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1. Introduction

Let C be a bounded closed convex subset of a Hilbert spaceH. Recall that a mapping T : C →
C is said to be asymptotically nonexpansive mapping if

∥
∥Tnx − Tny

∥
∥ ≤ tn‖x − y‖ ∀x, y ∈ C, (1.1)

where tn → 1 (n → ∞). We may assume that tn ≥ 1 for all n = 1, 2, 3, . . . . Denote
by F(T) the set of fixed points of T . Throughout this paper T and S : C → C are two
commutative asymptotically nonexpansive mappings with asymptotical coefficients {tn} and
{sn}, respectively. Suppose that F := F(T)∩F(S)/=∅ ([1, Goebel and Kirk’s theorem]makes it
possible). It is well known that F(T) and F(S) are convex and closed [1, 2], so is F. PK denotes
the metric projection from H onto a closed convex subset K of H and ωw(xn) denotes the
weak w-limit set of {xn}. It is well known that a Hilbert space H satisfies Opial’s condition
[3], that is, if a sequence {xn} converges weakly to an element y ∈ H and y /= z, then

lim inf
n→∞

∥
∥xn − y

∥
∥ < lim inf

n→∞
∥
∥xn − z

∥
∥. (1.2)
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Up to now, fixed points iteration processes for nonexpansive and asymptotically
nonexpansive mappings have been studied extensively by many authors to solve nonlinear
operator equations as well as variational inequalities [4–6]. There are many strong
convergence theorems for nonexpansive and asymptotically nonexpansive mappings in
Hilbert space [7, 8].

Especially, Shimizu and Takahashi [7] studied the following iteration process of
nonexpansive mappings for arbitrary x0 ∈ C:

xn+1 = αnx0 +
(

1 − αn

) 2
(n + 1)(n + 2)

n∑

k=0

∑

i+j=k

SiTjxn, (1.3)

where {αn} ⊆ [0, 1], limn→∞αn = 0,
∑∞

n=0 αn = ∞. And then they proved that {xn}
converges strongly to PF(x0). This result was extended to two commutative asymptotically
nonexpansive mappings by Shioji and Takahashi [9].

Recently, some attempts to the modified Mann iteration method are made so that
strong convergence is guaranteed. And for hybrid method proposed by Haugazeau [10],
Kim and Xu [8] introduced the following iteration processes for asymptotically nonexpansive
mapping T :

x0 ∈ C chosen arbitrarily,

yn = αnxn +
(

1 − αn

)

Tnxn,

Cn =
{

v ∈ C :
∥
∥yn − v

∥
∥
2 ≤ ∥

∥xn − v
∥
∥
2 + θn

}

,

Qn =
{

v ∈ C :
〈

xn − v, x0 − xn

〉 ≥ 0
}

,

xn+1 = PCn
⋂
Qn

(

x0
)

,

(1.4)

where θn = (1 − αn) (t2n − 1) (diamC)2 → 0 as n → ∞. Then proved that {xn} converges
strongly to PF(x0). This result was generalized to two asymptotically nonexpansivemappings
by Plubtieng and Ungchittrakool [11].

On the basis of (1.3) and (1.4), we propose a new iteration processes for two
commutative asymptotically nonexpansive mappings S and T :

x0 ∈ C chosen arbitrarily,

yn = αnxn +
(

1 − αn

) 2
(n + 1)(n + 2)

n∑

k=0

∑

i+j=k

SiTjxn,

Cn =
{

v ∈ C :
∥
∥yn − v

∥
∥
2 ≤ ∥

∥xn − v
∥
∥
2 + θn

}

,

Qn =
{

v ∈ C :
〈

xn − v, x0 − xn

〉 ≥ 0
}

,

xn+1 = PCn
⋂
Qn

(

x0
)

,

(1.5)

where θn = (1 − αn) (g2
n − 1) (diamC)2, gn = (2/(n + 1)(n + 2))

∑n
k=0

∑

i+j=k sitj , for every
n = 1, 2, . . . . The purpose of this paper is to prove {xn} converges strongly to PF(x0).
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2. Auxiliary lemmas

This section collects some lemmas which will be used to prove the main results in the next
section.

Lemma 2.1 (see [7]). Letting Ln = (n + 1)(n + 2)/2, there holds the identity in a Hilbert space H:

∥
∥yn − v

∥
∥
2 =

1
Ln

n∑

k=0

∑

i+j=k

∥
∥xi,j − v

∥
∥
2 − 1

Ln

n∑

k=0

∑

i+j=k

∥
∥xi,j − yn

∥
∥
2 (2.1)

for {xi,j}∞i,j=0 ⊆ H, yn = (1/Ln)
∑n

k=0
∑

i+j=k xi,j ∈ H and v ∈ H.

Lemma 2.2. Let C be a bounded closed convex subset of a Hilbert spaceH, S and T two commutative
asymptotically nonexpansive mappings of C into itself with asymptotical coefficients {sn} and {tn},
respectively. For any x ∈ C, put Fn(x) = (2/(n + 1)(n + 2))

∑n
k=0

∑

i+j=k S
iTjx. Then

lim
l→∞

lim sup
n→∞

sup
x∈C

∥
∥Fn(x) − SlFn(x)

∥
∥ = 0,

lim
l→∞

lim sup
n→∞

sup
x∈C

∥
∥Fn(x) − TlFn(x)

∥
∥ = 0 .

(2.2)

Proof. Put xi,j = SiTjx, v = SlFn(x) and Ln = (n + 1)(n + 2)/2. It follows from Lemma 2.1 that

∥
∥Fn(x) − SlFn(x)

∥
∥
2

=
1
Ln

n∑

k=0

∑

i+j=k

∥
∥SiTjx − SlFn(x)

∥
∥
2 − 1

Ln

n∑

k=0

∑

i+j=k

∥
∥SiTjx − Fn(x)

∥
∥
2

=
1
Ln

l−1∑

k=0

∑

i+j=k

∥
∥SiTjx − SlFn(x)

∥
∥
2 +

1
Ln

n∑

k=l

∑

i+j=k, i≤l−1

∥
∥SiTjx − SlFn(x)

∥
∥
2

+
1
Ln

n∑

k=l

∑

i+j=k, i≥l

∥
∥SiTjx − SlFn(x)

∥
∥
2 − 1

Ln

n∑

k=0

∑

i+j=k

∥
∥SiTjx − Fn(x)

∥
∥
2

≤ 1
Ln

l−1∑

k=0

∑

i+j=k

∥
∥SiTjx − SlFn(x)

∥
∥
2 +

1
Ln

n∑

k=l

∑

i+j=k, i≤l−1

∥
∥SiTjx − SlFn(x)

∥
∥
2

+
1
Ln

n∑

k=l

∑

i+j=k, i≥l
s2l
∥
∥Si−lT jx − Fn(x)

∥
∥
2 − 1

Ln

n∑

k=0

∑

i+j=k

∥
∥SiTjx − Fn(x)

∥
∥
2
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=
1
Ln

l−1∑

k=0

∑

i+j=k

∥
∥SiTjx − SlFn(x)

∥
∥
2 +

1
Ln

n∑

k=l

∑

i+j=k, i≤l−1

∥
∥SiTjx − SlFn(x)

∥
∥
2

+
1
Ln

n−l∑

k=0

∑

i+j=k

s2l
∥
∥SiTjx − Fn(x)

∥
∥
2 − 1

Ln

n∑

k=0

∑

i+j=k

∥
∥SiTjx − Fn(x)

∥
∥
2

≤ 1
Ln

l−1∑

k=0

∑

i+j=k

∥
∥SiTjx − SlFn(x)

∥
∥
2 +

1
Ln

n∑

k=l

∑

i+j=k, i≤l−1

∥
∥SiTjx − SlFn(x)

∥
∥
2

+
1
Ln

n−l∑

k=0

∑

i+j=k

(

s2l − 1
)∥
∥SiTjx − Fn(x)

∥
∥
2
.

(2.3)

Choose p ∈ F, then there exists a constant M > 0 such that

∥
∥SiTjx − p

∥
∥ ≤ sitj‖x − p‖ ≤ M

2
,

∥
∥Fn(x) − p

∥
∥ ≤ 1

Ln

n∑

k=0

∑

i+j=k

∥
∥SiTjx − p

∥
∥ ≤ M

2
,

∥
∥SlFn(x) − p

∥
∥ ≤ sl

∥
∥Fn(x) − p

∥
∥ ≤ M

2
,

(2.4)

for all nonnegative integer i, j, l, and n. Hence, ‖SiTjx−SlFn(x)‖ ≤ M, ‖SiTjx−Fn(x)‖ ≤ M
for all nonnegative integer i, j, l, and n. So

sup
x∈C

∥
∥Fn(x) − SlFn(x)

∥
∥
2

≤ (l + 1)l
(n + 2)(n + 1)

M2 +
2(n + 1 − l)l
(n + 2)(n + 1)

M2 +

(

s2
l
− 1

)

(n + 2 − l)(n + 1 − l)
(n + 2)(n + 1)

M2

−→ 0 (n −→ ∞, l −→ ∞).

(2.5)

Similarly, we can prove

lim
l→∞

lim sup
n→∞

sup
x∈C

∥
∥Fn(x) − TlFn(x)

∥
∥ = 0. (2.6)

Remark 2.3. Lemma 2.2 extends [7, Lemma 1].

Lemma 2.4. Let S and T be two commutative asymptotically nonexpansive mappings defined on a
bounded closed convex subset C of a Hilbert space H with asymptotical coefficients {sn} and {tn},
respectively. Let Ln = ((n + 1)(n + 2)/2). If {xn} is a sequence in C such that {xn} converges weakly
to some x ∈ C and {xn − (1/Ln)

∑n
k=0

∑

i+j=k S
iTjxn} converges strongly to 0, then x ∈ F(S)∩F(T).
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Proof. We claim that {Slx} converges strongly to x as l → ∞. If not, there exist a positive
number ε0 and a subsequence {lm} of {l} such that ‖Slmx − x‖ ≥ ε0 for all m. However, we
have

∥
∥xn − Slmx

∥
∥

≤
∥
∥
∥
∥
∥
xn − 1

Ln

n∑

k=0

∑

i+j=k

SiTjxn

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

1
Ln

n∑

k=0

∑

i+j=k

SiTjxn − Slm

(

1
Ln

n∑

k=0

∑

i+j=k

SiTjxn

)∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
Slm

(

1
Ln

n∑

k=0

∑

i+j=k

SiTjxn

)

− Slmx

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
xn − 1

Ln

n∑

k=0

∑

i+j=k

SiTjxn

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

1
Ln

n∑

k=0

∑

i+j=k

SiTjxn − Slm

(

1
Ln

n∑

k=0

∑

i+j=k

SiTjxn

)∥
∥
∥
∥
∥

+ slm

∥
∥
∥
∥
∥

1
Ln

n∑

k=0

∑

i+j=k

SiTjxn − x

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
xn − 1

Ln

n∑

k=0

∑

i+j=k

SiTjxn

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

1
Ln

n∑

k=0

∑

i+j=k

SiTjxn − Slm

(

1
Ln

n∑

k=0

∑

i+j=k

SiTjxn

)∥
∥
∥
∥
∥

+ slm

∥
∥
∥
∥
∥

1
Ln

n∑

k=0

∑

i+j=k

SiTjxn − xn

∥
∥
∥
∥
∥
+ slm

∥
∥xn − x

∥
∥.

(2.7)

By Opial’s condition, for any y ∈ C with y /=x, we have

lim inf
n→∞

∥
∥xn − x

∥
∥ < lim inf

n→∞
∥
∥xn − y

∥
∥. (2.8)

Let r = lim infn→∞‖xn − x‖ and choose a positive number ρ such that

ρ <

√

r2 +
ε20
4

− r. (2.9)

Then, there exists a subsequence {xnp} of {xn} such that limp→∞‖xnp − x‖ = r and ‖xnp − x‖ <
r + (ρ/4) for all p. By definition of {slm}, there exists a positive integer m0 such that

slm
∥
∥xnp − x

∥
∥ < r +

ρ

4
, (2.10)

for all m > m0. Since

lim
n→∞

∥
∥
∥
∥
∥
xn − 1

Ln

n∑

k=0

∑

i+j=k

SiTjxn

∥
∥
∥
∥
∥
= 0 (2.11)
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and {slm} is bounded, there exists a positive integer p0 such that

∥
∥
∥
∥
∥
xnp −

1
Lnp

np∑

k=0

∑

i+j=k

SiTjxnp

∥
∥
∥
∥
∥
<

ρ

4
,

slm

∥
∥
∥
∥
∥

1
Lnp

np∑

k=0

∑

i+j=k

SiTjxnp − xnp

∥
∥
∥
∥
∥
<

ρ

4

(2.12)

for all m and p > p0. By {xnp} ⊂ C is bounded and Lemma 2.2, there exist m1 > m0 and p1 > 0
such that

∥
∥
∥
∥
∥

1
Lnp

np∑

k=0

∑

i+j=k

SiTjxnp − Slm1

(

1
Lnp

np∑

k=0

∑

i+j=k

SiTjxnp

)∥
∥
∥
∥
∥
<

ρ

4
(2.13)

for all p > p1. By (2.7), (2.10), (2.12), and (2.13), we have

∥
∥xnp − Slm1x

∥
∥ <

ρ

4
+
ρ

4
+
ρ

4
+ r +

ρ

4
= r + ρ (2.14)

for all p > max{p0, p1}. However,

∥
∥
∥
∥
xnp −

Slm1x + x

2

∥
∥
∥
∥

2

=
1
2
∥
∥xnp − Slm1x

∥
∥
2 +

1
2
∥
∥xnp − x

∥
∥
2 − 1

4
∥
∥Slm1x − x

∥
∥
2

<
(r + ρ)2

2
+
(r + ρ/4)2

2
− ε20

4

< (r + ρ)2 − ε20
4

< r2

(2.15)

for all p > max{p0, p1}. This contradicts (2.8). So {Slx} converges strongly to x and then
x ∈ F(S). Similarly, we can get x ∈ F(T). Hence, x is a common fixed point of S and T .

Lemma 2.5 (see [12]). Let C be a bounded closed convex subset of a Hilbert space H. The set D :=
{v ∈ C : ‖y − v‖2 ≤ ‖x − v‖2 + 〈z, v〉 + b} is convex and closed for given x, y, z ∈ C and b ∈ R.

3. Main results

In this section, we prove our main theorem.

Theorem 3.1. Let C be a bounded closed convex subset of a Hilbert H, T and S : C → C be two
commutative asymptotically nonexpansive mappings with asymptotical coefficients {tn} and {sn},
respectively. Suppose that 0 ≤ αn ≤ a for all n, where 0 < a < 1. If F := F(T) ∩ F(S)/=∅, then the
sequence generated by (1.5) converges strongly to PF(x0).
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Proof. Note that Cn is convex and closed for all n ≥ 0 by Lemma 2.5. On the other hand, Qn is
convex and closed. So is Cn ∩Qn.

By definition of {tn} and {sn}, there existsM > 0 such that ‖sitj −1‖ ≤ M for all i, j ≥ 0.
On the other hand, for arbitrary ε > 0, there existsN > 0 such that ‖sitj −1‖ < ε for all i, j > N.
Hence

∥
∥gn − 1

∥
∥ =

∥
∥
∥
∥
∥

2
(n + 1)(n + 2)

n∑

k=0

∑

i+j=k

(sitj − 1)

∥
∥
∥
∥
∥

≤ 2
(n + 1)(n + 2)

n∑

k=0

∑

i+j=k

∥
∥sitj − 1‖

≤ 2
(n + 1)(n + 2)

n∑

k=0

∑

i+j=k, i≤N

∥
∥sitj − 1

∥
∥ +

2
(n + 1)(n + 2)

n∑

k=0

∑

i+j=k, j≤N

∥
∥sitj − 1

∥
∥

+
2

(n + 1)(n + 2)

n∑

k=0

∑

i+j=k, i≥N+1, j≥N+1

∥
∥sitj − 1

∥
∥

<
2(N + 1)M

(n + 2)
+
2(N + 1)M

(n + 2)
+ ε.

(3.1)

Thus limn→∞ gn = 1. Obviously, limn→∞ θn = 0.
Next, we prove that F ⊂ Cn ∩Qn. Indeed, first of all

∥
∥yn − p

∥
∥
2 ≤ αn

∥
∥xn − p

∥
∥
2 +

(

1 − αn

)

∥
∥
∥
∥
∥

2
(n + 1)(n + 2)

n∑

k=0

∑

i+j=k

SiTjxn − p

∥
∥
∥
∥
∥

2

≤ αn

∥
∥xn − p

∥
∥
2 +

(

1 − αn

)

g2
n

∥
∥xn − p

∥
∥
2

=
∥
∥xn − p

∥
∥
2 +

(

1 − αn

)(

g2
n

∥
∥xn − p

∥
∥
2 − ∥

∥xn − p
∥
∥
2)

≤ ∥
∥xn − p

∥
∥
2 + θn

(3.2)

for all p ∈ F. So F ⊂ Cn. It suffices to show that F ⊂ Qn for all n ≥ 0. We prove this by
induction. For n = 0, we have F ⊂ C = Q0. Assume that F ⊂ Qn. Since xn+1 is the projection of
x0 onto Cn ∩Qn, we have

〈

xn+1 − z, x0 − xn+1
〉 ≥ 0 ∀ z ∈ Cn

⋂

Qn (3.3)

As F ⊂ Cn ∩ Qn, (3.3) holds for all z ∈ F, in particular. This together with the definition of
Qn+1 implies that F ⊂ Qn+1. Hence, F ⊂ Cn ∩Qn for all n ≥ 0.

Wewill show that ‖xn+1−xn‖ → 0 as n → ∞. By the definition ofQn, we have that xn =
PQn(x0). It follows from xn+1 ∈ Cn ∩Qn ⊂ Qn that ‖xn − x0‖ ≤ ‖xn+1 − x0‖. This shows that the
sequence {‖xn−x0‖} is increasing. Since C is bounded, we obtain that limn→∞‖xn−x0‖ exists.



8 International Journal of Mathematics and Mathematical Sciences

Notice again that from xn = PQn(x0) and xn+1 ∈ Qn, we have 〈xn+1 − xn, xn − x0〉 ≥ 0. Hence

∥
∥xn+1 − xn

∥
∥
2 =

∥
∥
(

xn+1 − x0
) − (

xn − x0
)∥
∥
2

=
∥
∥xn+1 − x0

∥
∥
2 +

∥
∥xn − x0

∥
∥
2 − 2

〈

xn+1 − x0, xn − x0
〉

=
∥
∥xn+1 − x0

∥
∥
2 − ∥

∥xn − x0
∥
∥
2 − 2

〈

xn+1 − x0 − (xn − x0), xn − x0
〉

=
∥
∥xn+1 − x0

∥
∥
2 − ∥

∥xn − x0
∥
∥
2 − 2

〈

xn+1 − xn, xn − x0
〉

≤ ∥
∥xn+1 − x0

∥
∥
2 − ∥

∥xn − x0
∥
∥
2

−→ 0 (n −→ ∞).

(3.4)

Now we claim that ‖(2/(n + 1)(n + 2))
∑n

k=0
∑

i+j=k S
iTjxn − xn‖ → 0 as n → ∞. By

the definition of yn, we have

∥
∥
∥
∥
∥

2
(n + 1)(n + 2)

n∑

k=0

∑

i+j=k

SiTjxn − xn

∥
∥
∥
∥
∥

=
1

1 − αn

∥
∥yn − xn

∥
∥

≤ 1
1 − αn

(∥
∥yn − xn+1

∥
∥ +

∥
∥xn+1 − xn

∥
∥
)

≤ 1
1 − a

(∥
∥yn − xn+1

∥
∥ +

∥
∥xn+1 − xn

∥
∥
)

.

(3.5)

Since xn+1 ∈ Cn, ‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θn → 0 as n → ∞. So ‖yn − xn+1‖ → 0 as
n → ∞. This implies that

∥
∥
∥
∥
∥

2
(n + 1)(n + 2)

n∑

k=0

∑

i+j=k

SiTjxn − xn

∥
∥
∥
∥
∥
−→ 0 (n −→ ∞). (3.6)

Since C is bounded closed convex, ωw(xn)/=∅. It follows from (3.6) and Lemma 2.4
that ωw(xn) ⊂ F. By the definition of Qn, we have that ‖xn − x0‖ ≤ ‖PF(x0) − x0‖ for all n ≥ 0.
It follows from the weak lower semi-continuity of the norm that ‖w − x0‖ ≤ ‖PF(x0) − x0‖
for all w ∈ ωw(xn). Since ωw(xn) ⊂ F, we have w = PF(x0) for all w ∈ ωw(xn). Thus
ωw(xn) = {PF(x0)}. Then, {xn} converges to PF(x0)weakly. By the fact

∥
∥xn − PF

(

x0
)∥
∥
2 =

∥
∥xn − x0 + x0 − PF

(

x0
)∥
∥
2

=
∥
∥xn − x0

∥
∥
2 +

∥
∥x0 − PF

(

x0
)∥
∥
2 + 2

〈

xn − x0, x0 − PF

(

x0
)〉

≤ 2
(∥
∥PF

(

x0
) − x0

∥
∥
2 +

〈

xn − x0, x0 − PF

(

x0
)〉)

−→ 0 (n −→ ∞),

(3.7)

we have {xn} converges to PF(x0) strongly. This completes the proof.
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The following corollary follows from Theorem 3.1.

Corollary 3.2. Let C be a bounded closed convex subset of a Hilbert H, T and S : C → C be
two commutative nonexpansive mappings. Suppose that 0 ≤ αn ≤ a for all n, where 0 < a < 1. If
F := F(T) ∩ F(S)/=∅, then the sequence {xn} generated by

x0 ∈ C chosen arbitrarily,

yn = αnxn +
(

1 − αn

) 2
(n + 1)(n + 2)

n∑

k=0

∑

i+j=k

SiTjxn,

Cn =
{

v ∈ C :
∥
∥yn − v

∥
∥
2 ≤ ∥

∥xn − v
∥
∥
2}
,

Qn =
{

v ∈ C :
〈

xn − v, x0 − xn

〉 ≥ 0
}

,

xn+1 = PCn∩Qn

(

x0
)

,

(3.8)

converges strongly to PF(x0).
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