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1. Historical Remarks

In 1952, MacLane [1] presented a strongly pioneering article, which studied sequences of
derivatives for holomorphic functions and their limit behavior. He acted with sequences in a
function space, generated by the common differential operator. When describing convergent
and periodic behaviors, he found functions which Erdélyi et al. [2] have called hyperbolic
functions of higher order. Besides he constructed a function whose limit behavior nowadays is
called chaotic.

Lacunary functions, that is, Lücken-functions have been studied already by Hadamard
1892, he proved his Lacuna-theorem, see [3].

Li and Yorke [4] introduced the idea of chaos in the theory of dynamical systems 1975;
they described periodic and chaotic behaviors of orbits in finite-dimensional systems. In 1978,
Marotto [5] introduced snap-back repellers, the so-called homocline orbits, to enrich dynamics
by a sufficient criterion for chaos. In 1989, Devaney gave a topological characterization of
chaos by introducing sensitivy, transitivy, and the notion dense periodical points.

Parallel to these, in operator theory, a lot of investigations concerning iterated linear
operators appeared. In 1986, Beauzamy characterized hypercyclic operators by a property very
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near to the definition of homocline orbits. In 1991, Godefroy and Shapiro [6] connected
these two lines. Based on results of Rolewicz [7], they proved that common integral- and
differential operators are hypercyclic. A widespread research activity followed. A quite good
survey on the theory of hypercyclic operators has been given in 1999 by Grosse-Erdmann [8]
and too in the conference report of the Congress of Mathematics in Zaragoza 2007, see [9].

In 1999, respectively, 2000 the author of the present article verified the chaos properties
of Devaney and of Li and Yorke for the common differential operator, see [10, 11].

This paper continues the article of MacLane [1]. It gives more insight into the limit
behavior of sequences of derivatives characterizing them by convergence properties of their
Taylor coefficients. It gives predictions for their attractors, describing these by means of the
concept Omega-limit sets, see Alligood et al. [12].

For our investigations, we choose the supremum norm, although in the topology of
that norm the differential operator is discontinuous. By this, we can prove convergence
properties very easily. Moreover, we focus our attention only on the cardinality of the Omega-
limit sets.

2. Introduction

We investigate the dynamical system generated by the common differential operatorD which
maps a function f to its first derivative f ′. Let its domain be the function space A of all
functions which are analytic on the complex unit disc E := {x ∈ C : |x| ≤ 1}. An analytic
function f means in complex analysis that the Taylor series of f exists and is absolutely
convergent for all x ∈ E. Thus, all derivatives of f are contained inA too. They are continuous
and differentiable. For f ∈ A and D : A → A, D(f) = f ′, we consider the sequence of
functions

f (0) := f, f (n+1) := D
(
f (n)) for n ∈ N0 = {0, 1, 2, 3, . . .}. (2.1)

Hence, we have for f ∈ A, f(x) =
∑∞

i=0ai(x
i/i!), ai ∈ C, the relation

f (n)(x) =
∞∑

i=0

an+i
xi

i!
(2.2)

holds. The sequence (ai)i∈N0
of coefficients of the Taylor series

∑∞
i=0ai(x

i/i!) we call Taylor
sequence. Equipped with the supremum norm ‖f‖ := maxx∈E{|f(x)|} the set (A, ‖ · ‖) is a
normed linear space, and in the topology of this norm, (2.1) is a regular dynamical system
with the linear operator D. For each function f ∈ A, there is an orbit (f (n))n∈N0

of this
dynamical system (2.1).

Due to results in [6, 10], we conclude that the common differential operator D is
chaotic in the sense of Devaney [13], and from [11] in the sense of Li and Yorke [4].

3. Hyperbolic functions

For the reason of self-containedness, we inform on hyperbolic functions. Exponential
functions of the type

eα : E −→ C, eα(x) := αex, α ∈ C (3.1)
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are fixed points or fixed elements of the dynamical system (2.1), whereas the so-called
hyperbolic functions of order n are periodic elements of system (2.1).

With n ∈ N, i :=
√
−1, ω := e(2π/n)i Erdélyi et al. defined in [2] Hn : C → C

Hn(x) :=
1
n

n∑

ν=1

eω
νx =

1
n

(
eωx + eω

2x + eω
3x + · · · + eωnx) (3.2)

=
∞∑

ν=0

xνn

(νn)!
= 1 +

xn

(n)!
+

x2n

(2n)!
+

x3n

(3n)!
+ · · ·. (3.3)

For the real part hn of Hn, we know from [14] that hn := Re(Hn) : R → R (for real x), using
the abbreviation αν := (2π/n)ν,

hn(x) :=
1
n

n−1∑

ν=0

ex cosαν · cos(x sinαν) (3.4)

=
∞∑

i=0

xνn

(νn)!
= 1 +

xn

(n)!
+

x2n

(2n)!
+

x3n

(3n)!
+ · · ·. (3.5)

The Taylor series (3.3) and (3.5) reveal that hyperbolic functions coincide with their nth
derivative, that is,

H
(n)
n = Hn, h

(n)
n = hn. (3.6)

With (3.1), (3.2), and (3.4), we find that

H1 = e1, H2 = cosh, H4 =
1
2
(cosh + cos) (3.7)

and, see [14],

h3(x) =
1
3

(
ex + 2e−(1/2)xcos

(√
3

2
x

))
,

h5(x) =
1
5

(
ex + 2ex cos(2π/5)cos

(
x sin

2π
5

)
+ 2ex cos(4π/5)cos

(
x sin

4π
5

))
,

h6(x) =
1
3

(
coshx + 2 cos

(√
3

2
x

)
cosh

(
1
2
x

))
.

(3.8)

We should note that we consider the function Hn for complex x, and hn for real x. It is easy
to prove.
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Proposition 3.1. The statements (A) and (B) are equivalent.

(A) p ∈ A is a linear combination ofHn andH
(1)
n ,H

(2)
n , . . . ,H

(n−1)
n :

p =
n−1∑

ν=0

ανH
(ν)
n = α0Hn + α1H

(1)
n + · · · + αn−1H

(n−1)
n , αν ∈ C. (3.9)

(B) The sequence (p(n))n∈N0
is a periodic orbit of the dynamical system (2.1).

Hence, the orbit of p in (3.9) move in circles planet-like in the function spaceA.

4. Preliminaries

Let (X, ‖ · ‖) be a normed linear space and (xn)n∈N0
a sequence in X.

Definition 4.1 (Li/Yorke-property). One calls (xn)n∈N0
an aperiodic sequence or a chaotic orbit if

it is bounded but not asymptotically periodic, that is, for each periodic sequence (yn)n∈N0
⊂

X,one has

0 < lim sup
n→∞

‖xn − yn‖ <∞. (4.1)

Hence, an aperiodic sequence has at least two cluster points.

According to Alligood et al. [12], one defines attractors of an orbit by the Omega-limit
set ω(f) of an element f ∈ A. It contains all cluster points of the orbit (f (n))n∈N0

. Thus, for the
functions (3.1) and (3.7),

ω(eα) = {eα}, ω(cosh) = {cosh, sinh}, ω(sin) = {sin, cos,−sin,−cos} . (4.2)

Proposition 4.2. The ω-operator is linear in the following sense. Let f ∈ A and eα defined in (3.1).
Then

ω(αf) = αω(f), ω(f + eα) = eα +ω(f). (4.3)

For Taylor sequences (ai)i∈N0
of type

(. . . , α, α, α, . . . , α, α, α, α, . . . , α, α, α, α, α, . . .), (4.4)

one introduces the concept of lacuna cluster.

Definition 4.3. Let the Taylor sequence (ai)i∈N0
of f ∈ A have the cluster point α ∈ C, and let

I ⊂ N0 be the index set defined by I := {ni : ani /=α}. Then α is called lacuna cluster of (ai)i∈N0
,

if the sequence (ni+1 − ni)ni∈I is unbounded.
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For α = 0, this definition coincides with the classical definition of lacunary functions
used by Hadamard, Polya, and so on. Thus, an analytic function is lacunary function, if its
Taylor sequence has the lacuna cluster 0. Hence, the flutter function Φ : E → C, introduced
in [11],

Φ(x) := 1 +
x

1!
+
x4

4!
+
x9

9!
+
x16

16!
+
x25

25!
+
x36

36!
+ · · · (4.5)

is lacunary function, its Taylor sequence has the lacuna cluster 0.
Lacunary functions have been already discussed by Weierstraß and Hadamard; Polya

(1939) proved that functions of this type possess no extension to any point on their periphery,
see [3]. In recent time, lacunary functions with unbounded Taylor sequence play a role in
complex analysis again.

Next, we introduce for each sequence (ai)i∈N0
its cluster sequence (ai)i∈N0

by identifying
elements of convergent subsequences by their limit point. Note that (ai)i∈N0

is bounded, thus
cluster points exist (Bolzano-Weierstraß).

Definition 4.4. Let {α0, α1, α2, . . .} be the set of cluster points of the sequence (ai)i∈N0
. One

constructs inductively a mapping ai → ai ∈ {α0, α1, α2, . . .}.

(1) Due to α0 is cluster point, there is a subsequence (ai)i∈I0
, I0 ⊂ N0, converging to α0.

For i ∈ I0, we define ai := α0.

(2) If N0 \ I0 is a finite set, one defines for i ∈ N0 \ I0 ai := α0. Otherwise there is a cluster
point α1 /=α0 and a subset (ai)i∈I1

, I1 ⊂ N0 \ I0, converging to α1. For i ∈ I1,one
defines ai := α1.

(3) Continuing inductively for k = 0, 1, 2, 3, . . . .

If N0 \
⋃k
j=0Ij is a finite set, one defines ai := αk, otherwise there is a cluster point αk+1 different

from αj for j = 0, 1, 2, . . . , k, and a subset (ai)i∈Ik+1
, Ik+1 ⊂ N0 \

⋃k
j=0Ij , converging to αk+1. For

i ∈ Ik+1,one defines ai := αk+1.

Note that the set of indices {Ik : k = 0, 1, 2, . . .} are pairwise disjoint and their union is
N0.

The cluster sequence (ai)i∈N0
reveals the asymptotical behavior of an orbit (f (n))n∈N0

,
Property (C) will be very useful.

Proposition 4.5. For f ∈ A, f(x) =
∑∞

i=0ai(x
i/i!) and f(x) :=

∑∞
i=0ai(x

i/i!) ,one has

(A) |ai − ai| −→ 0 for i −→ ∞.

(B)
∥∥f (n) − f

(n)∥∥ −→ 0 for n −→ ∞.

(C) ω(f) = ω
(
f
)
.

(4.6)

5. Finite attractors

Like the oracle of Delphi in ancient Greece informed people about their future, our theorems
will show that the Taylor sequence (ai)i∈N0

predicts the asymptotical behavior of an orbit
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(f (n))n∈N0
for n → ∞. The following theorem deals with empty and finite attractors, it

reveals the role of Erdelyi’s hyperbolic functions Hn for the attractors ω(f) of the differential
operator.

Theorem 5.1. Let f ∈ A, f(x) =
∑∞

i=0ai(x
i/i!) for x ∈ E.

(A) If (ai)i∈N0
is unbounded and contains no lacuna cluster, then (f (n))n∈N0

is unbounded too
and ω(f) is empty.

(B) If (ai)i∈N0
is convergent to α ∈ C, then (f (n))n∈N0

converges to eα and ω(f) = {eα}.

(C) If (ai)i∈N0
is asymptotically periodic to {β0, β1, . . . , βn−1} ⊂ C, then (f (n))n∈N0

is
asymptotically periodic too, and

ω(f) =
{
p, p(1), p(2), . . . , p(n−1)}, where p :=

n−1∑

k=0

βkH
(n−k)
n . (5.1)

We give some examples as follows.
(1) The function tan + 1/cos ∈ A possess for |x| < π/2 with the Bernoulli numbers Bν

and the Euler numbers Eν the Taylor series

tan(x) +
1

cos(x)
=
∞∑

ν=1

4ν(4ν − 1)
2ν

Bν
x2ν−1

(2ν − 1)!
+ 1 +

∞∑

ν=1

Eν
x2ν

(2ν)!

= 1 + x +
x2

2!
+ 2

x3

3!
+ 5

x4

4!
+ 16

x5

5!
+ 61

x6

6!
+ 272

x7

7!
+ 1385

x8

8!
+ · · · .

(5.2)

Its Taylor sequence {1, 1, 1, 2, 5, 16, 61, 272, 1385, . . .} is unbounded without any cluster point,
hence ω(tan + 1/cos) = ∅.

(2) For each polynomial q ∈ A, we have ω(q) = {e0} = {0}.
(3) Let f : E → C defined by

f(x) :=

⎧
⎪⎨

⎪⎩

1, if x = 0,

sinx
(

1 +
1
x

)
, else.

(5.3)

Then

f(x) = 1 + x − x2

3 · 2!
− x

3

3!
+

x4

5 · 4!
+
x5

5!
− x6

7 · 6!
− x

7

7!
+

x8

9 · 8!
+
x9

9!
+ · · · . (5.4)

Its Taylor sequence (1, 1,−1/3,−1, 1/5, 1,−1/7,−1, 1/9, 1,−1/11, . . .) is asymptotically peri-
odic to the periodic sequence {0, 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, . . .}. Using (5.1), (3.7), and sin =
H

(3)
4 −H(1)

4 , its attractor becomes ω(f) = {sin, cos,− sin,− cos}.
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Figure 1: The sequence (‖Φ(n)‖)n∈N0
.

6. Countable attractors

We now consider chaotic orbits of the differential operator. The next theorem shows that these
are characterized by aperiodic Taylor sequences.

Theorem 6.1. Let f ∈ A, f(x) =
∑∞

i=0ai(x
i/i!) for x ∈ E. Then the statements (A) and (B) are

equivalent as follows.

(A) The Taylor sequence (ai)i∈N0
is aperiodic.

(B) The sequence of derivatives (f (n))n∈N0
is a chaotic orbit of the system (2.1).

Figure 1 presents the sequence (‖Φ(n)‖)n∈N0
of the flutter function Φ, see (4.5),

graphically. Imagine a chicken that wants to escape the kitchen. It flutters up to a window one
meter high, it bumps against the window and crashes down to the bottom. Then it starts the
same procedure again, but it has lost energy, so it needs a longer way to flutter up again. There
is no periodicity, the time difference between “downs” and “ups” increases. This fluttering
upward and crashing down may be seen in Figure 1.

The next theorems reveal the part of lacunary functions and exponential functions eα
for chaotic orbits of the differential operator and its attractor.

Theorem 6.2. Let f ∈ A, f(x) =
∑∞

i=0ai(x
i/i!) for x ∈ E and (ai)i∈N0

aperiodic. Then

(A) if (ai)i∈N0
possesses only a finite number of cluster points, then the cluster sequence (ai)i∈N0

contains at least one lacuna cluster.

(B) If α ∈ C is a lacuna cluster of the cluster sequence (ai)i∈N0
, then for the exponential function

eα,one has eα ∈ ω(f).

We introduce abbreviations splitting the exponential function e1 into a Taylor
polynomial Tn and its remainder Rn:

Tn(x) :=
n∑

i=0

xi

i!
, Rn(x) :=

∞∑

i=n+1

xi

i!
, qn(x) :=

xn

n!
. (6.1)

Thus, e1 = Tn+Rn for each n ∈ N. We will use it for constructing a stairway βTn+γRn between
exponential functions eβ and eγ in the function spaceA.
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Theorem 6.3. Let f ∈ A, f(x) =
∑∞

i=0ai(x
i/i!) for x ∈ E and the Taylor sequence (ai)i∈N0

be
aperiodic. Then

(A) for each lacuna cluster β in the cluster sequence (ai)i∈N0
, infinitely often followed by a

lacuna cluster γ /= β, one has with Un := βTn + γRn,

{eβ, eγ} ∪ {Un : n ∈ N0} ⊂ ω(f). (6.2)

(B) For each tupel (b0, b1, . . . , bk−1) ⊂ C
k in the cluster sequence (ai)i∈N0

, which appears
infinitely often between the lacuna clusters β and γ , one has with Sn := βTn−1+

∑k−1
j=0 bjqn+j+

γRn+k−1

{eβ, eγ} ∪ {Sn : n ∈ N0} ⊂ ω(f). (6.3)

(C) If the cluster sequence (ai)i∈N0
contains arbitrary many lacuna clusters but only a finite

number of nonlacuna clusters, then the attractor ω(f) is a countably infinite set.

Example for statement (A)

To define the function Λ ∈ A, we choose ai(= ai) according to the rule

ai :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if for k ∈ N0 :
k

2
(3k + 3) ≤ i ≤ k

2
(3k + 5),

1, if
k

2
(3k + 5) < i <

k + 1
2

(3k + 4),

2, otherwise.

(6.4)

Then

(ai)i∈N0
= (0, 1, 2, 0, 0, 1, 1, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 2, . . .),

Λ(x) :=
x

1!
+ 2

x2

2!
+
x5

5!
+
x6

6!
+ 2

x7

7!
+ 2

x8

8!
+
x12

12!
+
x13

13!
+
x14

14!
+ 2

x15

15!
+ · · · .

(6.5)

We see three lacuna clusters 0, 1, 2. The attractor of Λ becomes

ω(Λ) = {e0, e1, e2} ∪ {Rn : n ∈ N0} ∪ {Tn + 2Rn : n ∈ N0} ∪ {2Tn : n ∈ N0}. (6.6)

Figure 2 presents the sequence (‖Λ(n)‖)n∈N0
graphically, Figure 3 shows schematically the

orbit (Λ(n))n∈N0
and its attractor ω(Λ) in the function space A. In both figures, we see the

stairways up from e0 to e1 and from e1 to e2, and the stairway down from e2 to e0.
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Figure 2: The sequence (‖Λ(n)‖)n∈N0
of the lacunary function Λ.

2T1

2T0

2T2

e0

Λ2

Λ

Λ1

R0

R3

R2

R1

e1

e1 + R3
e1 + R2e1 + R1

e2

Figure 3: Orbit and ω-limit set of the lacunary function Λ.

Example for statement (B)

Is given by the flutter function Φ defined in (4.5), with k = 1, b0 = 1, β = γ = 0. It leads to the
attractor of Φ:

ω(Φ) = {e0} ∪ {qn : n ∈ N0}. (6.7)

Figure 1 shows the stairway {qn : n ∈ N0}.

Example for statement (C)

Is given by the sequence (1/n)n∈N for the construction of a Taylor sequence with infinitely
many lacuna clusters:
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(an)n∈N0
:=

(
1,

1
2
, 1, 1,

1
2
,

1
2
,

1
3
,

1
3
, 1, 1, 1,

1
2
,

1
2
,

1
2
,

1
3
,

1
3
,

1
3
,

1
4
,

1
4
,

1
4
, 1, 1, 1, 1,

1
2
,

1
2
,

1
2
,

1
2
,

1
3
,

1
3
,

1
3
,

1
3
,

1
4
,

1
4
,

1
4
,

1
4
,

1
5
,

1
5
,

1
5
,

1
5
, 1, 1, 1, 1, 1, . . .

)
.

(6.8)

Mathematical research on lacunary functions deals usually with unbounded coef-
ficients. In addition to Theorem 5.1(A), we give an example of a lacunary function with
unbounded Taylor sequence, whose ω-limit set is nonempty. For f : E → C, given by

f(x) := 1 +
x

1!
+ 1!

x4

4!
+ 3!

x9

9!
+ 5!

x16

16!
+ 7!

x25

25!
+ 9!

x36

36!
+ · · ·

= 1 + x +
∞∑

i=2

(2i − 3)!
xi

2

(i2)!
,

(6.9)

we show e0 ∈ ω(f). The k2th derivative of f is

f (k2)(x) =
∞∑

i=k

(2i − 3)!
xi

2−k2

(i2 − k2)!
= (2k − 3)! +

∞∑

i=k+1

(2i − 3)!
xi

2−k2

(i2 − k2)!
. (6.10)

Because 0 ∈ E, we have ‖f (k2)‖ ≥ (2k − 3)!, which means that the orbit is unbounded.
We consider its successor f (k2+1) and ‖f (k2+1)‖:

f (k2+1)(x) =
∞∑

i=k+1

(2i − 3)!
xi

2−k2−1

(i2 − k2 − 1)!

= (2k − 1)!
x2k

(2k)!
+

∞∑

i=k+2

(2i − 3)!
xi

2−k2−1

(i2 − k2 − 1)!

=
x2k

2k
+

∞∑

i=k+2

xi
2−k2−1

∏i2−k2−1
j=2i−2 j

,

∥∥f (k2+1)∥∥ =
1

2k
+

∞∑

i=k+2

1
∏i2−k2−1

j=2i−2 j
<

1
2k

+
∞∑

i=k+2

1

(2i − 2)(i−1)2−k2
.

(6.11)

Hence, ‖f (k2+1)‖ → 0 with k → ∞. We conclude the exponential function e0 ∈ ω(f).

7. Uncountable attractors

Finally, we demonstrate that not only lacunary functions may have chaotic orbits. We use the
Cantor sequence

(ci)i∈N0
=
(

1
1
,

1
2
,

2
2
,

1
3
,

2
3
,

3
3
,

1
4
,

2
4
,

3
4
,

4
4
,

1
5
,

2
5
,

3
5
,

4
5
,

5
5
,

1
6
,

2
6
,

3
6
,

4
6
,

5
6
,

6
6
,

1
7
, . . .

)
(7.1)
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1 x

5

C(x)

Figure 4: Graph of the Cantor function C for real arguments.

to define an analytic function C ∈ A. It has countably infinitely many cluster points, but no
lacuna cluster:

C(x) :=
∞∑

i=0

ci
xi

i!
= 1 +

1
2
x +

x2

2!
+

1
3
x3

3!
+

2
3
x4

4!
+
x5

5!
+

1
4
x6

6!
+

1
2
x7

7!
+

3
4
x8

8!
+ · · · . (7.2)

With the abbreviation

sn :=
n

2
(n + 1), n ∈ N0, (7.3)

the elements of the Cantor sequence (ci)i∈N0
maybe given by

ci :=
i + 1 − sn
n + 1

for sn ≤ i < sn+1. (7.4)

In Figure 4, we see the graph of C for real values. Figure 5 shows the sequence (‖C(n)‖)n∈N
of the orbit of C. It is bounded from below by 0 and from above by the Euler number e. It
increases apparently linear in some subintervals, followed by a descent at the values

1 = ‖T0‖, 2 = ‖T1‖, 2.5 = ‖T2‖, 2.6 = ‖T3‖, 2.7083 = ‖T4‖, . . . . (7.5)

Figure 6 shows ω(C) and a subset of the orbit schematically. Like a squirrel runs up a tree,
the orbit runs up along the stick {eα : α ∈ [0; 1]}. After that the orbit jumps to a Taylor
polynomial Tm (the squirrel jumps to a branch), and to another one, lower one Tm−1, and then
to Tm−2, . . . , T0. Then it starts again to run upward along the stick, with one step more than
before, at each circulation it reaches a higher level. It climbs up nearer and nearer to the top
of the stick e1.

We describe the properties of the orbit of C in a theorem, using Taylor polynomials Tn,
remainders Rn (6.1), exponential functions (3.1), and sn (7.3).
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100 1000 n

||T1||
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1

||T2||

||C(n)||

Figure 5: Sequence (‖C(n)‖)n∈N of the Cantor function C.
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C26
C19

Figure 6: Orbit and ω-limit set of the Cantor function C.

Theorem 7.1. For the orbit (C(n))n∈N0
of the Cantor function C,one has

(A) ‖C(sn)‖ → 0 for n → ∞;

(B) form with 0 ≤ m < n : ‖C(sn−m−1) − Tm‖ → 0 for n → ∞;

(C) for each α ∈ [0; 1], there is a subsequence (C(nj ))nj∈I , I ⊂ N, of the orbit (C(n))n∈N with
‖C(nj ) − eα‖ → 0 for j → ∞;

(D) lim supn→∞‖C(n)‖ = e1, lim infn→∞‖C(n)‖ = 0;

(E) ω(C) = {Tn : n ∈ N0}∪{eα : α ∈ [0; 1]}, containing uncountably many different elements.

Properties (A), (B), and (D) can be seen in Figure 5, property (E) in Figure 6.
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8. Proofs

8.1. Proof of Theorem 5.1

Property (A)

Using (2.2),

∥
∥f (n)∥∥ = max

x∈E

∣
∣
∣
∣∣

∞∑

i=0

an+i
xi

i!

∣
∣
∣
∣∣
= max

x∈E

∣
∣
∣
∣∣
an +

∞∑

i=1

an+i
xi

i!

∣
∣
∣
∣∣
≥ |an| (8.1)

because 0 ∈ E. Thus, (|an|)n∈N0
is an unbounded minorizing sequence.

Property (B)

It follows from (C) with n = 1 and β0 = α.

Property (C)

By assumption the cluster sequence (ai)i∈N0
of the Taylor sequence becomes ai = βimodn.

Consider p ∈ A defined by

p(x) :=
∞∑

i=0

ai
xi

i!
=

∞∑

i=0

βimodn
xi

i!
=

n−1∑

k=0

βk
∞∑

i=0

xin+k

(in + k)!

=
n−1∑

k=0

βkH
(n−k)
n .

(8.2)

Proposition 3.1 implies that the orbit (p(n))n∈N0
is a periodic orbit. Using (4.6), the orbit

(f (n))n∈N0
is asymptotically periodic to its attractor ω(f) =

{
p, p(1), p(2), . . . , p(n−1)}.

8.2. Proof of Theorem 6.1

Using the Li/Yorke-property (4.1).
(A) ⇒ (B) Let (bi)i∈N0

⊂ C be a periodic sequence. Then Theorem 5.1(C) implies that
the sequence (p(n))n∈N, defined by p(x) =

∑∞
i=0bi(x

i/i!), is a periodic orbit of system (2.1).
Let δ := lim supi→∞|ai − bi|, assuming δ > 0. Using (2.2),

∥∥f (n) − p(n)
∥∥ = max

x∈E

∣∣∣∣∣

∞∑

i=0

an+i
xi

i!
−
∞∑

i=0

bn+i
xi

i!

∣∣∣∣∣
= max

x∈E

∣∣∣∣∣

∞∑

i=0

(an+i − bn+i)
xi

i!

∣∣∣∣∣

≥ |an − bn|

(8.3)
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because 0 ∈ E. For infinitely many n, we have |an − bn| > δ/2. Thus,

lim sup
n→∞

∥∥f (n) − p(n)
∥∥ ≥ δ

2
> 0, (8.4)

where (f (n))n∈N and (p(n))n∈N are bounded, and hence (‖f (n) − p(n)‖)n∈N0
is bounded too.

(B) ⇒ (A) Let (p(n))n∈N0
be a periodic orbit of system (2.1). Because (‖f (n)‖)n∈N0

and
(‖p(n)‖)n∈N0

are bounded, (‖f (n) − p(n)‖)n∈N0
is bounded too, hence we have the right part of

relation (4.1). The left part follows indirectly with Theorem 5.1(C).

8.3. Proof of Theorem 6.2

Statement (A)

It can be proved directly from elementary combinatorics.

Statement (B)

(1) For α = 0, let I ⊂ N0 be the set of indices, where a block of zeros in the cluster sequence
(ai)i∈N0

starts. Then for n ∈ I,

ai = 0 for n ≤ i < n + kn, kn ∈ N, kn −→ ∞ for n −→ ∞. (8.5)

Using (2.2) and (4.6), we have for n ∈ I,

∥∥f
(n)∥∥ = max

x∈E

∣∣∣∣∣

∞∑

i=0

an+i
xi

i!

∣∣∣∣∣
= max

x∈E

∣∣∣∣∣

∞∑

i=kn

an+i
xi

i!

∣∣∣∣∣
≤
∞∑

i=kn

|an+i|
1
i!
. (8.6)

The Taylor sequence is bounded by a ∈ R
+. Thus, (8.5) guarantees that it is the case for its

cluster sequence too. The latter estimate

≤ a
∞∑

i=kn

1
i!
−→ 0 for n −→ ∞. (8.7)

Hence, f
(n)
→ e0 for n → ∞ and e0 ∈ ω(f) = ω(f).

(2) For α/= 0, the function g := f − eα is lacunary function. Thus, its Taylor sequence
has the lacuna cluster 0. Using (4.3) and the case α = 0 above imply

e0 ∈ ω(g) = ω(f − eα) = −eα +ω(f)⇐⇒ eα + e0 = eα ∈ ω(f). (8.8)

8.4. Proof of Theorem 6.3

Statement (A)

Let m ∈ N. For Um = βTm + γRm, we construct a subsequence (f
n
)n∈I , I ⊂ N0, of the orbit

(f
n
)n∈N0

, converging to Um.
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As assumed, the cluster sequence (ai)i∈N0
of the Taylor sequence is of type

(ai)i∈N0
= (. . . , β, γ, . . . , β, β, γ, γ, . . . , β, β, β, γ, γ, γ, . . .). (8.9)

The last β in a row of β’s defines an index n ∈ I, where

I := {n ∈ N : ai = β for n −m ≤ i ≤ n and ai = γ for n < i ≤ n + k with k ≥ m}. (8.10)

Note that I is an infinite set. Using (2.2), we find for the derivative f
(n−m)

,

∥∥f
(n−m)

−Um

∥∥ = max
x∈E

∣
∣∣∣∣

∞∑

i=0

an−m+i
xi

i!
− β

m∑

i=0

xi

i!
− γ

∞∑

i=m+1

xi

i!

∣
∣∣∣∣

= max
x∈E

∣∣∣∣∣

∞∑

i=n+k+1

(an−m+i − γ)
xi

i!

∣∣∣∣∣
≤

∞∑

i=n+k+1

|an−m+i − γ |
1
i!
.

(8.11)

As assumed, the sequence (ai)i∈N0
is bounded, thus (|ai − γ |)i∈N0

is bounded by a real number
c ∈ R

+, thus,

∥∥f
(n−m)

−Um

∥∥ ≤ c
∞∑

i=n+k+1

1
i!
−→ 0 for n −→ ∞, n ∈ I. (8.12)

Hence, f
(n−m)

→ Um for n → ∞, n ∈ I and Um ∈ ω(f) = ω(f).

Statement (B)

Let m ∈ N. For Sm, we construct a subsequence (f
(n)

)n∈I , I ⊂ N0, of the orbit (f
(n)

)n∈N0
,

converging to Sm. At index n starts a row of β’s, at index n +m the tupel, and at n +m + k a
row of γ ’s, which has its end at index n +m + k +Mn − 1. We define the set I by

I := {n ∈ N0 : an+i = β for 0 ≤ i < m, an+i = bi−m for m ≤ i < m + k,

an+i = γ for m + k ≤ i < m + k +Mn,

an+i /= γ for i = m + k +Mn},

(8.13)

where I contains infinitely many elements. Because γ is a lacuna cluster, we have

Mn −→ ∞ for n −→ ∞. (8.14)
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For n ∈ I, we consider the nth derivative f
(n)

, using (2.2) and the abbreviation M :=Mn,

f
(n)

=
∞∑

i=0

an+iqi

= β
m−1∑

i=0

qi +
m+k−1∑

i=m

bi−mqi + γ
m+k+M−1∑

i=m+k

qi +
∞∑

i=m+k+M

an+iqi

= βTm−1 +
k−1∑

j=0

bjqm+j + γ(Rm+k−1 − Rm+k+M−1) +
∞∑

i=m+k+M

an+iqi.

(8.15)

To Sm, it has the distance

∥∥f
(n)
− Sm

∥∥ =

∥∥∥∥∥

∞∑

i=m+k+M

an+iqi − γRm+k+M−1

∥∥∥∥∥

=

∥∥∥∥∥

∞∑

i=m+k+M

(an+i − γ)qi

∥∥∥∥∥
≤

∞∑

i=m+k+M

|an+i − γ |‖qi‖ =
∞∑

i=m+k+M

|an+i − γ |
1
i!
.

(8.16)

The sequence (|ai − γ |)i∈N is bounded by c ∈ R
+, thus the latter term

≤ c
∞∑

i=m+k+M

1
i!
. (8.17)

Because of (8.14), the sum converges to 0 for n → ∞. Thus,

∥∥f
(n)
− Sm

∥∥ −→ 0 for n −→ ∞, n ∈ I, Sm ∈ ω(f) = ω(f). (8.18)

Statement (C)

If there is only one lacuna cluster in the cluster sequence, then statement (B) implies with
β = γ that the attractor is countably infinite.

If there are infinitely many lacuna clusters α1, α2, α3, . . . in the cluster sequence, then
statement (A) implies for each couple αj , αj+1 countably infinitely many elements of the
attractor. Using countable × countable = countable, we conclude (C).

8.5. Proof of Theorem 7.1

From (7.4), we find for k = 1, 2, . . . , n

csn =
1

n + 1
, csn+k =

k + 1
n + 1

, csn−k =
n + 1 − k

n
. (8.19)
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Statement (A)

Using (8.19) and 0 < ci ≤ 1, we have for sufficiently large n,

∥
∥C(sn)

∥
∥ =

∥
∥
∥
∥
∥

n∑

i=0

i + 1
n + 1

xi

i!
+

∞∑

i=n+1

csn+i
xi

i!

∥
∥
∥
∥
∥

≤ 1
n + 1

∥
∥
∥
∥
∥

n∑

i=0

(i + 1)
xi

i!

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

∞∑

i=n+1

csn+i
xi

i!

∥
∥
∥
∥
∥

<
1

n + 1

∞∑

i=0

(i + 1)
1
i!
+

∥
∥
∥
∥
∥

∞∑

i=n+1

xi

i!

∥
∥
∥
∥
∥

=
2e1

n + 1
+ ‖Rn‖ −→ 0 for n −→ ∞.

(8.20)

Statement (B)

Let n,m ∈ N0, m < n. For Tm, see (6.1) and (7.5), using (2.2) and (8.19), we have

C(sn−m−1)(x) =
∞∑

i=0

csn−m−1+i
xi

i!

=
m∑

i=0

n −m + i
n

xi

i!
+
n+m+1∑

i=m+1

i −m
n + 1

xi

i!
+

∞∑

i=n+m+2

csn−m−1+i
xi

i!

= Tm(x) +
1
n

m∑

i=0

(i −m)
xi

i!
+

1
n + 1

n+m+1∑

i=m+1

(i −m)
xi

i!
+

∞∑

i=n+m+2

csn−m−1+i
xi

i!
.

(8.21)

This leads to

∥∥C(sn−m−1) − Tm
∥∥ ≤ 1

n

∥∥∥∥∥

m∑

i=0

(i −m)
xi

i!

∥∥∥∥∥
+

1
n + 1

∥∥∥∥∥

n+m+1∑

i=m+1

(i −m)
xi

i!

∥∥∥∥∥
+

∥∥∥∥∥

∞∑

i=n+m+2

csn−m−1+i
xi

i!

∥∥∥∥∥

≤ 1
n

m∑

i=0

|i −m|
i!

+
1

n + 1

n+m+1∑

i=m+1

|i −m|
i!

+ ‖Rn+m+1‖ −→ 0 for n −→ ∞.

(8.22)

Statement (C)

Statement (A) implies the statement is valid for α = 0. From statement (B), we conclude
Tm ∈ ω(C) for each m ∈ N0. Because of limm→∞Tm = e1 and Theorem 5.1, we find e1 ∈ ω(C).
Thus, the statement is true for α = 1.

Let 0 < α < 1 and ε > 0. Due to the fact that Q is dense in R, we find a rational number
p/q ∈ Q, p < q, and |p/q − α| < ε/3e.
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For ε > 0, we choose k ∈ N such that

e

k
<
ε

3
, ‖Rk‖ <

ε

3
. (8.23)

We define m := kp − 1 and n := kq − 1.
This leads to n −m = k(q − p) ≥ k and

‖Rn−m‖ ≤ ‖Rk‖ <
ε

3
. (8.24)

Furthermore, we have

∣
∣
∣
∣
m + 1
n + 1

− α
∣
∣
∣
∣ =

∣
∣
∣
∣
p

q
− α

∣
∣
∣
∣ <

ε

3e
. (8.25)

Using (2.2), (8.19), (8.23), (8.24), (8.25), we deduce

∥∥C(sn+m) − eα
∥∥ =

∥∥∥∥∥

∞∑

i=0

csn+m+i
xi

i!
− α

∞∑

i=0

xi

i!

∥∥∥∥∥

=

∥∥∥∥∥

n−m∑

i=0

m + i + 1
n + 1

xi

i!
− α

n−m∑

i=0

xi

i!
+

∞∑

i=n−m+1

csn+m+i
xi

i!
− α

∞∑

i=n−m+1

xi

i!

∥∥∥∥∥

=

∥∥∥∥∥

n−m∑

i=0

(
m + 1
n + 1

− α
)
xi

i!
+
n−m∑

i=0

i

n + 1
xi

i!
+

∞∑

i=n−m+1

(csn+m+i − α)
xi

i!

∥∥∥∥∥

≤
n−m∑

i=0

∣∣∣∣
m + 1
n + 1

− α
∣∣∣∣

1
i!
+
n−m∑

i=1

1
n + 1

1
(i − 1)!

+
∞∑

i=n−m+1

∣∣csn+m+i − α
∣∣ 1
i!

<
ε

3e

n−m∑

i=0

1
i!
+

1
kq

n−m∑

i=1

1
(i − 1)!

+
∞∑

i=n−m+1

1
i!
<

ε

3e
e1 +

1
kq
e1 + ‖Rn−m‖ <

ε

3
+
ε

3
+
ε

3
= ε.

(8.26)

Thus, we have proved statement (C). Statements (D) and (E) follow by using (A), (B), and
(C).
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