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1. Introduction

Let {an} and {bn} be two sequences of complex numbers. If λ = 0, 1, then
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, (1.1)

∣
∣
∣
∣
∣
∣
∣
∣

∞∑

m=1−λ

∞∑

n=1−λ
m/=n

ambn
m − n

∣
∣
∣
∣
∣
∣
∣
∣

≤ π
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)1/2( ∞∑

n=1−λ
|bn|2
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, (1.2)

where the constant factor π is the best possible. It is all known that the inequalities (1.1) and
(1.2) are called the Hilbert theorem for double series. The two forms (1.1) and (1.2) on the
Hilbert inequality were combined into one similar form in some papers (e.g., [1, 2], etc.),
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that is,
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≤ π2
∞∑

n=1−λ
|an|2

∞∑

n=1−λ
|bn|2. (1.3)

Recently, the various extensions on (1.1) appeared in some papers (e.g., [3, 4], etc.).They
focalize on changing the denominator of the function of the left-hand side of (1.1). Such as the
denominator (m + n + λ) is replaced by (αm + βn)

μ in [3], and the denominator (m + n + λ)
is replaced by (mu(m) + nv(n))μ in [4]. Some new results in these papers were yielded.
The inequality (1.3) is obviously a significant refinement of (1.1) and (1.2). However, both
extensions and refinements on (1.2) and (1.3) do not commonly appear in previous papers. The
main purpose of the present paper is to establish both an extension and a significant refinement
on (1.3). Explicitly, let u (x) > 0x ∈ [ 0, + ∞ ) be a real function and let limx→∞u(x) = +∞. If the
denominator (m+n+λ) of the first term of the left-hand side of (1.3) is replaced by u(m)+u(n),
and the denominator (m − n) of the second term of the left-hand side of (1.3) is replaced by
u(m) − u(n), then a new inequality established is significant in theory and applications; and
as applications, we will give both extensions and refinements on Fejer-Riesz’s inequality and
Hardy’s inequality. For convenience, we introduce some notations and functions as follows:

V (a, b) =
∞∑

m=0

∞∑

n=0
u(m)/=v(n)

ambn
u(m) − u(n)

,

Uk(a, b) =
∞∑

m=0

∞∑

n=0

ambn

(u(m) + u(n))k
, k = 1, 2,

‖x‖2 =
∞∑

n=0

|xn|2,

Tk(x) =
∞∑

n=0

|xn|
uk(n)

, k = 1, 2,

(f, g) =
∫2π

0
f(t)g(t)dt,

‖α‖2 =
∫2π

0
|α|2dt, where α = f, g, h.

(1.4)

In particular, when b = a, the notationsUk(a, a) and V (a, a) are denoted, respectively, byUk(a)
and V (a). Throughout this paper, we will frequently use these notations, and we stipulate that
Z denotes integer set and that u(n) = Zn + λ/2, where Zn ∈ Z, n ∈ N0, λ is an integer or
0 < λ < 1.

2. Lemmas

In order to prove our assertions, we need the following lemmas.
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Lemma 2.1. If both
∑∞

n=0an and
∑∞

n=0bn are absolute convergent, then

(i)
∑∞

m=0
∑∞

n=0ambn is absolute convergent,

(ii) ‖a‖2 and ‖b‖2 are convergent.

The proof of it has been given in the paper [2]. Hence, it is omitted here.

Lemma 2.2. Let f, g, h ∈ L2[0, 2π], and let h be a variable unit-vector. Then,

∣
∣(f, g)

∣
∣
2 ≤ ‖f‖2‖g‖2

(

1 −
( | (f, h) |

‖f‖ − | (g, h) |
‖g‖

)2)

. (2.1)

In particular, when h is orthogonal to f , we have

∣
∣(f, g)

∣
∣
2 ≤ ‖f‖2‖g‖2

(

1 −
( | (g, h) |

‖g‖
)2)

; (2.2)

and the equality in (2.2) holds if and only if f, g and h are linearly dependent.

The proof of these results has been given in [5, 6].
Define a function by

r(x) = πU1(x) sin 2λπ −U2(x)sin2λπ. (2.3)

Lemma 2.3. Let {an} and {bn} be two sequences of complex numbers. If λ is an integer or 1/2 ≤ λ < 1,
then

r(a)r(b) ≥ 0. (2.4)

Proof. When λ is an integer, it is clear that r(a)r(b) = 0. So we consider only the case for 1/2 ≤
λ < 1. It is easy to deduce that

U1(x) =
∫1

0

∣
∣
∣
∣

∞∑

m=0

xmt
u(m)−1/2

∣
∣
∣
∣

2

dt > 0,

U2(x) =
∫1

0

ds

s

∫s

0

∣
∣
∣
∣

∞∑

n=0

xnt
u(n)−1/2

∣
∣
∣
∣

2

dt > 0.

(2.5)

When 1/2≤ λ< 1, it follows from (2.3) that r(x)< 0 for any x∈C. Hence, we have r(a)r(b)>0.

Lemma 2.4. Let f(z) =
∑∞

n=0anz
u(n)−1/2. If f(z) is analytic in the unit-disc |z| < 1, then

∣
∣
∣
∣

1
2π

∫π

−π
t|f(−eit)|2dt

∣
∣
∣
∣
= |V (a) |. (2.6)
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Proof.
∣
∣
∣
∣

∫π

−π
t
∣
∣f(−eit)∣∣2dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫π

−π
t f
( − eit

)

f(−eit)dt
∣
∣
∣
∣

=
∣
∣
∣
∣

∫π

−π
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∞∑
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)u(n)−1/2
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⎠
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∣
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∣
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= 2π
∣
∣V (a)

∣
∣.

(2.7)

Thereby, the relation (2.6) holds.

3. Theorems and their corollaries

In order to prove our assertions, we need also to introduce the following functions:

s1(x) =

√
2| T1(x) cosλπ − (1/2π)T2(x) sinλπ |

(π2‖x‖2 − r(x))1/2
,

s2(x) =

√
2| T1(x) sinλπ − (1/π)T2(x) sin2(λπ/2)|

(π2‖x‖2 + r(x))1/2
.

(3.1)

Theorem 3.1. Let r(x) be a function defined by (2.3), let {an} and {bn} be two nonzero sequences of
complex numbers, and let both

∑∞
n=0an and

∑∞
n=0bn be absolute convergent. Then,

(i) if λ is an integer, then

∣
∣U1(a, b)

∣
∣
2 +
∣
∣V (a, b)

∣
∣
2 ≤ (π2‖a‖2‖b‖2)(1 − R2), (3.2)

where

R2 =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

1
π2

{(
T1(a)
‖a‖ − T2(b)

π‖b‖
)2

+
(
T1(b)
‖b‖ − T2(a)

π‖a‖
)2}

ifλ is odd,

1
π2

((
T1(a)
‖a‖

)2

+
(
T1(b)
‖b‖

)2)

ifλ is even;

(3.3)

(ii) if 0 < λ < 1, then
∣
∣
∣
∣
U1(a, b) cos 2λπ − 1

2π
U2(a, b) sin 2λπ

∣
∣
∣
∣

2

+
∣
∣V (a, b)

∣
∣
2 ≤
{

π2‖a‖2‖b‖2 − 1
π2

r(a)r(b)
}
(

1 − R2),

(3.4)
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where R2 = min{(s1(a) − s2(b))
2, (s1(b) − s2(a))

2}, si(x) (i = 1, 2) is defined by (3.1). In
particular, when 1/2 ≤ λ < 1, we have r(a)r(b) > 0.

Proof. Define two functions by

f(a, t) =
∞∑

m=0

am

√
t sin(u(m))t,

g(b, t) =
∞∑

n=0

bn
√
t cos(u(n))t, t ∈ [0, 2π].

(3.5)

Since both
∑∞

n=0an and
∑∞

n=0bn are absolute convergent by Lemma 2.1, the double series
∑∞

m=0
∑∞

n=0ambn is absolute convergent. Accordingly, f(a, t)g(b, t) is uniformly convergent
in the interval [0, 2π]. Thereby, the interchange in order of summation and integration can
be made. In what follows, we stipulate that the interchanges in order of summation and
integration are justified. It is easy to deduce that

‖f‖2 = π2‖a‖2 − r(a),

‖g‖2 = π2‖b‖2 + r(b),

∣
∣(f, g)

∣
∣ =

∣
∣
∣
∣
∣

∫2π

0
f(a, t)g(b, t)dt

∣
∣
∣
∣
∣

= π

∣
∣
∣
∣
∣
V (a, b) +

(

U1(a, b) cos 2λπ − 1
2π

U2(a, b) sin 2λπ
)
∣
∣
∣
∣
∣
,

(3.6)

where r(x) is a function defined by (2.3). By Lemma 2.2, we have

∣
∣
∣
∣
V (a, b) +

(

U1(a, b) cos 2λπ − 1
2π

U2(a, b) sin 2λπ
)∣
∣
∣
∣

2

=
1
π2

∣
∣(f, g)

∣
∣
2 ≤ 1

π2
‖f‖2‖g‖2(1 − r)

=
1
π2

{

π2‖a‖2 − r(a)
}{

π2‖b‖2 + r(b)
}

(1 − r),

(3.7)

where r = (| (f, h) |/‖f‖ − | (g, h) |/‖g‖)2, h is a variable unit-vector, it can be properly chosen
in accordance with our requirement.

(i) When λ is an integer, it is known from (2.3) that r(x) = 0.
We select h1 =

√
2t/2π it is easy to deduce that ‖h1‖ = 1, and

∣
∣
(

f, h1
)∣
∣ =
∣
∣
∣
∣

√
2
( ∞∑

m=0

am

u(m)

)∣
∣
∣
∣
. (3.8)

Since the series
∑∞

n=0an is absolute convergent, it is justified that the complex number an

is replaced by |an| in (3.8). Hence, we have
∣
∣
(

f, h1
)∣
∣ =

√
2 T1(a). (3.9)
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Similarly

∣
∣
(

g, h1
)∣
∣ =

⎧

⎪⎨

⎪⎩

√
2
π

T2(b) ifλ is odd,

0 ifλ is even.
(3.10)

We therefore obtain that

r1 =
(∣
∣
(

f, h1
)∣
∣

‖ f‖ −
∣
∣
(

g, h1
)∣
∣

‖ g‖
)2

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
π2

(
T1(a)
‖a‖ − T2(b)

π‖b‖
)2

ifλ is odd,

2
π2

(
T1(a)
‖a‖

)2

ifλ is even.

(3.11)

Hence, the inequality (3.7) can be reduced to

∣
∣V (a, b) +U1(a, b)

∣
∣
2 ≤ {π2‖a‖2‖b‖2}(1 − r1). (3.12)

Notice that U1(b, a) = U1(a, b) and V (b, a) = −V (a, b). If we still select the unit-vector
h2 =

√
2t/2π , then, interchanging a and b in (3.12), we have

∣
∣
∣ − V (a, b) +U1(a, b)

∣
∣
∣

2 ≤ (π2‖a‖2‖b‖2)(1 − r2
)

, (3.13)

where r2 is defined by

r2 =

(∣
∣
(

f, h2
)∣
∣

‖f‖ −
∣
∣
(

g, h2
)∣
∣

‖g‖

)2

=

⎧

⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎩

2
π2

(

T1(b)
‖b‖ − T2(a)

π ‖a‖

)2

if λ is odd,

2
π2

(
T1(b)
‖b‖

)2

if λ is even.

(3.14)

Adding (3.12) and (3.13), then the inequality (3.2) follows after simplifications.
(ii)When 0 < λ < 1, we firstly consider h in (3.7). We still select unit-vector h1 =

√
2t/2π .

It is easy to deduce that

∣
∣
(

f, h1
)∣
∣ =

√
2

∣
∣
∣
∣
∣

( ∞∑

m=0

am

u(m)

)

cosλπ − 1
2π

( ∞∑

m=0

am

(u(m))2

)

sinλπ

∣
∣
∣
∣
∣
,

∣
∣
(

g, h1
)∣
∣ =

√
2

∣
∣
∣
∣
∣

( ∞∑

n=0

bn
u(n)

)

sinλπ − 1
π

( ∞∑

n=0

bn

(u(n))2

)

sin2λπ

2

∣
∣
∣
∣
∣
.

(3.15)

Since the series
∑∞

n=0an and
∑∞

n=0bn are absolute convergent, it is justified that the complex
numbers an and bn are replaced, respectively, by |an| and |bn| in the above relations.
Let s1(x) =

∣
∣
(

f, h1
)∣
∣/‖f‖), s2(x) =

∣
∣
(

g, h1
)∣
∣/‖g‖. By using (3.1), we find s1(a), s2(b).
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Let R2
1 = (s1(a) − s2(b))

2. We obtain from (3.7)

∣
∣
∣
∣
V (a, b) +

(

U1(a, b) cos 2λπ − 1
2π

U2(a, b) sin 2λπ
)∣
∣
∣
∣

2

≤
{

π2‖a‖2‖b‖2 − (‖b‖2r(a) − ‖a‖2r(b)) − 1
π2

r(a)r(b)
}
(

1 − R2
1

)

.

(3.16)

Notice that U1(b, a) = U1(a, b), U2(b, a) = U2(a, b), and V (b, a) = −V (a, b). If we still
select the unit-vector h2 =

√
2t/2π , then, interchanging a and b in (3.16), we have

∣
∣
∣
∣
− V (a, b) +

(

U1(a, b) cos 2λπ − 1
2π

U2(a, b) sin 2λπ
)∣
∣
∣
∣

2

≤
{

π2‖a‖2‖b‖2 − (‖a‖2r(b) − ‖b‖2r(a)) − 1
π2

r(b)r(a)
}
(

1 − R2
2
)

,

(3.17)

where R2
2 = (s1(b) − s2(a))

2. Let R2 = min{R2
1, R

2
2}. Adding (3.16) and (3.17), the inequality

(3.4) can be gotten after simplifications. In particular, when 1/2 ≤ λ < 1, by Lemma 2.3, we
have r(a)r(b) ≥ 0. The proof of Theorem 3.1 is completed.

Corollary 3.2. Let
∑∞

n=0an be absolute convergent. Then,

(i) if λ is an integer, then

∣
∣U1(a)

∣
∣
2 + |V (a) |2 ≤ (π2‖a‖4)(1 − R2), (3.18)

where

R2 =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2

π2‖a ‖2
(

T1(a) − T2(a)
π

)2

ifλ is odd,

2

π2‖a ‖2
(T1(a))

2 ifλ is even;

(3.19)

(ii) if 0 < λ < 1, then

∣
∣
∣
∣
U1(a) cos 2λπ − 1

2π
U2(a) sin 2λπ

∣
∣
∣
∣

2

+ |V (a) |2 ≤
{

π2‖a‖4 − 1
π2

r2(a)
}
(

1 − R2), (3.20)

where R2 = (s1(a) − s2(a))
2, si(x) (i = 1, 2) is defined by (3.1).

In particular, when u(n) = n + λ/2, according to (3.2), one obtains a refinement of (1.3) immediately.

Corollary 3.3. If λ = 0, 1, then

∣
∣
∣
∣

∞∑

m=1−λ

∞∑

n=1−λ

ambn
m + n + λ

∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣
∣
∣
∣

∞∑

m=1−λ

∞∑

n=1−λ
m/=n

ambn
m − n

∣
∣
∣
∣
∣
∣
∣
∣

2

≤
(

π2
∞∑

n=1−λ
|an|2

∞∑

n=1−λ
|bn|2

)
(

1 − R2), (3.21)
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where

R2 =

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎩

1
π2

{(
T1(a)
‖a‖ − T2(b)

π‖ b‖
)2

+
(
T1(b)
‖ b‖ − T2(a)

π‖a‖
)2}

ifλ = 1,

1
π2

((
T1(a)
‖a ‖

)2

+
(
T1(b)
‖ b ‖

)2)

ifλ = 0,

(3.22)

where

Tk(x) =
∞∑

n=1−λ

|xn|
(n + λ/2 )k

, k = 1, 2. (3.23)

Corollary 3.4. If u(n) = n + 1/4, then

∣
∣
∣
∣

( ∞∑

m=0

∞∑

n=0

ambn
m + n + 1/2

)∣
∣
∣
∣

2

+
∣
∣
∣
∣

∞∑

m=0

∞∑

n=0,m/=n

ambn
m − n

∣
∣
∣
∣

2

≤
{

π2‖a‖2‖b‖2 − 1
π2

r(a)r(b)
}(

1 − R2),

(3.24)

where

r(a)r(b) > 0, R2 = min{(s1(a) − s2(b))
2, (s1(b) − s2(a))

2},

s1(x) =

∣
∣ − (1/

√
2π)T2(x)

∣
∣

(π2‖x‖2 − r(x))
1/2

,

s2(x) =

√
2| T1(x) − (1/2π)T2(x) |
(π2‖x‖2 + r(x))

1/2
,

Tk(x) =
∞∑

n=0

|xn|
(n + 1/4 )k

, k = 1, 2.

(3.25)

Since λ = 1/2, it is known from Lemma 2.3 that r(a)r(b) > 0.
If r(a)r(b) and R in (3.24) are replaced by zero, then the inequality (3.24) can be reduced to

∣
∣
∣
∣

( ∞∑

m=0

∞∑

n=0

ambn
m + n + 1/2

)∣
∣
∣
∣

2

+
∣
∣
∣
∣

∞∑

m=0

∞∑

n=0,m/=n

ambn
m − n

∣
∣
∣
∣

2

< π2‖a‖2‖b‖2. (3.26)

The inequalities (3.24) and (3.26) are refinements of the Hilbert-Ingham inequality

∣
∣
∣
∣

∞∑

m=0

∞∑

n=0

ambn
m + n + 1/2

∣
∣
∣
∣
≤ π‖a‖‖b‖. (3.27)

One has yet a new inequality according to Theorem 3.1(ii).
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Theorem 3.5. With the assumptions as Theorem 3.1, if λ = 1/4, then

∣
∣
∣
∣

1
2π

U2(a, b)
∣
∣
∣
∣

2

+
∣
∣V (a, b)

∣
∣
2 ≤
{

π2‖a‖2‖b‖2 − 1
π2

r(a)r(b)
}
(

1 − R2), (3.28)

where

R2 = min{(s1(a) − s2(b))
2, (s1(b) − s2(a))

2},

s1(x) =
| T1(x) − (1/2π)T2(x) |
(π2‖x‖2 − r(x))1/2

,

s2(x) =
| T1(x) − (1/2π)T2(x) (

√
2 − 1) |

(π2‖x‖2 + r(x))1/2
,

Tk(x) =
∞∑

n=0

|xn|
(n + 1/8 )k

, k = 1, 2.

(3.29)

4. Applications to HP function

Let f(z) be analytic in the unit-disc |z| < 1. If f(z) =
∑∞

n=0anz
n ∈ Hp with p > 0, then

∫1

0

∣
∣f(t)

∣
∣
p
dt ≤ 1

2

∫2π

0

∣
∣f
(

eit
)∣
∣
p
dt, (4.1)

where the coefficient 1/2 is the best possible. It is called the Fejer-Riesz inequality in Hp

function [7].
We will give both an extension and a refinement of (4.1) in what follows.

Theorem 4.1. Let f(z) =
∑∞

n=0anz
u(n)−1/2 ∈ Hp, where p > 0 and u(n) = Zn + (λ/2)(Zn ∈ Z, λ ∈

N0). If f(z) is analytic in the unit-disc |z| < 1, then

∣
∣
∣
∣

∫1

0

∣
∣f(t)

∣
∣
p
dt

∣
∣
∣
∣

2

+
∣
∣
∣
∣

1
2π

∫π

−π
t
∣
∣f
( − eit

)∣
∣
p
dt

∣
∣
∣
∣

2

≤
(
1
2

∫2π

0

∣
∣f
(

eit
)∣
∣
p
dt

)2
(

1 − R2), (4.2)

where R2 > 0.

Proof. At first, we prove the theorem for case p = 2. Let f(z) =
∑∞

m=0amz
u (m)−1/2. It is easy to

deduce that

∫1

0

∣
∣f(t)

∣
∣
2
dt =

∞∑

m=0

∞∑

n=0
u (m) +u (n)/= 0

aman

u(m) + u(n)
= U1(a),

1
2π

∫2π

0

∣
∣f
(

eit
)∣
∣
2
dt = ‖a‖2.

(4.3)
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By Lemma 2.4, we have

∣
∣
∣
∣

1
2π
∫π

−πt
∣
∣f
( − eit

)∣
∣
2
dt

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣

∞∑

m=0

∞∑

n=0
u(m)/=u(n)

aman

u(m) − u(n)

∣
∣
∣
∣
∣
∣
∣
∣

=
∣
∣V (a)

∣
∣. (4.4)

Since the series
∑∞

n=0an is absolutely convergent, it is justified that the complex number an is
replaced by |an|.

According (3.18), we have

∣
∣
∣
∣

∫1
0

∣
∣f(t)

∣
∣
2
dt

∣
∣
∣
∣

2

+
∣
∣
∣
∣

1
2π

∫π

−π
t
∣
∣f
( − eit

)∣
∣
2
dt

∣
∣
∣
∣

2

≤
(
1
2

∫2π

0

∣
∣f
(

eit
)∣
∣
2
dt

)2

(1 − R2), (4.5)

where R2 is defined by (3.19). It is easy to deduce that

2

π2‖a‖2
=

4
π

(∫2π

0

∣
∣f
(

eit
)∣
∣
2
dt

)−1
,

T1(a) =
∫1

0
t−1/2

∣
∣f(t)

∣
∣dt,

T2(a) =
∫1

0

ds

s

∫s

0
t−1/2

∣
∣f(t)

∣
∣dt.

(4.6)

Because u(n) = Zn +λ/2/= 1/π , T1(a)−T2(a)/π /= 0. It shows that R2 > 0. Hence, the inequality
(4.2) is valid when p = 2. If p /= 2, then by the Blaschke decomposition theorem, it holds that
f(z) = B(z)G(z), where B(z) is Blaschke function and G(z)/= 0, |B(z)| ≤ 1 in |z| < 1 and
|B(eit)| = 1.

Let F(z) = (G(z))p/2 ∈ H2. According to the above result for p = 2,we have

∫1

0

∣
∣f(t)

∣
∣
p
dt

∣
∣
∣
∣

2

+
∣
∣
∣
∣

1
2π

∫π

−π
t
∣
∣f
( − eit

)∣
∣
p
dt

∣
∣
∣
∣

2

=
∣
∣
∣
∣

∫1

0

∣
∣F(t)

∣
∣
2
dt

∣
∣
∣
∣

2

+
∣
∣
∣
∣

1
2π

∫π

−π
t
∣
∣F
( − eit

)∣
∣
2
dt

∣
∣
∣
∣

2

≤
{
1
2

∫2π

0

∣
∣F
(

eit
)∣
∣
2
dt

}2

(1 − R2
F)

=
{
1
2

∫2π

0

∣
∣G
(

eit
)∣
∣
p
dt

}2

(1 − R2
G)

=
{
1
2

∫2π

0

∣
∣f
(

eit
)∣
∣
p
dt

}2

(1 − R2).

(4.7)

Based on the case for p = 2, we have R2
F > 0. Hence, R2 > 0. The proof of Theorem 4.1 is

completed.
Let

f(z) =
∞∑

m=0

cmz
m ∈ H1. (4.8)
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Then,

∞∑

n=0

| cn|
n + 1

≤ 1
2

∫π

−π

∣
∣f
(

eit
)∣
∣dt. (4.9)

It is called the Hardy inequality in Hp function [7].

We will give both an extension and a refinement of (4.9) as follows.

Theorem 4.2. Let f(z) =
∑∞

m=0cmz
u(m) be analytic in the unit-disc |z| < 1, where u(m) = Zm + λ/2

(with Zm ∈ Z and λ ∈ N0) and f ∈ H1. Then,

( ∞∑

n=0

| cn|
u(n)

)2

+
∣
∣
∣
∣

1
2π

∫π

−π
t
∣
∣f
( − eit

)∣
∣
2
dt

∣
∣
∣
∣

2

≤
(
1
2

∫π

−π

∣
∣f
(

eit
)∣
∣dt

)2

(1 − R2), (4.10)

where

R2 =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4
π

(
∫1
0 t

−1∣∣f(t)
∣
∣dt − 1

π

∫1

0

ds

s

∫s

0
t−1
∣
∣f(t)

∣
∣dt

)2(∫2π

0

∣
∣f(eit)

∣
∣dt

)−1
if λ is odd,

4
π

(∫1

0
t−1
∣
∣f(t)

∣
∣dt

)2(∫2π

0

∣
∣f
(

eit
)∣
∣dt

)−1
if λ is even.

(4.11)

Proof. By Blaschke decomposition theorem, we have

f(z) = B(z)G(z) = B(z)G1/2(z)G1/2(z) = f1(z)f2(z), (4.12)

where B(z) is Blaschke function, f1, f2 ∈ H2. Let f1(z) = B(z)G1/2(z) =
∑∞

m=0amz
u(m), f2(z) =

G1/2(z) =
∑∞

n=0bnz
u(n). It is easy to deduce that

‖a‖2 = ‖b‖2 =
∞∑

m=0

|am|2 =
∞∑

n=0

|bn|2 = 1
2π

∫π

−π
|G1/2(eit)|2dt

=
1
2π

∫π

−π
|B(eit)G1/2(eit)|2dt = 1

2π

∫2π

0

∣
∣f
(

eit
)∣
∣dt.

(4.13)

Owing to f(z) = f1(z)f2(z), it holds that
∫1

0t
−1∣∣f(t)

∣
∣dt =

∫1
0 t

−1∣∣f1(t)
∣
∣
2
dt. It is easy to deduce

that
∞∑

n=0

| cn|
u(n)

≤
∞∑

n=0

∑

r+s=n

|ar | |as|
u(r) + u(s)

=
∞∑

m=0

∞∑

n=0

|am| |an|
u(m) + u(n)

. (4.14)

By Lemma 2.4, we find that

∣
∣
∣
∣

1
2π

∫π

−π
t
∣
∣f
( − eit

)∣
∣dt

∣
∣
∣
∣
=
∣
∣
∣
∣

1
2π

∫π

−π
t
∣
∣f1
( − eit

)∣
∣
2
dt

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

∞∑

m=0

∞∑

n=0
u(m)/=u(n)

|am| |an|
u(m) − u(n)

∣
∣
∣
∣
∣
∣
∣
∣

. (4.15)
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It follows from (4.13), (4.14), (4.15), and Corollary 3.2 that

( ∞∑

n=0

|cn |
u(n)

)2

+
∣
∣
∣
∣

1
2π

∫π

−π
t
∣
∣f
( − eit

)∣
∣dt

∣
∣
∣
∣

2

≤
(
1
2

∫2π

0

∣
∣f
(

eit
)∣
∣dt

)2

(1 − R2), (4.16)

where R2 is defined by (3.19). It is easy to deduce that

2

π2‖a‖2
=

4
π

(∫2π

0

∣
∣f
(

eit
)∣
∣
2
dt

)−1
,

T1(a) =
∫1

0
t−1
∣
∣f1(t)

∣
∣
2
dt =

∫1

0
t−1
∣
∣f(t)

∣
∣dt,

T2(a) =
∫1

0

ds

s

∫s

0
t−1
∣
∣f1(t)

∣
∣
2
dt =

∫1

0

ds

s

∫s

0
t−1
∣
∣f(t)

∣
∣dt.

(4.17)

These show that the inequality (4.10) is valid.
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