v, a, §, kind 1), then from [9], one
gets

_T-»)I(v+hI(a-v-h)
EXY) = oyt ta =G —v=h) (3.17)
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where Re(h +v) >0, Re(h) < a — v, and Re(h) <  — v. Now, computing E[XZiri] using the
above result, substituting for C(vy, ..., v,; a, f) and C(3,v;; a, f) from (3.3) and simplifying
the resulting expression, we obtain

T(p- vl (a—- XL vi— 2 ) [T L (vi + 1)

E(X] - XIr) = ,
(X X0 = I F oo (a— ST (B - Svi — Sm)

(3.18)

where a > >, (vi+r;) and g > X1, (vi+r;). Substituting appropriately in the above expression
and using definitions of variance, covariance, and correlation coefficient, it is straightforward
to show that

vi(f-Zivi—1)

E(X)) = —— ST T
oy _ Vilvji+ DB-Zivi-1)(-ZiLvi-2)
E(G) = (a-Zrwi-1)(a-Zwi-2)
Var(X~) — vf(ﬁ_zzllvi_ )
Y (- S - 1) (e - Svi-2)
Joror (5 )30
i=1 i=1
o V(B Z” wi—1)(B- Z?:m ~2) (319)
E(X]Xk) = ( 1 1111 1)(0( " 1Vi _2) ’
Cov(X;, Xi) = vivk(B- X vi—1)(f-a)
5 Xe) =

(a-Srvi-1)(a- 3t vi-2)

Corr(Xj, Xx) = [(1 + p- Zrzlvi;j(zg (_a -t wi-1) >

A SUEICED YIRS AN I
v (f - a) ’

where j £k, j,k=1,...,n

4. Properties

In this section we derive marginal and conditional distributions, distribution of partial sums,
and several factorizations of the multivariate confluent hypergeometric function kind 1
distribution.

The following theorem shows that if the joint distribution of X, ..., X, is multivariate
confluent hypergeometric function kind 1, then the marginal distribution of any subset of
X1,..., X, is multivariate confluent hypergeometric function kind 1.

Theorem 4.1. Let (Xy,...,X,)~CH(vy,..., vy, B, kind 1). Then, for1 < s < n,

(Xl,...,Xs)~CH<v1,...,v5;a— Zvi,ﬂ— Zvi, kind 1>. (4.1)

i=s+1 i=s+1
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Proof. Replacing 1F;(a; f; =X i, xi) in (3.1) by its integral representation and integrating out
Xs+1,- - -, Xn, the marginal density of Xj, ..., X, is derived as

r( )H?=s+ r( i) > vi— ! a-S" oy —o— <
C(V1,...,vn;a,ﬂ)f(“Tﬁl_;;£[xi 1J0t Seavitl(] — )P 1exp(—ti_zlx,)dt, (4.2)

where x; >0, i =s+1,...,n. Now, evaluating the above integral using (2.4) and simplifying
the resulting expression, we get the desired result. O

Corollary 4.2. If (X1,...,X,)~CH(v1,..., vy a,p, kind 1), then for any subset of variables
(Xj,,...,Xj), it holds that

(le,...,in)~CH<v]-l,. v],a+Zv]k Zvl,ﬂ+2v]k ZV“ kind 1> (4.3)
k=1 k=1

where jy, ..., ji are distinct integers with 1 < j1,...,ji <n, 1 <i<n

Corollary 4.3. Let (Xi,...,Xn)~CH(vy,...,vy;a, B, kind 1). Then, for k = 1,...,n, X~
CH(vi, o — Z;‘(#):lvi,ﬁ - Z:‘(#)zlw, kind 1).

Using Theorem 4.1, the conditional density of (Xgi1,...,X,) given (Xj,...,X) is
obtained as

Cvi,..., v, B)
Cvy,... va= 3oy Virﬁ - 2itsn Vi)
“ [T s+1x 1F1(“ B; =X xi)
1F1(a = g vis p = Do vis — i %)

(4.4)

whereO0<x;, i=s+1,...,n.

Next, in Theorem 4.5, we give the joint distribution of partial sums of random variables
distributed jointly as multivariate confluent hypergeometric function kind 1. Since the
theorem requires familiarity with the Dirichlet type 1 distribution, we first give its definition
(see [13]).

Definition 4.4. The random variables Uj, ..., U, are said to have a Dirichlet type 1 distribution
with parameters vy,...,v,; V441, denoted by (Uy,...,U,) ~D1(vy, ..., vy vye), if their joint
pdfis given by

r(z;ﬁ.] . n Vpi1—1 n

i .

H"+il"1( )Huv‘ <1 - Z”i> , O<u,i=1,... ,n,Zui <1, (4.5)
Vi) =1 i=1 i=1

wherev; >0, i=1,...,n+1.

The Dirichlet type 1 distribution, which is a multivariate generalization of the beta type
1 distribution, has been considered by several authors and is well known in the scientific
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literature. By making the transformation V; = U;/(1 - >, j=1,...,n,in (45), the
Dirichlet type 2 density, which is a multivariate generalization of beta type 2 density, is
obtained as

n+l

T n+1v -0 Vi

l'i"Z*il 1)| | Vi <1+Zul> , v;>0,i=1,...,n (4.6)
1

We will write (Vi,...,V,) ~D2(v1,...,Vy;Vue1) if the joint density of Vi,...,V, is given by
(4.6).
Let ny, ..., n, be nonnegative integers such that Zleni = n and define

v(i):'z v, ny=0, n;‘:Zni, i=1,...,¢. (4.7)

Theorem 4.5. Let (X3, .. X )~CH(vy,..., v, B, kind 1). Define Z; = X;/Xq), j = ni | +
1,...,n} —1andX(1)—Z Xj, i=1,...,€. Then,

j=n;_ +1
(i) Xy, .-, X)) and (antl.'.], . ..,Zn;f_l), i=1,...,¢, are independently distributed;
(11) (Zn;r_]+1, ey Zni‘—l) ~D1(Vn1’f_]+1, e ,Vn:f_l;vnlf), i= 1, e ,Z;

(iii) (X(l), . ,X(g)) NCH(V(D, ooy V(g),‘ a, ﬂ, kind 1).

Proof. Substituting x¢;) = 3

jont +1%j and z; = xj/x4), j=n,+1,...,nf-1,i=1,...,€ with
i-1

i-1
the Jacobian

](xlr <o Xn Zlye s Zn-1,X(1) s - - - /Zn271+1/ <o Zp-1, x(f))

= ](xnig iy X = Zpt 4,y Znio1, X(0))
; i-1 i i-1 i

= Hx(l) :

(4.8)

in the density of (Xi,...,X,) given by (3.1), we get the joint density of Z, .1,
L1, X, i=1,..., € as

¢
)1
Cy,..., v, ﬂ)]_[xm) ! 1<a;ﬁ;—zx<i)>
i=1
n} -1 Vil (4.9)
x H[ z <1 - > z]->
j=ni_ +1 j=ni +1

|

wherex >0, i=1,...,¢, z; >0, j=n +1,...,n}-1, Z?i;;_l+lz]~ <1,i=1,...,¢.From the
factorization in (4.9), it is easy to see that (X(1),..., X(¢)) and (Zn;‘71+1,...,zn:f_1), i=1,...,¢,
are independently distributed. Further (Xq),..., X)) ~CH(va),...,v@e);a,p, kind 1) and
(anf_l+1, . ,Zn;_l) NDl(vn:f_l+1,. .. ,vn;_1;vn;), i= 1, .. .,E. O
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Corollary 4.6. Let (Xi,...,X,)~CH(v1,..., vy a, B, kind 1). Define Z; = X;/Z, i=1,...,n-1,
and Z = Z;’lej. Then (Z, ..., 2Z,-1) and Z are independent, (Z, ..., Zy—1) ~D1(v1,...,Vp_1; V)
and Z~CH(X v, a, B, kind 1).

Corollary 4.7. If (Xq,...,Xn) ~CH(v1,..., vy, B, kind 1), then Z;‘le]- and X7 Xi/ > Xi
are independent. Further

g{ﬁ ~B1 <Zvl, > vl> s<n (4.10)

i=s+1

Theorem 4.8. Let (Xy,...,X,) ~CH(vy,..., vy a, B, kind 1). Define W; = X]-/Xn;, j=En,+
L. —land X = 3" . X;, i=1,...,0 Then,

jEn 1

(i) Xy, .-, X(e)) and (Wnllﬂ, ... ,W,,;_l), i=1,...,¢, are independently distributed;
(11) ( [OREIVERE Wn;—l)NDZ(vnll#—l/'*-/vn:-‘—l;vn:)r i= 1I/€/
(iii) (X(l), . ,X(g)) ~CH(V(1), ey V(g),‘ a, ﬁ, kind 1).
Corollary 4.9. Let (Xi,...,Xn)~CH(vy,..., vy, B, kind 1). Define W; = Xi/X,, i =

1,....,.n-1,and Z = Z?=1Xj- Then (Wi, ...,Wy_1) and Z are independent, (W1, ..., Wp_1) ~
D2(vy, ..., V1, vy) and Z~CH(3 v, a, B, kind 1).

Corollary 4.10. If (Xy,...,X,)~CH(vy,...,v;a,p, kind 1), then 37 ,Xi/> " X and
Z’]?=1X,~ are independent. Further

i=s+1

% ~B2 <Zv,, > vl> s <. (4.11)

In the following six theorems, we give several factorizations of the multivariate
confluent hypergeometric function kind 1 density.

Theorem 4.11. Let (X,...,X,)~CH(»,..., vy a,p, kind 1). Define Y, = Z;’le]- and Y;
Z§:1X;'/Z§'111Xjr i=1,...,n-1 Then Yi,...,Y, are independent, Y,wBl(Z;:lv]-,viH), i
1,...,n=1,and Y,,~CH(X L v, a, pB, kind 1).

Proof. Substituting x1 = y,T15 i, %2 = vu(1 = y)I 15 Yir -+ Xn1 = Yn(1 = Yn2)yn1 and
Xn = Yn(1 = Yy-1) with the Jacobian J(x1,...,x, — y1,...,Yn) = [ [~ zyl Lin (3.1), we get the
desired result. 0

Theorem 4.12. Let (Xy,...,X,) ~CH(v1,..., vy, B, kind 1). Define Z,, = Z;’:lX]- and Z;
Xi+1/2§-:1X-, i = 1,....,n -1 Then Z,...,Z, are independent, Zi~BZ(vi+1,Z§-:1vj), i =
1,...,n-1,and Z, ~CH(Z}‘=1vj,a,ﬂ, kind 1).
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Proof. The desired result follows from Theorem 4.11 by noting that (1 - Y;)/Y; ~B2(v;1,
Z}:lv]'). O

Theorem 4.13. Let (Xy,...,Xn) ~CH(v1,..., vy a, B, kind 1). Define W, = Z;‘le]- and W; =
Z;:1Xj/xi+1, i =1,...,n—1 Then Wy,...,W, are independent, Wi~B2(Z§-:1vj,vi+1), i =
1,...,n=1,and W, ~CH(Z" v, a, B, kind 1).

Proof. The result follows from Theorem 4.12 by noting that 1/Z; ~ B2 (Zj.:lvj, Vit1). ]

Theorem 4.14. Let (X1,...,X,)~CH(®vy,..., v a,p, kind 1). Define Y, = Z;‘:lXj and Y; =
Xi/Z?:iX,-, i=1,...,n—-1.ThenYs,..., Y, are independent, Y; ~B1(v;, Z?:mvj)/ i=1,...,n-1,
and Y, ~CH(Z " v, a, B, kind 1).

Proof. Substituting x1 = y,y1, X2 = Yuy2(1-y1), ..., Xp-1 = YnYn-1(1=11) - - - (1=Yu—2), and x,, =
n—-i-1 .

Yn(1=y1) - (1 = yu_1) with the Jacobian J(x1,..., X, = Y1,...,Yn) = y;"ln?z"lz(l - Vi) in
(3.1), we get the desired result. O

Theorem 4.15. Let (Xy,...,X,) ~CH(vy,...,vy; a, B, kind 1). Define Z,, = 27:1Xj and Z; =
Xi/z;’:i+1X~, i=1,...,n-1.Then Z,,...,Z, are independent, Z; ~ B2(v;, Z;’:Mvj), i=1,...,n-
1, and Z,, ~CH(X v, a, B, kind 1).

Proof. The result follows from Theorem 4.14 by noting that Y;/ (1 - Y;) ~B2(»;, Z;’:i avj). O

Theorem 4.16. Let (Xy,...,X,) ~CH(vy,..., vy a, B, kind 1). Define W, = Z?:lX,- and W; =
Z’;:I-HXj/Xi, i =1,...,n -1 Then Wy,...,W, are independent, Wi~BZ(Z;7:i+1vj,vi), i =
1,...,n=1,and W, ~CH(Z " v, a, B, kind 1).

Proof. The result follows from Theorem 4.15 by noting that 1/W; ~B2(X7_;,,vj, i) O
Now, we consider an approximation of the multivariate confluent hypergeometric

function kind 1 distribution when g increases.

Theorem 4.17. If (Xy,...,X,) ~CH(vy,..., vy a, B, kind 1), then

(Xl &> AWy, W, (4.12)

7,..., ﬂ

where (Wi, ..., Wy) ~D2(vy,..., v a— >0 v;), and “ A denotes the convergence in distribution.

Proof. Substituting x; = pu;, i = 1,...,n with the Jacobian J(x1,...,x, — uj,...,u,) = f"in
(3.1), the joint p.d.f. of Uj, ..., U, is given by

) T \T(B- Sm) s
gl ) = TN <1;-1[F(vi)> T()p i 1Fy <zx,ﬂ, ﬂzlu> (4.13)
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Now, using the results

ﬂhm 1F1 <(X,’ ﬁ,’ —ﬁiul) = 1F0 <[X; —zn:ui> = <1 + zn:ui> ,
— o P i=1 i=1

(4.14)
r(p->ivi
p— o r(ﬁ)ﬂ_Zi:]vl
it is easy to see that
ﬂlim F(uy,...,u,) = G(uy, ..., uy), (4.15)

where F(uj,...,u,) is the joint cumulative distribution function (cdf) of (X, ..., X,)/p and
G(ui,...,uy,) is the joint cdf of Dirichlet type 2 variables with parameters (vi,..., v, a —

Vi) O
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