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1. Introduction

In 1974, Lim [1] developed a result concerning the existence of fixed points for multivalued
nonexpansive self-mappings in uniformly convex Banach spaces. This result was extended to
nonself-mappings satisfying the inwardness condition independently by Downing and Kirk
[2] and Reich [3]. This result was extended to weak inward mappings independently by Lim
[4] and Xu [5]. Recently, Dhompongsa et al. [6] presented an analog of Lim-Xu’s result in
CAT(0) spaces. In this note, we extend the result to uniformly convex metric spaces which
improve results of both Lim-Xu and Dhompongsa et al. In addition, we also give a new proof
of a result of Lim [7] by using Caristi’s theorem [8]. Finally, we give some basic properties of
fixed point sets for quasi-nonexpansive mappings for these spaces.

2. Preliminaries

A concept of convexity in metric spaces was introduced by Takahashi [9].

Definition 2.1. Let (X, d) be a metric space and I = [0, 1]. A mappingW : X ×X × I → X is said
to be a convex structure on X if for each (x, y, λ) ∈ X ×X × I and z ∈ X,
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d
(
z,W(x, y, λ)

) ≤ λd(z, x) + (1 − λ)d(z, y). (2.1)

A metric space (X, d) together with a convex structureW is called a convex metric space which
will be denoted by (X, d,W).

Definition 2.2. A convex metric space (X, d,W) is said to be uniformly convex [10] if for any
ε > 0, there exists δ = δ(ε) > 0 such that for all r > 0 and x, y, z ∈ X with d(z, x) ≤ r, d(z, y) ≤ r
and d(x, y) ≥ rε,

d

(
z,W

(
x, y,

1
2

))
≤ r(1 − δ). (2.2)

Obviously, uniformly convex Banach spaces are uniformly convex metric spaces. By using the
(CN) inequality [11], it is easy to see that CAT(0) spaces are also uniformly convex.

For x, y ∈ X, C ⊂ X, and λ ∈ I, we denoteW(x, y, λ) := λx ⊕ (1 − λ)y, [x, y] := {λx ⊕ (1 −
λ)y : λ ∈ I}, (x, y] := [x, y] \ {x}, and λx ⊕ (1 − λ)C := {λx ⊕ (1 − λ)z : z ∈ C}. So we can define
the inward set IC(x) of x as follows:

IC(x) := {x} ∪ {
z : (x, z] ∩ C /= ∅

}
. (2.3)

Let C be a nonempty subset of a metric space X. Then C is called convex if for
x, y ∈ C, [x, y] ⊂ C. We will denote by F(C) the family of nonempty closed subsets of C,
byK(C) the family of nonempty compact subsets of C, and byKC(C) the family of nonempty
compact convex subsets of C. LetH(·, ·) be the Hausdorff distance on F(X). That is,

H(A,B) = max
{
sup
a∈A

dist(a, B), sup
b∈B

dist(b,A)
}
, A, B ∈ F(X). (2.4)

Definition 2.3. A multivalued mapping T : C → F(X) is said to be inward on C if for some
p ∈ C,

λp ⊕ (1 − λ)Tx ⊂ IC(x) ∀x ∈ C, ∀λ ∈ [0, 1], (2.5)

and weakly inward on C if for some p ∈ C,

λp ⊕ (1 − λ)Tx ⊂ IC(x) ∀x ∈ C, ∀λ ∈ [0, 1], (2.6)

where A denotes the closure of a subset A of X. In a Banach space setting, if C is convex, then
so is IC(x). Therefore, the conditions above can be replaced by Tx ⊂ IC(x) and Tx ⊂ IC(x),
respectively.

Definition 2.4. A multivalued mapping T : C → F(X) satisfying

H(Tx, Ty) ≤ kd(x, y), x, y ∈ C, (2.7)

is called a contraction if k ∈ [0, 1) and nonexpansive if k = 1. A point x is a fixed point of T if
x ∈ Tx.
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Given a metric space X, one way to describe a metric space ultrapower X̃ of X is to
first embed X as a closed subset of a Banach space E (see, e.g., [12, page 129]). Let Ẽ denote
a Banach space ultrapower of E relative to some nontrivial ultrafilter U (see, e.g., [13]). Then
take

X̃ :=
{
x̃ =

[{
xn

}] ∈ Ẽ : xn ∈ X ∀n}. (2.8)

One can then let d̃ denote the metric on X̃ inherited from the ultrapower norm ‖·‖U in Ẽ. IfX is
complete, then so is X̃ since X̃ is a closed subset of the Banach space Ẽ. In particular, the metric
d̃ on X̃ is given by

d̃(x̃, ỹ) = lim
U

∥∥xn − yn
∥∥ = lim

U
d
(
xn, yn

)
, (2.9)

with {un} ∈ [{xn}] if and only if lim U‖xn − un‖ = 0.
If (X, d,W) is a convex metric space, we consider a metric space ultrapower (X̃, d̃) of

(X, d) and define a function W̃ : X̃ × X̃ × I → X̃ by

W̃(x̃, ỹ, λ) =
[
W

(
xn, yn, λ

)]
. (2.10)

In order to show that the function W̃ is well defined, we need the following condition. For each
p, x, y ∈ X and λ ∈ [0, 1],

d
(
(1 − λ)p ⊕ λx, (1 − λ)p ⊕ λy) ≤ λd(x, y), (2.11)

which is equivalent to

d
(
(1 − λ)p ⊕ λx, (1 − λ)q ⊕ λy) ≤ λd(x, y) + (1 − λ)d(p, q), (2.12)

for all p, q, x, y ∈ X and λ ∈ [0, 1].
By using condition (2.12), it is easy to see that W̃ is a convex structure on X̃. This implies

that (X̃, d̃, W̃) is a convex metric space.

Example 2.5. Every Banach space satisfies condition (2.11).

Example 2.6. Condition (2.11) is satisfied for spaces of hyperbolic type (for more details of these
spaces see [14]). This is also true for CAT(0) spaces and R-trees.

Example 2.7. Let H be a hyperconvex metric space. Then there exists a nonexpansive retract
R : l∞(H) → H (see, e.g., [15] for more on this). For any x, y ∈ H and t ∈ [0, 1],we let

tx ⊕ (1 − t)y = R
(
tx + (1 − t)y). (2.13)

Since l∞(H) is a Banach space,H also satisfies condition (2.11).

Let U be a nontrivial ultrafilter on the natural number N. If (X, d,W) is a uni-
formly convex metric space satisfying condition (2.11), then the metric space ultrapower
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(X̃, d̃, W̃) relative to U is also uniformly convex. Indeed, let any ε > 0 and let δ be a posi-
tive number corresponding to the uniform convexity of X. Let r > 0 and x̃, ỹ, z̃ ∈ X̃ be such
that

d̃(z̃, x̃) ≤ r, d̃(z̃, ỹ) ≤ r, d̃(x̃, ỹ) ≥ rε. (2.14)

Then there are some representatives (xn) and (yn) of x̃ and ỹ and a set I ∈ U such that

d
(
zn, xn

) ≤ r, d
(
zn, yn

) ≤ r, d
(
xn, yn

) ≥ rε ∀n ∈ I. (2.15)

For such n, d(zn,W(xn, yn, 1/2)) ≤ r(1 − δ). This implies d̃(z̃, W̃(x̃, ỹ, 1/2)) ≤ r(1 − δ).
Recall that a subset C of a metric space X is said to be (uniquely) proximinal if each

point x ∈ X has a (unique) nearest point in C. A convex metric space X is said to have
property (C) if every decreasing sequence of nonempty bounded closed convex subsets of X
has nonempty intersection. In [10], Shimizu and Takahashi proved that property (C) holds in
complete uniformly convex metric spaces. This implies that every nonempty closed convex
subset of a complete uniformly convex metric space is uniquely proximinal. Indeed, let C be a
nonempty closed convex subset of a complete uniformly convex metric space X, and x0 ∈ X.

LetN = {x ∈ C : d(x0, x) = dist(x0, C)}. For each n,we define

Cn :=
{
y ∈ C : d

(
x0, y

) ≤ dist
(
x0, C

)
+
1
n

}
. (2.16)

Then (Cn) is a decreasing sequence of nonempty bounded closed convex subsets of C. More-
over,

N =
∞⋂

n=1

Cn,

which is nonempty by the above observation. The uniqueness follows from the uniform con-
vexity of X.

3. Main results

We first establish the following lemma.

Lemma 3.1. Let X be a complete uniformly convex metric space satisfying condition (2.11), C a
nonempty closed convex subset of X, x ∈ X, and p(x) the unique nearest point of x in C. Then

d
(
x, p(x)

)
< d(x, y) ∀y ∈ IC

(
p(x)

) \ {p(x)}. (3.1)

Proof. Let y ∈ IC(p(x)) \ {p(x)}. Then there is a sequence (yn) in IC(p(x)) and yn → y. Choose
n0 ∈ N such that (p(x), yn] ∩ C /= ∅ for all n ≥ n0. For such n, let zn ∈ (p(x), yn] ∩ C and write
zn = (1 − αn)p(x) ⊕ αnyn, αn ∈ (0, 1]. Then

d
(
x, p(x)

) ≤ d(x, zn
) ≤ (

1 − αn
)
d
(
x, p(x)

)
+ αnd

(
x, yn

)
. (3.2)

This implies

d
(
x, p(x)

) ≤ d(x, y). (3.3)

If d(x, p(x)) = d(x, y), we let u = (1/2)p(x) ⊕ (1/2)y. By the uniform convexity of X, we have
d(x, u) < d(x, p(x)). On the other hand, for each n ≥ n0, let un = (1/2)p(x) ⊕ (1/2)yn.We will
show that un ∈ IC(p(x)).
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Case 1. αn = 1/2.We are done.
Case 2. 1/2 < αn. Let vn = (1 − 1/2αn)p(x) ⊕ (1/2αn)zn. This implies

d
(
p(x), vn

)
=

1
2αn

d
(
p(x), zn

)
=
1
2
d
(
p(x), yn

)
= d

(
p(x), un

)
, (3.4)

d
(
vn, yn

) ≤ d(vn, zn
)
+ d

(
zn, yn

)
=
(
1 − 1

2αn

)
d
(
p(x), zn

)
+
(
1 − αn

)
d
(
p(x), yn

)

=
(
αn − 1

2

)
d
(
p(x), yn

)
+
(
1 − αn

)
d
(
p(x), yn

)
=
1
2
d
(
p(x), yn

)
= d

(
un, yn

)
.

(3.5)

Therefore

d
(
vn, yn

) ≤ d(un, yn
)
. (3.6)

We claim that un = vn. If not, let wn = (1/2)un ⊕ (1/2)vn.
From (3.4), (3.6), and the uniform convexity of X, we have

d
(
p(x), wn

)
< d

(
p(x), un

)
,

d
(
wn, yn

)
< d

(
un, yn

)
.

(3.7)

This implies

d
(
p(x), yn

) ≤ d(p(x), wn

)
+ d

(
wn, yn

)
< d

(
p(x), un

)
+ d

(
un, yn

)
= d

(
p(x), yn

)
, (3.8)

which is a contradiction. Hence un = vn ∈ [p(x), zn] and so un ∈ IC(p(x)) by the convexity of C.
Case 3. αn < 1/2. let vn = (1 − 2αn)p(x) ⊕ 2αnun. By the same arguments in the proof of Case 2,
we can show that zn ∈ (p(x), un]. This means un ∈ IC(p(x)).

By condition (2.11), lim nun = u, which implies u ∈ IE(p(x)) \ {p(x)}. By the same ar-
guments in the first part of the proof, d(x, p(x)) ≤ d(x, u) which is a contradiction. Hence
d(x, p(x)) < d(x, y) as desired.

From [6, Lemma 3.4], we observe that the space is not necessarity assumed to be a
CAT(0) space since the proof is only involved with condition (2.11) which is weaker than the
(CN) inequality (see [11, Lemma 3]). Therefore, we can obtain the following lemma.

Lemma 3.2. Let X be a complete convex metric space satisfying condition (2.11), C a nonempty closed
subset of X, and T : C → F(X) a contraction mapping satisfying, for all x ∈ C,

Tx ⊂ IC(x). (3.9)

Then T has a fixed point.

This lemma was first proved in Banach spaces by Lim [7], using transfinite induction,
while we apply directly Caristi’s theorem. For completeness, we include the details.
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Proof of Lemma 3.2. Let 0 ≤ k < 1 be the contraction constant of T and let ε > 0 be such that
ε + (k + 2ε)(1 + ε) < 1. Let M = {(x, z) : z ∈ Tx, x ∈ C} and define a metric ρ on M by
ρ((x, z), (u, v)) = max {d(x, u), d(z, v)}. It is easy to see that (M,ρ) is a complete metric space.

Now define ψ :M → [0,∞) by ψ(x, z) = d(x, z)/ε. Then ψ is continuous onM. Suppose
that T has no fixed points, that is, dist(x, Tx) > 0 for all x ∈ C. Let (x, z) ∈ M. By (3.9), we
can find z′ ∈ IC(x) satisfying d(z, z′) < ε dist(x, Tx). Now choose u ∈ (x, z′] ∩ C and write
u = (1 − δ)x ⊕ δz′ for some 0 < δ ≤ 1. For such δ, we have

δε + (1 − δ) + (k + 2ε)δ(1 + ε) < 1. (3.10)

Since d(x, u) > 0, we can find v ∈ Tu satisfying

d(z, v) ≤ H(Tx, Tu) + εd(x, u) ≤ (k + ε)d(x, u). (3.11)

Now we define a mapping g : M → M by g(x, z) = (u, v) for all (x, z) ∈ M. We claim
that g satisfies

ρ
(
(x, z), g(x, z)

)
< ψ(x, z) − ψ(g(x, z)) ∀(x, z) ∈M. (3.12)

Caristi’s theorem [8] then implies that g has a fixed point, which contradicts to the strict in-
equality (3.12) and the proof is complete. So it remains to prove (3.12). In fact, it is enough to
show that

ρ
(
(x, z), (u, v)

)
<
1
ε

(
d(x, z) − d(u, v)). (3.13)

But d(z, v) ≤ d(x, u), it only needs to prove that d(x, u) < (1/ε)
(
d(x, z) − d(u, v)).

Now,

d(x, u) = δd(x, z′) ≤ δ(d(x, z) + ε dist(x, Tx)) ≤ δ(d(x, z) + εd(x, z)) ≤ δ(1 + ε)d(x, z).
(3.14)

Therefore

d(x, u) ≤ δ(1 + ε)d(x, z). (3.15)

It follows that

d(z, v) ≤ (k + ε)d(x, u) ≤ (k + ε)δ(1 + ε)d(x, z). (3.16)

We now let y = (1 − δ)x ⊕ δz, then by the condition (2.11),

d(u, v) ≤ d(u, y) + d(y, z) + d(z, v) ≤ δd(z, z′) + (1 − δ)d(x, z) + (k + ε)δ(1 + ε)d(x, z)

≤ δεd(x, z) + (
(1 − δ) + (k + ε)δ(1 + ε)

)
d(x, z).

(3.17)

Thus

d(u, v) ≤ (
δε + (1 − δ) + (k + ε)δ(1 + ε)

)
d(x, z). (3.18)

Inequalities (3.15), (3.18), and (3.10) imply that

εd(x, u) + d(u, v) ≤ εδ(1 + ε)d(x, z) + (
δε + (1 − δ) + (k + ε)δ(1 + ε)

)
d(x, z)

=
(
δε + (1 − δ) + (k + 2ε)δ(1 + ε)

)
d(x, z) < d(x, z).

(3.19)

Therefore d(x, u) < (1/ε)(d(x, z) − d(u, v)) as desired.
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By Lemmas 3.1 and 3.2 with the same arguments in the proof of Theorem 3.3 of [6], we
can obtain the following theorem which extends [4, Theorem 8] by Lim and [6, Theorem 3.3]
by Dhompongsa et al.

Theorem 3.3. Let X be a complete uniformly convex metric space satisfying condition (2.11), C a
nonempty bounded closed convex subset of X, and T : C → K(X) a nonexpansive weakly inward
mapping. Then T has a fixed point.

As an immediate consequence of Theorem 3.3, we obtain the following corollary.

Corollary 3.4. Let X be a complete uniformly convex metric space satisfying condition (2.11), C a
nonempty bounded closed convex subset of X, and T : C → K(C) a nonexpansive mapping. Then T
has a fixed point.

In fact, this corollary is a special case of [10, Theorem 2] in which condition (2.11)was not
assumed. An interesting question is whether condition (2.11) in Theorem 3.3 can be dropped.

Let C be a nonempty subset of a metric space X. Recall that a single-valued mapping
t : C → C and a multivalued mapping T : C → 2C \ ∅ are said to be commuting if ty ∈ Ttx
for all y ∈ Tx and x ∈ C. If t : C → C is nonexpansive with C being bounded closed convex
and X complete uniformly convex satisfying condition (2.11), then Fix(t) is nonempty by the
above corollary. Moreover, by a standard argument, we can show that it is also closed and
convex. So we can obtain a common fixed point theorem in uniformly convex metric spaces as
[6, Theorem 4.1] (see also [16, Theorem 4.2] for a related result in Banach spaces).

Theorem 3.5. LetX be a complete uniformly convex metric space satisfying condition (2.11), letC be a
nonempty bounded closed convex subset ofX, and let t : C → C and T : C → KC(C) be nonexpansive.
Assume that for some p ∈ Fix(t),

αp ⊕ (1 − α)Tx is convex ∀x ∈ C, ∀α ∈ [0, 1]. (3.20)

If t and T are commuting, then there exists a point z ∈ C such that tz = z ∈ Tz.

4. Fixed point sets of quasi-nonexpansive mappings

Let X be a metric space. Recall that a mapping f : X → X is said to be quasi-nonexpansive if
d(f(x), p) ≤ d(x, p) for all x ∈ X and p ∈ Fix(f). In this case, we will assume that Fix(f) /= ∅.
In [17], Chaoha and Phon-on showed that if X is a CAT(0) space, then Fix(f) is closed convex.
Furthermore, they gave an explicit construction of a continuous function defined on X whose
fixed point set is any prescribed closed subset of X. In this section, we extend these results to
uniformly convex metric spaces.

We begin by proving the following lemma.

Lemma 4.1. Let X be a uniformly convex metric space, and let x, y, z ∈ X for which

d(x, z) + d(z, y) = d(x, y). (4.1)

Then z ∈ [x, y].
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Proof. Let u ∈ [x, y] be such that d(x, u) = d(x, z). Then d(x, y) = d(x, u) + d(u, y) and also
d(z, y) = d(u, y) by (4.1). We will show that z = u. Suppose not, we let v = (1/2)z ⊕ (1/2)u
and r = d(x, u) = d(x, z). Since d(z, u) > 0, choose ε > 0 so that d(z, u) > rε. By the uniform
convexity of X, there exists δ > 0 such that

d(x, v) ≤ r(1 − δ) < r = d(x, z). (4.2)

By using the same arguments, we can show that d(y, v) < d(y, z). Therefore

d(x, y) ≤ d(x, v) + d(y, v) < d(x, z) + d(y, z) = d(x, y), (4.3)

which is a contradiction.

By using the above lemmawith the proof of Theorem 1.3 of [17], we obtain the following
result.

Theorem 4.2. Let X be a convex subset of a uniformly convex metric space and f : X → X a quasi-
nonexpansive mapping whose fixed point set is nonempty. Then Fix(f) is closed convex.

In [17], the authors constructed a continuous function defined on a CAT(0) space X
whose fixed point set is any prescribed closed subset of X by using the following two implica-
tions of the (CN) inequality:

d
(
(1 − t)x ⊕ ty, (1 − s)x ⊕ sy) = |t − s|d(x, y) ∀x, y ∈ X, t, s ∈ [0, 1], (4.4)

d
(
(1 − t)x ⊕ ty, (1 − t)x ⊕ tz) ≤ d(y, z) ∀x, y, z ∈ X, t ∈ [0, 1]. (4.5)

In fact, condition (4.4) holds in uniformly convex metric spaces as the following lemma
shows.

Lemma 4.3. Condition (4.4) holds in uniformly convex metric spaces.

Proof. We first note that the conclusion holds if s = 0 or t = 0. We now let X be a uniformly
convex metric space, x, y ∈ X, and t, s ∈ (0, 1]. Let u = (1 − t)x ⊕ ty and z = (1 − s)x ⊕ sy.
Without loss of generality, we can assume that t < s. Let v = (1 − t/s)x ⊕ (t/s)z, then

d(x, v) =
t

s
d(x, z) = td(x, y),

d(v, y) ≤
(
1 − t

s

)
d(x, y) +

t

s
d(z, y) = (1 − t)d(x, y).

(4.6)

If u /= v, we let w = (1/2)u ⊕ (1/2)v. Then by the uniform convexity of X, we can show that
d(x,w) < d(x, u) and d(y,w) < d(y, u). This implies

d(x, y) < d(x, u) + d(u, y) = d(x, y), (4.7)

which is a contradiction, hence u = v. Therefore

d(z, u) = d(z, v) =
(
1 − t

s

)
d(x, z) = |s − t|d(x, y). (4.8)

It is unclear that condition (4.5) holds for uniformly convex metric spaces. However,
the following theorem is a generalization of [17, Theorem 2.1], we omit the proof because it is
similar to the one given in [17].
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Theorem 4.4. Let A be a nonempty subset of a uniformly convex metric space X satisfying condition
(4.5). Then there exists a continuous function f : X → X such that Fix(f) = A.
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